Timer/Counter Continuous Mode. Podstawy techniki mikroprocesorowej ETEW006 Układy czasowo licznikowe (CTC) C51 Timers - Timer/Counter Gating Control

Wielkość: px
Rozpocząć pokaz od strony:

Download "Timer/Counter Continuous Mode. Podstawy techniki mikroprocesorowej ETEW006 Układy czasowo licznikowe (CTC) C51 Timers - Timer/Counter Gating Control"

Transkrypt

1 Timer/Couner Coninuous Mode Podsawy echniki mikroprocesorowej ETEW6 Układy czasowo licznikowe (CTC) Andrzej Sępień Kaedra Merologii Elekronicznej i Foonicznej Timer/Couner repeaedly couns up o ValueMax and resars from zero: ValueMax = FFh for 8-bi ValueMax = FFFFh for 6-bi Timer ValueMax = FFFF FFFFh for 32-bi Timer CLK N Divider TimerCLK or N-bi Timer/Couner /K Couner Selec Timer/Couner Gaing Conrol C5 Timers - Overview CLK Selec Timer CLK Gae Timer CLK Gae Divider /K Couner N or N-bi Timer/Couner TimerCLK wo 6-bi imers/couners (Timer and ) which are useful in many applicaions for iming and couning. Timer/couner and of he C5 and can be used in he same four operaing modes: Mode : 8-bi imer/couner wih a divide-by-32 prescaler Mode : 6-bi imer/couner Mode 2: 8-bi imer/couner wih 8-bi auo-reload Mode 3: Timer/couner is configured as one 8-bi imer/couner and one 8-bi imer; Timer/couner in his mode holds is coun. Exernal inpus INT and INT can be programmed o funcion as a gae for imer/ couners and o faciliae pulse widh measuremens. C5 Timers T, T - Mode P3.5 T P3.3 INT# C/T# f OSC 2 TL 8 bi TMOD (addr = 89h) TR TH 8 bi TF GATE GATE C/T# M= M= EA ET EAL TL (addr=8bh) TH (addr=8dh) GATE C/T# M= M= INTR Bh Zliczanie impulsów S4 S5 S6 S S2 S3 S4 P P2 P P2 P P2 P P2 P P2 P P2 P P2 zewnęrzne wejście licznika T lub T T C cykl maszynowy S5 S6 S P P2 P P2 P P2 S2 S3 S4 P P2 P P2 P P2 INC rejesru licznika IE / IEN (addr = A8h) EA EAL TCON (addr = 88h) ET ET TF TR TF TR Zliczenie zewnęrznego impulsu na wejściu licznika T lub T: > T C i f X < f OSC /24

2 Rejesry liczników T i T Liczniki w 89LPC93x Philips Bh A8h Ah 98h 9h 88h 8h P3 IE / IEN P2 SCON P TCON TMOD TL TL TH TH P SBUF rejesry licznika T SFR SP DPL DPH PCON Brak możliwości zapisu zmiennych ypu ineger do rejesrów liczników T lub T rejesry licznika T Tn P.2 (T) P.7 (T) INTn# C/T# PCLK Toggle TLn 8 bi Mode (and, 2, 3) TRn THn 8 bi TFn GATEn AUXR (addr = A2h, Rese: xb) CLKPL EBRR ENT ENT ENTn ETn EA SRST - DPS f oscillaor PCLK = 2 DIVM Inerrup ATmega8 8-bi Timer/Couner TCNT Daa Bus coun Inerrup TOV Conrol Logic max clk T Timer/Couner sopped r.. /24 Edge Deecor inernal clk Timer/Couner Conrol Regiser pin T ATmega8 8-bi Timer/Couner coun Inerrup clk T TOV TCNT clk T = clkconrol I/O / Logic Daa Bus clk T Timer/Couner sopped Edge Deecor pin T TCNT MAX- MAXr BOTTOM inernal BOTTOM+.. /24 clk TOV max No Prescaling Timer/Couner Conrol Regiser couner is incremened a each imer clock (clk T ) couning direcion is always up (incremening), no couner clear is performed couner simply overruns when i passes is maximum 8-bi value (MAX = xff) and hen resars from he boom (BOTTOM = x) Timer/Couner Flag (TOV): will be se in he same imer clock cycle as he TCNT becomes zero TOV Flag behaves like a ninh bi, excep ha i is only se, no cleared imer overflow inerrup ha auomaically clears he TOV flag new couner value can be wrien anyime couner is incremened clk a T each imer clock (clk T ) couning direcion is always up (incremening), no couner clear is performed couner simply clk overruns T = clk I/O /8 when i passes is maximum 8-bi value (MAX = xff) and hen resars from he boom (BOTTOM = x) TCNT MAX- MAX BOTTOM BOTTOM+ Timer/Couner Flag (TOV): will be se in he same TOVimer clock cycle as he TCNT becomes zero TOV Flag behaves like a ninh bi, excep ha i is only se, wih no r cleared imer overflow inerrup ha auomaically clears he TOV flag new couner value can be wrien anyime C5 san licznika wpisywana warość do licznika : x czas rwania insrukcji: MOV addr, #dana ; 2 cykle maszynowe TR ; cykl maszynowy MOV TMOD, # ; ryb (6-biowy) obu liczników MOV TL, #LOW SanPoczT ; SanPoczT: MOV TH,#HIGH SanPoczT ; FDh FEh SETB TR MOV TL, # MOV TH,# TR ; san Sop: ; licznika T: 3h 3h MOV TL, #LOW SanPoczT MOV TH,#HIGH SanPoczT SETB TR MOV TH,# MOV TL, # TR ; san Sop2: ; licznika T: 2h h Wpis/odczy synchroniczny programowy wpis synchroniczny: zarzymanie licznika na czas wpisu koreka wpisywanej warości o czas wpisu, zarzymania, uruchomienia licznika wpis części mniej znaczącej wpis części bardziej znaczącej ponowne uruchomienie licznika 2

