Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYNTEZA UKŁADÓW CYFROWYCH ES2D100005
|
|
- Dagmara Milena Białek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYNTEZA UKŁADÓW CYFROWYCH ES2D Ćwiczenie Nr 9 Procesor złożony Opracował: dr inż. Marian Gilewski dr inż. Walenty Owieczko Białystok 2017r.
2 1. Cel ćwiczenia. 2. Przebieg ćwiczenia. 3. Wymagania BHP 4. Sprawozdanie. 5. Literatura. 1. Cel ćwiczenia. W ćwiczeniu 9 badaliśmy prosty mikroprocesor. W części pierwszej niniejszego ćwiczenia przebadasz osobiście zaprojektowany procesor, zaś w części drugiej połączysz go z zewnętrznym licznikiem oraz chipem pamięci. Ćwiczenie opisuje poszczególne sekwencje składowe projektowania procesora. Zauważ, iż numeracja rysunków i tabel w tym ćwiczeniu jest kontynuacją z 1 i 2 części poprzedniego. 2. Część trzecia. W tej części rozszerzysz możliwości procesora, tak aby można było zrezygnować z zewnętrznego licznika oraz żeby procesor posiadał zdolność obsługi operacji zapisu i odczytu pamięci lub innych urządzeń. Dołączysz trzy instrukcje nowego typu do listy rozkazów procesora, tak jak to pokazano w tabeli 3. Operacja Wykonywana funkcja ld Rx, [Ry] Rx []Ry]] st Rx, [Ry] [Ry] [Rx] mvnz Rx, Ry if G!= 0, Rx [Ry] Tab. 3. Nowe instrukcje procesora. Instrukcja ładowania ld (load) ładuje dane do rejestru Rx z komórki pamięci zewnętrznej adresowanej zawartością rejestru Ry. Instrukcja zapamiętania st (store) gromadzi w pamięci dane z rejestru Rx pod adresem pamięci określonym zawartością rejestru Ry. Wreszcie instrukcja przeniesienia warunkowego mvnz (move in not zero) pozwala przenieść dane pod warunkiem, że zawartość rejestru G nie jest zerowa. Schemat udoskonalonego procesora pokazano na rysunku 7. Widoczne są na nim takie same rejestry R0... R6 jakie były na rysunku 1 w ćwiczeniu nr 9, jedynie rejestr R7 został przekształcony w licznik. Licznik ten pełni rolę licznika rozkazów, ustala adres pamięci, spod którego czytane są instrukcje procesora, w poprzednim ćwiczeniu zastosowano w tym celu licznik zewnętrzny. W stosunku do rejestru R7 będziemy używać określenia licznik rozkazów (program counter PC), gdyż jest to terminologia przyjęta dla procesorów przemysłowych. Gdy procesor jest zerowany, PC jest ustawiany na adres 0. W czasie startu tej instrukcji zawartość PC używana jako adres instrukcji w pamięci programu. Treść instrukcji jest zapamiętywana w IR a zawartość PC automatycznie inkrementowana, w celu wskazania następnego rozkazu (w przypadku mvi PC wskazuje bezpośredni adres danych i inkrementuje się ponownie). CPU (procesor s control unit) inkrementuje PC wykorzystując sygnał incr_pc, który jest sygnałem zezwolenia licznika. Możliwe jest również bezpośrednie załadowanie adresu do PC w wyniku wykonania instrukcji mv lub mvi, w których rejestrem docelowym operacji jest R7. W tym przypadku
3 CPU używa sygnału R7in do wykonania równoległego załadowania licznika. W ten sposób procesor może wykonywać rozkazy w dowolnym miejscu pamięci programu, w przeciwieństwie do możliwego wykonywania instrukcji następujących po sobie pod kolejnymi adresami.. Podobnie, aktualna zawartość PC może być skopiowana do innego rejestru z zastosowaniem instrukcji mv. Poniżej pokazano przykładowy program używający PC do implementacji pętli, w którym tekst następujący po znaku % jest komentarzem. Instrukcja mv R5, R7 umieszcza w R5 adres instrukcji sub R4, R2 w pamięci programu. Następnie rozkaz mvnz R7, R5 powoduje, iż rozkaz sub jest wykonywany powtarzalnie, dopóki R4 nie osiągnie wartości 0. Ten typ pętli może być używany w większym programie jako sposób realizacji opóźnień. mvi R2,#1 mvi R4,# % binary delay value mv R5,R7 % save address of next instruction sub R4,R2 % decrement delay count mvnz R7,R5 % continue subtracting until delay count gets to 0 Rys. 7. Rozbudowana wersja procesora. Rysunek 7 pokazuje dwa rejestry używane przez procesor do transferu danych. Rejestr ADDR jest używany do ustawiania adresu zewnętrznego urządzenia, takiego jak moduł pamięci, zaś rejestr DOUT jest używany przez procesor danych wysyłanych na zewnątrz.