3 ATmega8 Timer/Couner Accessing 6-bi Regisers ATmega8(L). 8-bi AVR wih 8K Byes In-Sysem Programmable Flash. Amel Co. 2486T AVR 5/8, p.79 unsigned in i;... TCNT = xff; /* Se TCNT o xff */... i = TCNT; /* Read TCNT ino i */... Wrie: ; Se TCNT o xff LDI R7, x LDI R6, xff OUT TCNTH, R7 ; TempReg R7, high bye firs OUT TCNTL, R6 ; TCNTL R6, low bye second ; TCNTH TempReg Read: ; Read TCNT ino R7:R6 IN R6, TCNTL ; TempReg TCNTH, low bye firs IN R7, TCNTH ; R7 TempReg, high bye second ST7 Timer/Couner Accessing 6-bi Regisers Wrie 6-bi Timer Regiser: wriing he couner LSBye reses he imer a FFFCh Read 6-bi Timer Regiser: read MSB firs and hen he LSBye couner LSBye is buffered during he MSBye read, bye value is buffered auomaically buffered value remains unchanged unil he 6-bi read sequence is compleed, even if he user reads he MSBye several imes Timer/Couner Capure Mode ST7 6-bi Timer - Overview read Timer/Couner value in he fly CLK N Divider TimerCLK or N-bi Timer/Couner /K Selec Couner signal wrie o Regiser rising edge falling edge N-bi Capure Regiser Capure Selec The imer consiss of a 6-bi free-running couner driven by a programmable prescaler. I may be used for a variey of purposes, including measuring he pulse lenghs of up o wo inpu signals (inpu capure) or generaing up o wo oupu waveforms (oupu compare and PWM). Pulse lenghs and waveform periods can be modulaed from a few microseconds o several milliseconds using he imer prescaler and he CPU clock prescaler Some ST7 devices have wo on-chip 6-bi imers. They are compleely independen, and do no share any resources. They are synchronized afer a MCU rese as long as he imer clock frequencies are no modified This descripion covers one or wo 6-bi imers. In ST7 devices wih wo imers, regiser names are prefixed wih TA (Timer A) or TB (Timer B) ST7 6-bi Timer - Main Feaures Programmable prescaler: f CPU divided by 2, 4 or 8. saus flag and maskable inerrup Exernal clock inpu (mus be a leas 4 imes slower han he CPU clock speed) wih he choice of acive edge Oupu compare funcions wih: 2 dedicaed 6-bi regisers 2 dedicaed programmable signals 2 dedicaed saus flags dedicaed maskable inerrup Inpu capure funcions wih: 2 dedicaed 6-bi regisers 2 dedicaed acive edge selecion signals 2 dedicaed saus flags dedicaed maskable inerrup Pulse Widh Modulaion mode (PWM) One Pulse mode alernae funcions on I/O pors: ICAP, ICAP2, OCMP, OCMP2, EXTCLK C55C: Timer 2 - Block Diagram 6-Bi Comparaor CCL3/ /CCH3 6-Bi Comparaor CCL2/ /CCH2 6-Bi Comparaor CCL/ /CCH Reload Reload Timer 2 TL2 TH2 6-Bi Comparaor CRCL/ /CRCH Capure TF2 Infineon C55C 3

4 C57A Capure C57A Capure - example f IN Timer T2 TF2 Inr wrie o CCL4 wrie o CCL3.. wrie o CRCL f OSC 2 Timer T2 INT4 INT3# INT4 Regiser CC4 Mode Mode Regiser CCn Regiser CRC U() P. CC INT3# CRC Mode INT3# IEX3 Inerrup Hisory U() T Inr P.4 CC4 Inr P.-3 CC-3 Inr P. CC P. CC INT4 CC INT4 IEX4 Timer/Couner Reload Mode wrie Timer/Couner value when overflow CLK N Divider TimerCLK or N-bi Timer/Couner /K Selec Couner N-bi Reload Regiser P3.4 T P3.2 INT# C5 Timers T, T - Mode 2 C/T# f OSC 2 TR TMOD (addr = 89h) IE / IEN (addr = A8h) EA ET EAL ET TL 8 bi TH 8 bi GATE GATE C/T# M= M= TF TCON (addr = 88h) TF TR TF TR EA ET EAL GATE C/T# M= M= TL (addr=8ah) TH (addr=8ch) INTR Bh C57A: Tryb Reload Timer/Couner Mode compare Timer/Couner conens wih Regiser f WE Licznik T2 przepełnienie TF2 N-bi Comparaor Regiser Mode Mode Rejesr CRC CRC - warość począkowa licznika T2 P.5 T2EX CLK N Divider Timer CLK or N-bi Timer/Couner /K Selec Couner N-bi Comparaor EU 4

5 C57A: Tryb C57A: Tryb f WE Licznik T2 TF2 INTR (2Bh) przepełnienie licznika T2 TF2 INTR (2Bh) czyaj przerzunik Komparaor CC4 Rejesr CC4 Komparaor CC3 Komparaor CC2 Komparaor CC Komparaor CRC Rejesr CC3 Rejesr CC2 Rejesr CC Rejesr CRC IEX6 (6Bh) IEX5 (63h) IEX2 (4Bh) IEX4 (5Bh) IEX3 (53h) f WE Licznik T2 magisrala Komparaor CCn Rejesr CCn san równości czyaj pin wybranego rejesru CCn ze sanem licznika T2 R D CLK S Vcc GND P./CC P./CC P.2/CC2 P.3/CC3 P.4/CC4 C57A: Tryb (przykład /2) san T2 CC CRC P./CC = FFFFh + przepełnienie licznika T2 T = = 5 np. 5 = FECh współczynnik wypełnienia np. = FC8h okres PWM C57A: Tryb (przykład 2/2) ; generaor sygnału: okres = ms, współczynnik wypełnienia = /2 Wypelnienie EU 5 ; współczynnik wypełnienia = /2 Okres EU ; okres sygnału = µs = ms San_T2 EU Okres ; = FC8h, warość począkowa T2 San_CRC EU San_T2 ; warość począkowa T2 po auoładowaniu San_CC EU Wypelnienie ; = FECh, san porównania w CC San_CCEN EU b ; odblokowany ryb porównania dla CC SanT2CON EU b ; ryb akowania licznika T2 + auoładowanie Generaor_kHz: MOV TH2, # High San_T2 ; warość począkowa licznika T2 MOV TL2, # Low San_T2 MOV CRCH, # High San_CRC ; warość rejesru CRC, począek zliczania MOV CRCL, # Low San_CRC MOH, # High San_CC ; warość rejesru porównania CC MOL, # Low San_CC MOEN, # San_CCEN ; ryb porównania licznika T2 MOV T2CON, # San_T2CON ; sar licznika T2 Koniec_programowania: ; licznik generuje sygnał aż do ponownego NOP ; programowania lub zerowania procesora Programmable Couner Array - Feaures (/2) The PCA consiss of a : dedicaed 6-bi couner/imer five 6-bi capure/compare modules each capure/compare module has is own associaed I/O line (CEXn) I/O lines are roued hrough he Crossbar o Por I/O when enabled. PCA - Feaures (2/2) SYSCLK/2 SYSCLK/4 T SYSCLK Ex /8 PCA CLOCK MUX 6-Bi Couner/Timer Each capure/compare module may be configured o operae independenly in one of six modes: Edge-Triggered Capure Sofware Timer, High-Speed Oupu, Frequency Oupu, 8-Bi PWM 6-Bi PWM The PCA is configured and conrolled hrough he sysem conroller's Special Funcion Regisers (SFR). max rae = SYSCLK/4 Capure Module Capure Module Capure Module 2 Capure Module 3 Capure Module 4 WDT ECI CEX CEX CEX2 CEX3 CEX4 Crossbar Por I/O 5

6 C57A: Tryb C57A: Mode - przykład (/2) Synchroniczne generowanie kilku sygnałów z wykorzysaniem rejesru CC4 wzorcowych sygnałów binarnych serowanie wielofazowych silników skokowych serowanie cewek układów zapłonowych f IN Timer T2 Inernal bus Comparaor CC3 - Regiser CC3 - D CLK Shadow Lach read lach D CLK GND read pin Vcc P./CC P./CC P.2/CC2 P.3/CC3.. i inne.. P5.7 P5.6 P5.5 P5.4 P5.3 P5.2 P5. P5. san poru P5 po kolejnej ms: ms A6h 6Ah 65h 4ms 99h 95h 6ms 8ms 5Ah 56h AAh A5h ms 69h A6h 6Ah 65h 99h 95h 5Ah 56h AAh A5h C57A: Mode - przykład (2/2) 8-biowa ablica wzorców 6-biowa ablica czasów - sanu sanu poru P5 wpisywanych rejesru CC4; komparaor CC4 do przerzunika pomocniczego przepisuje san przerzunika (Shadow Lach) poru P5 pomocniczego do przerzunika wyjściowego poru P5 P5.7 P5.6 P5.5 P5.4 P5.3 P5.2 P5. P5. ms san A6h poru P5: 6Ah 65h 4ms 6ms 8ms 99h 95h 5Ah 56h AAh A5h Pulse Widh Modulaion (/2) modulacja szerokości impulsu warość średnia napięcia: U() U() U śr = / T po uśrednieniu T U() Pulse Widh Modulaion (2/2) C57A: Tryb U() T warość średnia napięcia: U śr = / T generaor sygnału U() /2 Generowanie sygnału sinusoidalnego: U() 28 warości chwilowe do CC2 i U( i ) = sin ( ) 6 i =,,.., 5 por P np. P.2/CC2: + filr U( i ): dolnoprzepusowy okres do CRC 6

7 Changing he Ampliude wihou using any Muliplicaion Insrucion (/2) AP822 Generaing sinusoidal 3-Phase-Currens for Inducion Maschines wih a imeopimezed algorihm for he Capure Uni. C54 / C58 Microconrollers. Feb. 24, Infineon Technologies AG U = A sin B B corresponds o he angle variable high bye sin B corresponds o he value in he sine able o be muliplied wih he ampliude A U corresponds o he value moved o he compare regiser To avoid he muliplicaion, following equaion shows a soluion: U = A sin B = cos(arccos A) sin B = = cos A' sin B = ½ [sin(b - A) + sin(b + A')] Changing he Ampliude wihou using any Muliplicaion Insrucion (2/2) sin X + sin X = 2 sin X sin X + sin(x+8 ) = The muliplicaion of A and sinb is now ransfered wih an addiion heorem ino he operaions B-A and B+A and wo sine able accesses. Three-Phase Sine Wave Currens for Inducion Moors (/4) Three-Phase Sine Wave Currens for Inducion Moors (2/4) Programmable Period Value Programmable Value Zero *CCx Pin *COUTx Pin * (x =,, 2) Programmable Offse Value (for Dead-Time) Programmable Dead-Time High Side Gaing Signal Low Side Gaing Signal Three-Phase Sine Wave Currens for Inducion Moors (3/4) Three-Phase Sine Wave Currens for Inducion Moors (4/4) Programmable Period Value Channel Value Channel Value Channel 2 Value Zero Phase A High Side Phase A Low Side Phase B High Side Phase B Low Side Phase C High Side Phase C Low Side CC COUT CC COUT CC2 COUT2 6-Bi Timer The hos PC sends he desired ampliude A and frequency o he MCU The compare values canno be compued by he microconroller in a reasonable ime, herefore he values are periodically read ou from a sine able in memory which means, ha he compare values are 8-bi. 7

Obsługa wyjść PWM w mikrokontrolerach Atmega16-32

Obsługa wyjść PWM w mikrokontrolerach Atmega16-32 Zachodniopomorski Uniwersye Technologiczny WYDZIAŁ ELEKTRYCZNY Kaedra Inżynierii Sysemów, Sygnałów i Elekroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA Obsługa wyjść PWM w mikrokonrolerach Amega16-32 Opracował:

Bardziej szczegółowo

MIKROPROCESORY architektura i programowanie

MIKROPROCESORY architektura i programowanie Systematyczny przegląd. (CISC) SFR umieszczane są w wewnętrznej pamięci danych (80H 0FFH). Adresowanie wyłącznie bezpośrednie. Rejestry o adresach podzielnych przez 8 są też dostępne bitowo. Adres n-tego

Bardziej szczegółowo

Omówimy przykłady 8-mio bitowego licznika z wyposażenia ADuC812 (CISC 51) oraz mikrokontrolera ATMega128 należącego do rodziny AVR.

Omówimy przykłady 8-mio bitowego licznika z wyposażenia ADuC812 (CISC 51) oraz mikrokontrolera ATMega128 należącego do rodziny AVR. Liczniki/czasomierze (T/C) należą do standardowego składu wewnętrznych układów peryferyjnych (WEP) mikrokontrolerów. Często różnią się znacznie pod względem funkcji, które rozszerzają proste zliczanie

Bardziej szczegółowo

Mikroprocesory i Mikrosterowniki Liczniki Timer Counter T/C0, T/C1, T/C2

Mikroprocesory i Mikrosterowniki Liczniki Timer Counter T/C0, T/C1, T/C2 Mikroprocesory i Mikrosterowniki Liczniki Timer Counter T/C0, T/C1, T/C2 Wydział Elektroniki Mikrosystemów i Fotoniki Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com.