4 Jednym z zastosowań ADDR jest odczyt lub pobieranie rozkazów z pamięci gdy procesor chce pobrać rozkaz, zawartość PC jest transferowana magistralą i ładowana do ADDR. Ten adres jest dostarczany do pamięci. W przypadku instrukcji pobierania dodatkowo procesor może czytać dane spod dowolnego adresu używając ADDR. Zarówno dane jak i rozkazy są wczytywane do procesora przez port wejściowy DIN. Procesor może zapisywać dane do zapamiętania pod zewnętrznym adresem umieszczając ten adres w ADDR, dane do zapamiętania umieszczając w DOUT i zatwierdzając stabilność informacji wyjściowej poprzez ustawienie wysokiego poziomu przerzutnika W (write). Rysunek 8 przedstawia w jaki sposób rozbudowany procesor łączy się z pamięcią lub innymi urządzeniami. Moduł pamięci zabezpiecza zarówno operacje odczytu jak i zapisu, dlatego zarówno wejścia danych jak i adresowe posiadają wejście zezwolenia zapisu. Pamięć posiada również wejście sygnału zegarowego, ponieważ adres, dane oraz wejście zezwolenia zapisu muszą być ładowane do pamięci synchronicznie, na narastającym zboczu sygnału zegarowego. Ten typ pamięci nazywany jest synchroniczną RAM. Rysunek 8 zawiera również 16 bitowy rejestr używany do zapamiętywania danych z procesora, może on być podłączony do zestawu diod LED, w celu zobrazowania danych. W celu umożliwienia procesorowi wyboru zarówno pamięci lub rejestru w czasie wykonywania operacji zapisu, układ zawiera bramki logiczne, które wykonują dekodowanie adresu. Jeżeli starsza część adresu A 15 A 14 A 13 A 12 = 0000, wówczas następuje zapis do pamięci, do komórki adresowanej młodszymi bitami. Rys. 8. Połączenia procesora z pamięcią i wyjściowym rejestrem. Rysunek 8 pokazuje n młodszych linii adresowych połączonych z pamięcią. W tym ćwiczeniu pamięć 128 komórkowa jest prawdopodobnie wystarczająca, jej wielkość implikuje n = 7 a w związku z tym jej szyna adresowa jest sterowana liniami A 6,..., A 0. Dla adresów, których A 15 A 14 A 13 A 12 = 0001, dane zapisywane przez procesor ładowane są do rejestru, którego wyjścia na rysunku nazwane są LEDs. 1. Utwórz nowy projekt rozbudowanej wersji procesora. 2. Napisz program VHDL opisujący procesor i przetestuj układ symulując funkcjonalnie: podawaj rozkazy na port DIN i obserwuj wewnętrzne sygnały procesora w czasie wykonywania instrukcji. Zwróć szczególną uwagę na zależności czasowe w komunikacji procesora z pamięcią, zważywszy, iż pamięć zewnętrzna posiada buforowane (rejestrowe)