Bardziej szczegółowo

Układy czasowo-licznikowe w systemach mikroprocesorowych

Układy czasowo-licznikowe w systemach mikroprocesorowych Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość

Bardziej szczegółowo

Zerowanie mikroprocesora

Zerowanie mikroprocesora Zerowanie mikroprocesora Zerowanie (RESET) procesora jest potrzebne dla ustalenia początkowych warunków pracy po włączeniu zasilania: adres początku programu stan systemu przerwań zawartość niektórych

Bardziej szczegółowo

MIKROPROCESORY architektura i programowanie

MIKROPROCESORY architektura i programowanie Struktura portów (CISC) Port to grupa (zwykle 8) linii wejścia/wyjścia mikrokontrolera o podobnych cechach i funkcjach Większość linii we/wy może pełnić dwie lub trzy rozmaite funkcje. Struktura portu

Bardziej szczegółowo

Układy czasowo-licznikowe w systemach mikroprocesorowych

Układy czasowo-licznikowe w systemach mikroprocesorowych Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość

Bardziej szczegółowo

Uproszczony schemat blokowy zespołu 8-bitowego timera przedstawiono na rys.1

Uproszczony schemat blokowy zespołu 8-bitowego timera przedstawiono na rys.1 Dodatek C 1. Timer 8-bitowy (Timer0) 1.1. Opis układu Uproszczony schemat blokowy zespołu 8-bitowego timera przedstawiono na rys.1 Rys. 1. Schemat blokowy timera Źródłem sygnału taktującego może być zegar

Bardziej szczegółowo

architektura komputerów w 1 1

architektura komputerów w 1 1 8051 Port P2 Port P3 Serial PORT Timers T0, T1 Interrupt Controler DPTR Register Program Counter Program Memory Port P0 Port P1 PSW ALU B Register SFR accumulator STRUCTURE OF 8051 architektura komputerów

Bardziej szczegółowo

Architektura mikrokontrolera MCS51

Architektura mikrokontrolera MCS51 Architektura mikrokontrolera MCS51 Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Architektura mikrokontrolera

Bardziej szczegółowo

Architektura mikrokontrolera MCS51

Architektura mikrokontrolera MCS51 Architektura mikrokontrolera MCS51 Ryszard J. Barczyński, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Architektura mikrokontrolera

Bardziej szczegółowo

Układy czasowe / liczniki (timers/counters)

Układy czasowe / liczniki (timers/counters) Układy czasowe / liczniki (timers/counters) Współpraca MK z otoczeniem w czasie rzeczywistym wymaga odliczania czasu, zliczania zdarzeń lub generowania złożonych sekwencji binarnych. Funkcje te realizowane

Bardziej szczegółowo

ĆWICZENIE. TEMAT: OBSŁUGA PRZETWORNIKA A/C W ukontrolerze 80C535 KEILuVISON

ĆWICZENIE. TEMAT: OBSŁUGA PRZETWORNIKA A/C W ukontrolerze 80C535 KEILuVISON ĆWICZENIE TEMAT: OBSŁUGA PRZETWORNIKA A/C W ukontrolerze 80C535 KEILuVISON Wiadomości wstępne: Wszystkie sygnały analogowe, które mają być przetwarzane w systemach mikroprocesorowych są próbkowane, kwantowane

Bardziej szczegółowo

Pracownia elektryczno-elektroniczna klasa IV

Pracownia elektryczno-elektroniczna klasa IV Ćwiczenie nr 5 Cel ćwiczenia: Ćwiczenie ma na celu zaznajomienie z metodami odliczania czasu z wykorzystaniem układów czasowo - licznikowych oraz poznanie zasad zgłaszania przerwań i sposobów ich wykorzystywania

Bardziej szczegółowo

ad a) Konfiguracja licznika T1 Niech nasz program składa się z dwóch fragmentów kodu: inicjacja licznika T1 pętla główna

ad a) Konfiguracja licznika T1 Niech nasz program składa się z dwóch fragmentów kodu: inicjacja licznika T1 pętla główna Technika Mikroprocesorowa Laboratorium 4 Obsługa liczników i przerwań Cel ćwiczenia: Celem ćwiczenia jest nabycie umiejętności obsługi układów czasowo-licznikowych oraz obsługi przerwań. Nabyte umiejętności

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo

CYKL ROZKAZOWY = 1 lub 2(4) cykle maszynowe

CYKL ROZKAZOWY = 1 lub 2(4) cykle maszynowe MIKROKONTROLER RODZINY MCS 5 Cykl rozkazowy mikrokontrolera rodziny MCS 5 Mikroprocesory rodziny MCS 5 zawierają wewnętrzny generator sygnałów zegarowych ustalający czas trwania cyklu zegarowego Częstotliwość

Bardziej szczegółowo

XC4000: LUT jako ROM Układy Cyfrowe i Systemy Wbudowane 2 Układy FPGA cz. 2 ROM32X1 VHDL inference example ROM 16x2b type

XC4000: LUT jako ROM Układy Cyfrowe i Systemy Wbudowane 2 Układy FPGA cz. 2 ROM32X1 VHDL inference example ROM 16x2b type Układy Cyfrowe i Systemy Wbudowane 2 XC4000: LUT jako ROM Układy FPGA cz. 2 dr inż. Jarosław Sugier Jaroslaw.Sugier@pwr.edu.pl W-4/K-9, pok. 227 C-3 FPGA(2) - 1 FPGA(2) - 2 ROM32X1 VHDL inference example

Bardziej szczegółowo

LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32

LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA TIMERY w mikrokontrolerach Atmega16-32 Opracował:

Bardziej szczegółowo

LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32

LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA TIMERY w mikrokontrolerach Atmega16-32 Opracował:

Bardziej szczegółowo

AGH Akademia Górniczo- Hutnicza w Krakowie Katedra Elektroniki WIET

AGH Akademia Górniczo- Hutnicza w Krakowie Katedra Elektroniki WIET AGH Akademia Górniczo- Hutnicza w Krakowie Katedra Elektroniki WIET Technika Microprocesorowa Laboratorium 6 Timery i liczniki Auhor: Paweł Russek Tłumaczenie: Ernest Jamro http://www.fpga.agh.edu.pl/tm