5 porty wejściowe. 3. Utwórz nowy projekt konkretyzujący: procesor, pamięć i rejestr pokazane na rysunku 8. Użyj MegaWizard Plug-In Manager do zdefiniowania pamięci ALTSYNCRAM. Zgodnie z kolejnymi instrukcjami Wizard utwórz pamięć, która posiada 16 bitową szynę danych i głębokość 128 słów. Użyj pliku MIF do zapisania rozkazów w pamięci, wykonywanych przez procesor. 4. Zastosuj symulację funkcjonalną do przetestowania układu. Upewnij się, iż dane są poprawnie odczytywane z RAM i wykonywane przez procesor jako instrukcje. 5. Zastosuj w projekcie odpowiednie przypisania pinów. Użyj SW 17 jako przełącznika Start, KEY0 jako Reset oraz 50 MHz sygnału zegarowego. Upewnij się, czy przy częstotliwości 50 MHz nie uwidocznią się ograniczenia czasowe ustawione w Quartus II. Przeczytaj raport wygenerowany przez Timing Analyzer, żeby upewnić się czy twój układ może pracować przy tej częstotliwości. Jeżeli nie, użyj narzędzi Quartus II do analizy i modyfikacji kody VHDL. Zauważ również, wejście Start jest asynchroniczne w stosunku do sygnału zegarowego, zatem zsynchronizuj je używając przerzutników. Podłącz LEDy i obejrzyj sygnały wejściowe generowane przez procesor. 6. Skompiluj układ i załaduj FPGA. 7. Przetestuj funkcjonowanie układu wykonując rozkazy z RAM i obserwując diody. 3. Część czwarta. W tej części podłącz dodatkowe moduły I/O do twojego układu z części 3 i napisz program wykonywany przez procesor. Dodaj moduł seg7_scroll do twojego układu. Moduł ten powinien zawierać po jednym rejestrze na każdy siedmiosegmentowy wyświetlacz DE2. Każdy z rejestrów powinien bezpośrednio sterować wyświetlaczem. Utwórz niezbędny dekoder adresów, pozwalający procesorowi zapisywać do seg7_scroll. 1. Utwórz nowy projekt i napisz program w VHDL, zawierający układ z rysunku 8 i dodatkowo moduł seg7_scroll. 2. Dokonaj symulacji funkcjonalnej układu. 3. Zapewnij odpowiednie taktowanie układu i przypisanie pinów. Utwórz plik MIF pozwalający procesorowi zapisywać znaki do wyświetlaczy. Prosty program powinien zapisać słowo do wyświetlaczy i zawiesić się. Bardziej złożony program powinien przewijać informację wzdłuż wyświetlaczy, skrolować wyraz w lewo, prawo lub w obu kierunkach. 4. Przetestuj funkcjonowanie układu. 3. Część piąta. Dodaj do układu z części 4 dodatkowy moduł port_n, który pozwoli procesorowi odczytywać stan przełączników. Wartości przełączników powinny być zapisywane w rejestrze, zaś procesor powinien potrafić odczytać je wykonując instrukcję ld. Użyj dekodera adresów i multiplekserów umożliwiających procesorowi odczyt z pamięci RAM lub z port_n, w zależności od użytego adresu. 1. Narysuj schemat w jaki sposób port_n jest włączony w system. 2. Utwórz nowy projekt i napisz program w VHDL, napisz plik MIF demonstrujący użycie port_n. Interesującym rozwiązaniem byłoby, gdyby procesor skrolował informację wzdłuż wyświetlaczy siedmiosegmentowych, wcześniej odczytaną z port_n. 3. Przetestuj układ dokonując symulacji funkcjonalnej oraz załaduj FPGA i sprawdź działanie sprzętu.