Bardziej szczegółowo

Systemy wbudowane. Wprowadzenie. Wprowadzenie. Mikrokontroler 8051 Budowa

Systemy wbudowane. Wprowadzenie. Wprowadzenie. Mikrokontroler 8051 Budowa Systemy wbudowane Mikrokontroler 8051 Budowa dr inż. Maciej Piechowiak Wprowadzenie rdzeń CPU z jednostką artymetyczno-logiczną (ALU) do obliczeń na liczbach 8-bitowych, uniwersalne dwukierunkowe porty

Bardziej szczegółowo

Przerwania w architekturze mikrokontrolera X51

Przerwania w architekturze mikrokontrolera X51 Przerwania w architekturze mikrokontrolera X51 (przykład przerwanie zegarowe) Ryszard J. Barczyński, 2009 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i mikrokontrolery Liczniki i timery laboratorium: 03 autor: mgr inż. Michał Lankosz dr hab. Zbisław

Bardziej szczegółowo

Technika mikroprocesorowa I Wykład 4

Technika mikroprocesorowa I Wykład 4 Technika mikroprocesorowa I Wykład 4 Układ czasowo licznikowy 8253 INTEL [Źródło: https://www.vtubooks.com/free_downloads/8253_54-1.pdf] Wyprowadzenia układu [Źródło: https://www.vtubooks.com/free_downloads/8253_54-1.pdf]

Bardziej szczegółowo

Wbudowane układy peryferyjne cz. 2 Wykład 8

Wbudowane układy peryferyjne cz. 2 Wykład 8 Wbudowane układy peryferyjne cz. 2 Wykład 8 Timery Timery (liczniki) 2 Timery informacje ogólne Mikrokontroler ATmega32 posiada 3 liczniki: Timer0 8-bitowy Timer1 16-bitowy Timer2 8-bitowy, mogący pracować

Bardziej szczegółowo

architektura komputerów w 1 1

architektura komputerów w 1 1 8051 Port P2 Port P3 Transm. szeregowa Timery T0, T1 Układ przerwań Rejestr DPTR Licznik rozkazów Pamięć programu Port P0 Port P1 PSW ALU Rejestr B SFR akumulator 8051 STRUKTURA architektura komputerów

Bardziej szczegółowo

Rev Źródło:

Rev Źródło: KAmduino UNO Rev. 20190119182847 Źródło: http://wiki.kamamilabs.com/index.php/kamduino_uno Spis treści Basic features and parameters... 1 Standard equipment... 2 Electrical schematics... 3 AVR ATmega328P

Bardziej szczegółowo

LOW ENERGY TIMER, BURTC

LOW ENERGY TIMER, BURTC PROJEKTOWANIE ENERGOOSZCZĘDNYCH SYSTEMÓW WBUDOWANYCH ĆWICZENIE 4 LOW ENERGY TIMER, BURTC Katedra Elektroniki AGH 1. Low Energy Timer tryb PWM Modulacja szerokości impulsu (PWM) jest często stosowana przy

Bardziej szczegółowo

Metody obsługi zdarzeń

Metody obsługi zdarzeń SWB - Przerwania, polling, timery - wykład 10 asz 1 Metody obsługi zdarzeń Przerwanie (ang. Interrupt) - zmiana sterowania, niezależnie od aktualnie wykonywanego programu, spowodowana pojawieniem się sygnału

Bardziej szczegółowo

Technika Mikroprocesorowa Laboratorium 5 Obsługa klawiatury

Technika Mikroprocesorowa Laboratorium 5 Obsługa klawiatury Technika Mikroprocesorowa Laboratorium 5 Obsługa klawiatury Cel ćwiczenia: Głównym celem ćwiczenia jest nauczenie się obsługi klawiatury. Klawiatura jest jednym z urządzeń wejściowych i prawie zawsze występuje

Bardziej szczegółowo

Obszar rejestrów specjalnych. Laboratorium Podstaw Techniki Mikroprocesorowej Instytut Mikroelektroniki i Optoelektroniki PW

Obszar rejestrów specjalnych. Laboratorium Podstaw Techniki Mikroprocesorowej Instytut Mikroelektroniki i Optoelektroniki PW Laboratorium Podstaw Techniki Mikroprocesorowej Instytut Mikroelektroniki i Optoelektroniki PW MIKROKONTROLER 85 - wiadomości podstawowe. Schemat blokowy mikrokontrolera 85 Obszar rejestrów specjalnych

Bardziej szczegółowo

Podstawy Techniki Mikroprocesorowej Laboratorium

Podstawy Techniki Mikroprocesorowej Laboratorium Laboratorium Ćwiczenie 3 Liczniki 0, 1, 2 (Timer Counters T/C0, T/C1, T/C2) Program ćwiczenia: obsługa trybu pracy normalny wybranego licznika, obsługa trybu pracy CTC wybranego licznika, obsługa trybu

Bardziej szczegółowo

Programowany układ czasowy APSC

Programowany układ czasowy APSC Programowany układ czasowy APSC Ośmiobitowy układ czasowy pracujący w trzech trybach. Wybór trybu realizowany jest przez wartość ładowaną do wewnętrznego rejestru zwanego słowem sterującym. Rejestr ten

Bardziej szczegółowo

Przerwanie. Źródła przerwań

Przerwanie. Źródła przerwań Podstawy systemów mikroprocesorowych Wykład nr 3 Przerwania i liczniki dr Piotr Fronczak http://www.if.pw.edu.pl/~agatka/psm.html fronczak@if.pw.edu.pl Przerwanie Warunek lub zdarzenie, które przerywa

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i mikrokontrolery Obsługa portu szeregowego laboratorium: 05 autor: mgr inż. Michal Lankosz dr hab.

Bardziej szczegółowo

LABORATORIUM. TIMERY w mikrokontrolerach MCS 51

LABORATORIUM. TIMERY w mikrokontrolerach MCS 51 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Zakład Cybernetyki i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA TIMERY w mikrokontrolerach MCS 51 Opracował: mgr in Ŝ. Andrzej Biedka

Bardziej szczegółowo

Badanie modułów wewnętrznych mikrokontrolera 311[07].Z4.02

Badanie modułów wewnętrznych mikrokontrolera 311[07].Z4.02 MINISTERSTWO EDUKACJI NARODOWEJ Danuta Pawełczyk Badanie modułów wewnętrznych mikrokontrolera 311[07].Z4.02 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy Radom

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA

TECHNIKA MIKROPROCESOROWA LABORATORIUM TECHNIKA MIKROPROCESOROWA Port transmisji szeregowej USART MCS'51 Opracował: Tomasz Miłosławski 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobami komunikacji mikrokontrolera

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2005 Pomiar napięcia przemiennego Cel ćwiczenia Celem ćwiczenia jest zbadanie dokładności woltomierza cyfrowego dla

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego. Badanie liczników

Instrukcja do ćwiczenia laboratoryjnego. Badanie liczników Insrukcja do ćwiczenia laboraoryjnego Badanie liczników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 3. 4. Budowa licznika cyfrowego. zielnik częsoliwości, różnice między licznikiem

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i mikrokontrolery Przerwania laboratorium: 04 autor: mgr inż. Michał Lankosz dr hab. Zbisław Tabor,

Bardziej szczegółowo

Ćwiczenie 9 Częstościomierz oparty na µc 8051(8052)

Ćwiczenie 9 Częstościomierz oparty na µc 8051(8052) Laboratorium Techniki Mikroprocesorowej Informatyka studia dzienne Ćwiczenie 9 Częstościomierz oparty na µc 8051(8052) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami zastosowania mikrokontrolerów

Bardziej szczegółowo

Podstawy programowania PLC w języku drabinkowym - ćwiczenie 5

Podstawy programowania PLC w języku drabinkowym - ćwiczenie 5 Podstawy programowania PLC w języku drabinkowym - ćwiczenie 5 1. Cel ćwiczenia Zapoznanie się z podstawowymi elementami języka drabinkowego i zasadami programowania Programowalnych Sterowników Logicznych

Bardziej szczegółowo

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów...2 2. ISP...2 3. I/O Ports...3 4. External Interrupts...4 5. Analog Comparator...5 6. Analog-to-Digital Converter...6

Bardziej szczegółowo

Temat: System przerwań, liczniki i wyświetlacz w STRC51. Ćwiczenie 3.

Temat: System przerwań, liczniki i wyświetlacz w STRC51. Ćwiczenie 3. 1. Przerwania na procesorze 80C51 Przerwania są mechanizmem umożliwiającym połączenie zdarzeń (sygnałów) z odpowiednim wykonaniem fragmentu programu - wywoływanymi niezależnie od aktualnie wykonywanego

Bardziej szczegółowo

Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading)

Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading) Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading) ROGER sp.j. Gościszewo 59 82-416 Gościszewo Poland tel. 055 2720132 fax 055 2720133 www.roger.pl

Bardziej szczegółowo

Temat: System przerwań, liczniki i wyświetlacz w STRC51. Ćwiczenie 3.

Temat: System przerwań, liczniki i wyświetlacz w STRC51. Ćwiczenie 3. 1. Mechanizm przerwań w procesorze C51 Przerwania są mechanizmem umożliwiającym połączenie zdarzeń (sygnałów) z odpowiednim wykonaniem fragmentu programu - wywoływanymi niezależnie od aktualnie wykonywanego

Bardziej szczegółowo

Przerwania, polling, timery - wykład 9

Przerwania, polling, timery - wykład 9 SWB - Przerwania, polling, timery - wykład 9 asz 1 Przerwania, polling, timery - wykład 9 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Przerwania, polling, timery - wykład 9 asz 2 Metody obsługi zdarzeń

Bardziej szczegółowo

Wykład 3. Przegląd mikrokontrolerów 8-bit: STM8

Wykład 3. Przegląd mikrokontrolerów 8-bit: STM8 Wykład 3 Przegląd mikrokontrolerów 8-bit: - 8051 - STM8 Mikrokontrolery 8051 Rodzina 8051 wzięła się od mikrokontrolera Intel 8051 stworzonego w 1980 roku Mikrokontrolery 8051 były przez długi czas najpopularniejszymi

Bardziej szczegółowo

Start Bity Bit Stop 1 Bit 0 1 2 3 4 5 6 7 Par. 1 2. Rys. 1

Start Bity Bit Stop 1 Bit 0 1 2 3 4 5 6 7 Par. 1 2. Rys. 1 Temat: Obsługa portu komunikacji szeregowej RS232 w systemie STRC51. Ćwiczenie 2. (sd) 1.Wprowadzenie do komunikacji szeregowej RS232 Systemy bazujące na procesorach C51 mogą komunikować się za pomocą

Bardziej szczegółowo

Układy reprogramowalne i SoC Język VHDL (część 4)

Układy reprogramowalne i SoC Język VHDL (część 4) Język VHDL (część 4) Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki

Bardziej szczegółowo

Programowany układ czasowy

Programowany układ czasowy Programowany układ czasowy Zbuduj na płycie testowej ze Spartanem-3A prosty ośmiobitowy układ czasowy pracujący w trzech trybach. Zademonstruj jego działanie na ekranie oscyloskopu. Projekt z Języków Opisu

Bardziej szczegółowo

Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader

Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader 2017-01-24 Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader Program CS27 Reader należy uruchomić przez wybór opcji CS27 i naciśnięcie przycisku START. Programme

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Sterowniki Urządzeń Mechatronicznych laboratorium. Ćw. 3: Timer v1.0

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Sterowniki Urządzeń Mechatronicznych laboratorium. Ćw. 3: Timer v1.0 1 CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z możliwościami odmierzania czasu za pomocą wewnętrznego TIMER a mikrokontrolerów serii AVR 2 ZAKRES NIEZBĘDNYCH WIADOMOŚCI - wiadomości z poprzednich

Bardziej szczegółowo

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver OPBOX ver.0 USB.0 Mini Ultrasonic Box with Integrated Pulser and Receiver Przedsiębiorstwo BadawczoProdukcyjne OPTEL Sp. z o.o. ul. Morelowskiego 30 PL59 Wrocław phone: +8 7 39 8 53 fax.: +8 7 39 8 5 email:

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

OpenPoland.net API Documentation

OpenPoland.net API Documentation OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets

Bardziej szczegółowo

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów2 2. ISP..2 3. I/O Ports..3 4. External Interrupts..4 5. Analog Comparator5 6. Analog-to-Digital Converter.6 7.