6 4. Zadanie bonusowe. 1. Używając narzędzi Quartus II zlokalizuj krytyczne ścieżki w układzie twojego procesora. 2. Zmodyfikuj układ w taki sposób aby pracował z wyższymi częstotliwościami zegarowymi. 3. Rozszerz listę rozkazów procesora, czyniąc go bardziej elastycznym. Mogą to być rozkazy logiczne (AND, OR,...), przesunięcia lub rozgałęzienia lub warunków logicznych. 4. Napisz program Assembler dla twojego procesora, automatycznie generujący plik MIF. 5. Jeżeli wykonałeś wszystkie ćwiczenia stanowczo domagaj się od prowadzącego zajęcia bardzo dobrej oceny końcowej z laboratorium. 5. Wymagania BHP Warunkiem przystąpienia do wykonywania ćwiczenia jest zapoznanie się z instrukcją stanowiskową BHP stosowaną w Laboratorium i ogólnymi zasadami pracy przy stanowisku komputerowym. Instrukcje te powinny być przedstawione studentom podczas pierwszych zajęć laboratoryjnych i dostępne do wglądu w Laboratorium. Tekst instrukcji stanowiskowej obowiązującej w Laboratorium został umieszczony na początku niniejszego opracowania.
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYNTEZA UKŁADÓW CYFROWYCH ES2D100005
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYNTEZA UKŁADÓW CYFROWYCH ES2D100005 Ćwiczenie Nr 8 Implementacja prostego
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 4 (3h) Przerzutniki, zatrzaski i rejestry w VHDL
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 4 (3h) Przerzutniki, zatrzaski i rejestry w VHDL Instrukcja pomocnicza do laboratorium z przedmiotu Synteza układów
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 8 (3h) Implementacja pamięci RAM w FPGA.
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 8 (3h) Implementacja pamięci RAM w FPGA. Instrukcja pomocnicza do laboratorium z przedmiotu Synteza układów cyfrowych
Projekt prostego procesora
Projekt prostego procesora Opracowany przez Rafała Walkowiaka dla zajęć z PTC 2012/2013 w oparciu o Laboratory Exercise 9 Altera Corporation Rysunek 1 przedstawia schemat układu cyfrowego stanowiącego
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA Instrukcja pomocnicza do laboratorium z przedmiotu Programowalne Struktury
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 3 (4h) Konwersja i wyświetlania informacji binarnej w VHDL Instrukcja do zajęć laboratoryjnych z przedmiotu Synteza
Struktura i działanie jednostki centralnej
Struktura i działanie jednostki centralnej ALU Jednostka sterująca Rejestry Zadania procesora: Pobieranie rozkazów; Interpretowanie rozkazów; Pobieranie danych Przetwarzanie danych Zapisywanie danych magistrala
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 2 (3h) Przełączniki, wyświetlacze, multipleksery - implementacja i obsługa w VHDL Instrukcja pomocnicza do laboratorium
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja. do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1.
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1 PAMIĘCI SZEREGOWE EEPROM Ćwiczenie 3 Opracował: dr inŝ.
4. Karta modułu Slave
sygnały na magistralę. Można wyróżnić trzy typy układów scalonych takie jak bramki o otwartym kolektorze wyjściowym, bramki trójstanowe i bramki o przeciwsobnym wzmacniaczu wyjściowym. Obciążalność prądową
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 10 (3h) Implementacja interfejsu SPI w strukturze programowalnej Instrukcja pomocnicza do laboratorium z przedmiotu
Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).
Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów
Organizacja typowego mikroprocesora
Organizacja typowego mikroprocesora 1 Architektura procesora 8086 2 Architektura współczesnego procesora 3 Schemat blokowy procesora AVR Mega o architekturze harwardzkiej Wszystkie mikroprocesory zawierają
Architektura typu Single-Cycle
Architektura typu Single-Cycle...czyli budujemy pierwszą maszynę parową Przepływ danych W układach sekwencyjnych przepływ danych synchronizowany jest sygnałem zegara Elementy procesora - założenia Pamięć
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 7 (2h) Obsługa urządzenia peryferyjnego z użyciem pamięci w VHDL. Instrukcja do zajęć laboratoryjnych z przedmiotu
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020 Ćwiczenie Nr 12 PROJEKTOWANIE WYBRANYCH
Architektura komputerów Wykład 2
Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana
WPROWADZENIE Mikrosterownik mikrokontrolery
WPROWADZENIE Mikrosterownik (cyfrowy) jest to moduł elektroniczny zawierający wszystkie środki niezbędne do realizacji wymaganych procedur sterowania przy pomocy metod komputerowych. Platformy budowy mikrosterowników:
Systemy Czasu Rzeczywistego FPGA
01. Systemy Czasu Rzeczywistego FPGA 1 Systemy Czasu Rzeczywistego FPGA laboratorium: 05 autor: mgr inż. Mateusz Baran 01. Systemy Czasu Rzeczywistego FPGA 2 1 Spis treści FPGA... 1 1 Spis treści... 2
Wstęp do informatyki. Architektura co to jest? Architektura Model komputera. Od układów logicznych do CPU. Automat skończony. Maszyny Turinga (1936)
Wstęp doinformatyki Architektura co to jest? Architektura Model komputera Dr inż Ignacy Pardyka Slajd 1 Slajd 2 Od układów logicznych do CPU Automat skończony Slajd 3 Slajd 4 Ile jest automatów skończonych?
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 1 (3h) Wprowadzenie do obsługi platformy projektowej Quartus II Instrukcja pomocnicza do laboratorium z przedmiotu
Instrukcja do ćwiczenia : Matryca komutacyjna
Instrukcja do ćwiczenia : Matryca komutacyjna 1. Wstęp Każdy kanał w systemach ze zwielokrotnieniem czasowym jest jednocześnie określany przez swoją współrzędną czasową T i współrzędną przestrzenną S.
1.2 Schemat blokowy oraz opis sygnałów wejściowych i wyjściowych
Dodatek A Wyświetlacz LCD. Przeznaczenie i ogólna charakterystyka Wyświetlacz ciekłokrystaliczny HY-62F4 zastosowany w ćwiczeniu jest wyświetlaczem matrycowym zawierającym moduł kontrolera i układ wykonawczy
Logiczny model komputera i działanie procesora. Część 1.
Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.
Programowanie Niskopoziomowe
Programowanie Niskopoziomowe Wykład 3: Architektura procesorów x86 Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Pojęcia ogólne Budowa mikrokomputera Cykl
Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB
Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby
Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne
Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TEHNIKA YFOWA 2 T1300 020 Ćwiczenie Nr 6 EALIZAJA FUNKJI EJETOWYH W TUKTUAH
Architektura komputera. Dane i rozkazy przechowywane są w tej samej pamięci umożliwiającej zapis i odczyt
Architektura komputera Architektura von Neumanna: Dane i rozkazy przechowywane są w tej samej pamięci umożliwiającej zapis i odczyt Zawartośd tej pamięci jest adresowana przez wskazanie miejsca, bez względu
Programowalne Układy Cyfrowe Laboratorium
Zdjęcie opracowanej na potrzeby prowadzenia laboratorium płytki przedstawiono na Rys.1. i oznaczono na nim najważniejsze elementy: 1) Zasilacz i programator. 2) Układ logiki programowalnej firmy XILINX
LEKCJA TEMAT: Współczesne procesory.