Bardziej szczegółowo

architektura komputerów w. 9 Wejście/wyjście

architektura komputerów w. 9 Wejście/wyjście architektura komputerów w. 9 Wejście/wyjście Model komputera John von Neumann (1903-1957) CPU ALU Jednostka sterująca wejście wyjście Pamięć 4 podstawowe funkcje: przetwarzanie, przechowywanie, przekazywanie

Bardziej szczegółowo

Urządzenia peryferyjne procesora ColdFire

Urządzenia peryferyjne procesora ColdFire Urządzenia peryferyjne procesora ColdFire 1 Moduł generatora sygnału zegarowego (Clock Module) 2 Generator z pętlą PLL (1) Pętla synchronizacji fazy, pętla sprzężenia fazowego, PLL (ang. Phase Locked Loop)

Bardziej szczegółowo

Mikroprocesory i Mikrosterowniki

Mikroprocesory i Mikrosterowniki Mikroprocesory i Mikrosterowniki Wykład 1 Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Konsultacje Pn,

Bardziej szczegółowo

RE11RMMU przekaźnik czasowy opóźniający 10-funkcyjny - 1 s..100 h V AC - 1 OC

RE11RMMU przekaźnik czasowy opóźniający 10-funkcyjny - 1 s..100 h V AC - 1 OC Dane produktu Charakterystyki Główne Rodzina produktów Typ produktu lub komponentu Typ wyjścia dyskretnego Nazwa składnika Rodzaj opóźnienia Zakres opóźnienia [Us] znamionowe napięcie zasilania Znamionowy

Bardziej szczegółowo

Mikrokontroler ATmega32. System przerwań Porty wejścia-wyjścia Układy czasowo-licznikowe

Mikrokontroler ATmega32. System przerwań Porty wejścia-wyjścia Układy czasowo-licznikowe Mikrokontroler ATmega32 System przerwań Porty wejścia-wyjścia Układy czasowo-licznikowe 1 Przerwanie Przerwanie jest inicjowane przez urządzenie zewnętrzne względem mikroprocesora, zgłaszające potrzebę

Bardziej szczegółowo

SYSTEM PRZERWA Ń MCS 51

SYSTEM PRZERWA Ń MCS 51 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Zakład Cybernetyki i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA SYSTEM PRZERWA Ń MCS 51 Opracował: mgr inŝ. Andrzej Biedka Uwolnienie

Bardziej szczegółowo

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition) Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,

Bardziej szczegółowo

LED PAR 56 7*10W RGBW 4in1 SLIM

LED PAR 56 7*10W RGBW 4in1 SLIM LED PAR 56 7*10W RGBW 4in1 SLIM USER MANUAL Attention: www.flash-butrym.pl Strona 1 1. Please read this specification carefully before installment and operation. 2. Please do not transmit this specification

Bardziej szczegółowo

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Rozpoznawanie twarzy metodą PCA Michał Bereta   1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.

Bardziej szczegółowo

Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji

Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji Systemy wbudowane Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji Poziomy abstrakcji projektowania systemów HW/SW 12/17/2011 S.Deniziak:Systemy wbudowane 2 1 Model czasu 12/17/2011 S.Deniziak:Systemy

Bardziej szczegółowo

Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki

Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki Laboratorium mikrokontrolerów Ćwiczenie 7 Przerwania Autor: Paweł Russek Tłumaczenie: Sebastian Koryciak http://www.fpga.agh.edu.pl/tm ver. 25.05.16

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) UKŁADY CZASOWE Białystok 2014 1. Cele

Bardziej szczegółowo

Mikroprocesory i Mikrosterowniki

Mikroprocesory i Mikrosterowniki Mikroprocesory i Mikrosterowniki Wykład 1 Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Konsultacje Pn,

Bardziej szczegółowo

Standardowe bloki funkcjonalne

Standardowe bloki funkcjonalne Standardowe bloki funkcjonalne Wykorzystując języki ST i LD należy zapoznać się z działaniem standardowych bloków funkcjonalnych (elementy dwustanowe (bistabilne), elementy detekcji zbocza, liczniki, czasomierze)

Bardziej szczegółowo

LABORATORIUM nr 2. Temat: Obsługa wyświetlacza siedmiosegmentowego LED

LABORATORIUM nr 2. Temat: Obsługa wyświetlacza siedmiosegmentowego LED Laboratorium nr 2 Obsługa wyświetlacza siedmiosegmentowego Mirosław Łazoryszczak LABORATORIUM nr 2 Temat: Obsługa wyświetlacza siedmiosegmentowego LED 1. ARCHITEKTURA MCS-51 (CD.) Do realizacji wielu zadań

Bardziej szczegółowo

Rev Źródło:

Rev Źródło: KamPROG for AVR Rev. 20190119192125 Źródło: http://wiki.kamamilabs.com/index.php/kamprog_for_avr Spis treści Introdcution... 1 Features... 2 Standard equipment... 4 Installation... 5 Software... 6 AVR

Bardziej szczegółowo

deep learning for NLP (5 lectures)

deep learning for NLP (5 lectures) TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5

Bardziej szczegółowo

Ćwiczenie 30. Techniki mikroprocesorowe Programowanie w języku Asembler mikrokontrolerów rodziny '51

Ćwiczenie 30. Techniki mikroprocesorowe Programowanie w języku Asembler mikrokontrolerów rodziny '51 Ćwiczenie 30 Techniki mikroprocesorowe Programowanie w języku Asembler mikrokontrolerów rodziny '51 Cel ćwiczenia Poznanie architektury oraz zasad programowania mikrokontrolerów rodziny 51, aby zapewnić

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Kod przedmiotu: Kod przedmiotu: ES1C 621 356 Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Elektronika samochodowa Temat:

Bardziej szczegółowo

4 Transmisja szeregowa, obsługa wyświetlacza LCD.

4 Transmisja szeregowa, obsługa wyświetlacza LCD. 1 4 Transmisja szeregowa, obsługa wyświetlacza LCD. Zagadnienia do przygotowania: - budowa i działanie interfejsu szeregowego UART, - tryby pracy, - ramka transmisyjna, - przeznaczenie buforów obsługi

Bardziej szczegółowo

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction ECE 114-9 Arrays -II Dr. Z. Aliyazicioglu Electrical & Computer Engineering Electrical & Computer Engineering 1 Outline Introduction Arrays Declaring and Allocation Arrays Examples Using Arrays Passing

Bardziej szczegółowo

Komunikacja w mikrokontrolerach. Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface

Komunikacja w mikrokontrolerach. Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface Komunikacja w mikrokontrolerach Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie

Bardziej szczegółowo

4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD.

4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD. 13 4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD. Zagadnienia do przygotowania: - budowa i działanie interfejsu szeregowego UART, - tryby pracy,

Bardziej szczegółowo

Programowanie mikrokontrolerów. 5 grudnia 2007

Programowanie mikrokontrolerów. 5 grudnia 2007 Programowanie mikrokontrolerów Marcin Engel Marcin Peczarski 5 grudnia 2007 Przerwania Umożliwiają asynchroniczną obsługę różnych zdarzeń, np.: zmiana stanu wejścia, zakończenie przetwarzania analogowo-cyfrowego,

Bardziej szczegółowo

Ćw. 5. Obsługa portu szeregowego UART w mikrokontrolerach 8051.

Ćw. 5. Obsługa portu szeregowego UART w mikrokontrolerach 8051. Ćw 5 Obsługa portu szeregowego UART w mikrokontrolerach 8051 Opracowanie: mgr inż Michał Lankosz 1 Wprowadzenie Celem ćwiczenia jest poznanie działania układu transmisji szeregowej UART 2 Niezbędne wiadomości

Bardziej szczegółowo

Poradnik programowania procesorów AVR na przykładzie ATMEGA8

Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Wersja 1.0 Tomasz Pachołek 2017-13-03 Opracowanie zawiera opis podstawowych procedur, funkcji, operatorów w języku C dla mikrokontrolerów AVR

Bardziej szczegółowo

Moduł mikrokontrolera PROTON (v1.1)

Moduł mikrokontrolera PROTON (v1.1) Moduł mikrokontrolera OPIS Moduł mikrokontrolera PROTON (Rys. 1) przeznaczony jest do stosowania w prototypowych systemach uruchomieniowych. Podstawowym elementem modułu jest układ scalony mikrokontrolera

Bardziej szczegółowo

Stargard Szczecinski i okolice (Polish Edition)

Stargard Szczecinski i okolice (Polish Edition) Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz

Bardziej szczegółowo

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0 lectromagnetism lectromagnetic interaction is one of four fundamental interactions in Nature. lectromagnetism is the theory of electromagnetic interactions or of electromagnetic forces. lectric charge

Bardziej szczegółowo

Praktyka Techniki Mikroprocesorowej. Mikrokontroler ADuC834

Praktyka Techniki Mikroprocesorowej. Mikrokontroler ADuC834 Praktyka Techniki Mikroprocesorowej Elżbieta Ślubowska Mikrokontroler ADuC834 Materiały pomocnicze do II części zajęć laboratoryjnych. Warszawa 2006 1.Spis treści 1. SPIS TREŚCI...2 2. OPIS STANOWISKA....4

Bardziej szczegółowo

równoległe (w wersji 4-, 8- i 16-bitowej). Same wyświetlacze ze względu na budowę i możliwości możemy podzielić na dwie grupy:

równoległe (w wersji 4-, 8- i 16-bitowej). Same wyświetlacze ze względu na budowę i możliwości możemy podzielić na dwie grupy: Gdańsk, 2017 1 Wyświetlacz LCD Zawierają zazwyczaj scalone kontrolery, stąd też procesor nie steruje bezpośrednio matrycą LCD, ale komunikuje się z wyspecjalizowanym sterownikiem, który realizuje jego

Bardziej szczegółowo

Scalony analogowy sterownik przekształtników impulsowych MCP1630

Scalony analogowy sterownik przekształtników impulsowych MCP1630 Scalony analogowy sterownik przekształtników impulsowych MCP1630 DRV CFB VFB 1. Impuls zegara S=1 R=0 Q=0, DRV=0 (przez bramkę OR) 2. Koniec impulsu S=0 R=0 Q=Q 1=0 DRV=1 3. CFB > COMP = f(vfb VREF) S=0

Bardziej szczegółowo

MAGNESY KATALOG d e s i g n p r o d u c e d e l i v e r

MAGNESY KATALOG d e s i g n p r o d u c e d e l i v e r MAGNESY KATALOG design produce deliver MAGNET 0,4 / 0,75MM owal, prostokąt, koło, kwadrat od 50 sztuk Flexible magnet 0.4 = strength example: able to hold one A4 sheet. 0.75 = strength example: able to

Bardziej szczegółowo

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Helena Boguta, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na

Bardziej szczegółowo

Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki

Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki Laboratorium mikrokontrolerów Ćwiczenie 7 Przerwania Autor: Paweł Russek Tłumaczenie: Sebastian Koryciak http://www.fpga.agh.edu.pl/tm ver. 8.06.15

Bardziej szczegółowo

PC 3 PC^ TIMER IN RESET PC5 TIMER OUT. c 3. L 5 c.* Cl* 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 LTJ CO H 17 AD7 U C-"

PC 3 PC^ TIMER IN RESET PC5 TIMER OUT. c 3. L 5 c.* Cl* 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 LTJ CO H 17 AD7 U C- PC 3 PC^ TIMER IN RESET PC5 TIMER OUT 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 AD7 U ss c 3 L 5 c.* Cl* S 9 10 11 12 13 U 15 H 17 Cu C-" ln LTJ CO 2.12. Wielofunkcyjne układy współpracujące z mikroprocesorem

Bardziej szczegółowo

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy DZIAŁANIE 3.2 EDUKACJA OGÓLNA PODDZIAŁANIE 3.2.1 JAKOŚĆ EDUKACJI OGÓLNEJ Projekt współfinansowany przez Unię Europejską w

Bardziej szczegółowo

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition) Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically

Bardziej szczegółowo

Uwaga: dioda na wyjściu 13 świeci gdy na wyjście podamy 0.

Uwaga: dioda na wyjściu 13 świeci gdy na wyjście podamy 0. Podstawowe funkcje sterowania pinami cyfrowymi pinmode(8, OUTPUT); //ustawienie końcówki jako wyjście pinmode(8, INPUT); // ustawienie końcówki jako wejście pinmode(8, INPUT_PULLUP); // ustawienie końcówki

Bardziej szczegółowo

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów...2 2. ISP...2 3. I/O Ports...3 4. External Interrupts...4 5. Analog Comparator...6 6. Analog-to-Digital Converter...6

Bardziej szczegółowo