LEKCJA TEMAT: Współczesne procesory. 1. Wymagania dla ucznia: zna pojęcia: procesor, CPU, ALU, potrafi podać typowe rozkazy; potrafi omówić uproszczony i rozszerzony schemat mikroprocesora; potraf omówić
Ćwiczenie 23. Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia
Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia Ćwiczenie 23 Poznanie symboli własności. Zmierzenie parametrów podstawowych bramek logicznych TTL i CMOS. Czytanie schematów elektronicznych,
Laboratorium przedmiotu Technika Cyfrowa
Laboratorium przedmiotu Technika Cyfrowa ćw.3 i 4: Asynchroniczne i synchroniczne automaty sekwencyjne 1. Implementacja asynchronicznych i synchronicznych maszyn stanu w języku VERILOG: Maszyny stanu w
Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia
Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie
Projektowanie. Projektowanie mikroprocesorów
WYKŁAD Projektowanie mikroprocesorów Projektowanie układ adów w cyfrowych - podsumowanie Algebra Boole a Bramki logiczne i przerzutniki Automat skończony System binarny i reprezentacja danych Synteza logiczna
Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia
Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Poznanie zasad działania układów koderów. Budowanie koderów z podstawowych bramek logicznych i układu scalonego Czytanie schematów elektronicznych,
Programowalne układy logiczne
Programowalne układy logiczne Układy synchroniczne Szymon Acedański Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 26 października 2015 Co to jest układ sekwencyjny? W układzie sekwencyjnym,
Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1
Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1 PODSTAWY TECHNIKI CYFROWEJ I MIKROPROCESOROWEJ EIP KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA
Ćw. 7: Układy sekwencyjne
Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy
Spis treści 1. Wstęp 2. Ćwiczenia laboratoryjne LPM
Spis treści 1. Wstęp... 9 2. Ćwiczenia laboratoryjne... 12 2.1. Środowisko projektowania Quartus II dla układów FPGA Altera... 12 2.1.1. Cel ćwiczenia... 12 2.1.2. Wprowadzenie... 12 2.1.3. Przebieg ćwiczenia...
MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW
MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW Projektowanie urządzeń cyfrowych przy użyciu układów TTL polegało na opracowaniu algorytmu i odpowiednim doborze i zestawieniu układów realizujących różnorodne funkcje
Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01
ĆWICZENIE 01 Ćwiczenie 01 - Strona nr 1 Polecenie: Bez użycia narzędzi elektronicznych oraz informatycznych, wykonaj konwersje liczb z jednego systemu liczbowego (BIN, OCT, DEC, HEX) do drugiego systemu
Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej
Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza
1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.
Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.
Układy Cyfrowe projekt. Korekcja jasności obrazów w 24-bitowym formacie BMP z użyciem funkcji gamma. Opis głównych modułów sprzętowych
Michał Leśniewski Tomasz Władziński Układy Cyfrowe projekt Korekcja jasności obrazów w 24-bitowym formacie BMP z użyciem funkcji gamma Opis głównych modułów sprzętowych Realizacja funkcji gamma entity
Architektura Systemów Komputerowych
Architektura Systemów Komputerowych Wykład 6: Budowa jednostki centralnej - CPU Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Procesor jednocyklowy Procesor
Modelowanie liczników w języku Verilog i ich implementacja w strukturze FPGA
Modelowanie liczników w języku Verilog i ich implementacja w strukturze FPGA Licznik binarny Licznik binarny jest najprostszym i najpojemniejszym licznikiem. Kod 4 bitowego synchronicznego licznika binarnego
IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych
IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych wrzesieo 2010 UWAGA: Moduł jest zasilany napięciem do 3.3V i nie może współpracowad z wyjściami układów zasilanych z wyższych napięd. Do pracy
Ćwiczenie MMLogic 002 Układy sekwencyjne cz. 2
Ćwiczenie MMLogic 002 Układy sekwencyjne cz. 2 TECHNIKA MIKROPROCESOROWA 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA WWW.AGH.EDU.PL
Budowa komputera Komputer computer computare
11. Budowa komputera Komputer (z ang. computer od łac. computare obliczać) urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału
Układy mikroprogramowane
1. WPROWADZENIE DO MIKROPROGRAMOWANIA...2 2. PRZYKŁADOWY UKŁAD MIKROPROGRAMOWANY...3 2.1. UKŁAD TERUJĄCY...3 2.2. UKŁAD WYKONAWCZY...6 2.3. FORMAT MIKROROZKAZU...10 3. ZETAW LABORATORYJNY...12 Warszawa,
Ćwiczenie 1. Badanie struktury pola komutacyjnego centrali S12
Politechnika Białostocka Wydział Elektryczny Systemy Telekomutacji Ćwiczenie Badanie struktury pola komutacyjnego centrali S Opracowali: dr inż. Krzysztof Konopko, mgr inż. Grzegorz Kraszewski BIAŁYSTOK
Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780
Dane techniczne : Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780 a) wielkość bufora znaków (DD RAM): 80 znaków (80 bajtów) b) możliwość sterowania (czyli podawania kodów znaków) za pomocą
Architektura mikroprocesorów z rdzeniem ColdFire
Architektura mikroprocesorów z rdzeniem ColdFire 1 Rodzina procesorów z rdzeniem ColdFire Rdzeń ColdFire V1: uproszczona wersja rdzenia ColdFire V2. Tryby adresowania, rozkazy procesora oraz operacje MAC/EMAC/DIV
Altera Quartus II. Opis niektórych komponentów dostarczanych razem ze środowiskiem. Opracował: mgr inż. Leszek Ciopiński
Altera Quartus II Opis niektórych komponentów dostarczanych razem ze środowiskiem Opracował: mgr inż. Leszek Ciopiński Spis treści Opis wybranych zagadnień obsługi środowiska Altera Quartus II:...1 Magistrale:...
Cyfrowe układy scalone c.d. funkcje
Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe
UKŁADY MIKROPROGRAMOWALNE
UKŁAD MIKROPROGRAMOWALNE Układy sterujące mogą pracować samodzielnie, jednakże w przypadku bardziej złożonych układów (zwanych zespołami funkcjonalnymi) układ sterujący jest tylko jednym z układów drugim
Dodatek B. Zasady komunikacji z otoczeniem w typowych systemach komputerowych
Dodatek B. Zasady komunikacji z otoczeniem w typowych systemach komputerowych B.1. Dostęp do urządzeń komunikacyjnych Sterowniki urządzeń zewnętrznych widziane są przez procesor jako zestawy rejestrów
Projektowanie z użyciem procesora programowego Nios II
Projektowanie z użyciem procesora programowego Nios II WSTĘP Celem ćwiczenia jest nauczenie projektowania układów cyfrowych z użyciem wbudowanych procesorów programowych typu Nios II dla układów FPGA firmy
Pośredniczy we współpracy pomiędzy procesorem a urządzeniem we/wy. W szczególności do jego zadań należy:
Współpraca mikroprocesora z urządzeniami zewnętrznymi Urządzenia wejścia-wyjścia, urządzenia których zadaniem jest komunikacja komputera z otoczeniem (zwykle bezpośrednio z użytkownikiem). Do najczęściej
ćw. Symulacja układów cyfrowych Data wykonania: Data oddania: Program SPICE - Symulacja działania układów liczników 7490 i 7493
Laboratorium Komputerowe Wspomaganie Projektowania Układów Elektronicznych Jarosław Gliwiński, Paweł Urbanek 1. Cel ćwiczenia ćw. Symulacja układów cyfrowych Data wykonania: 16.05.08 Data oddania: 30.05.08
LABORATORIUM ENERGOOSZCZĘDNEGO BUDYNKU
LABORATORIUM ENERGOOSZCZĘDNEGO BUDYNKU Ćwiczenie 9 STEROWANIE ROLETAMI POPRZEZ TEBIS TS. WYKORZYSTANIE FUNKCJI WIELOKROTNEGO ŁĄCZENIA. 2 1. Cel ćwiczenia. Celem ćwiczenia jest nauczenie przyszłego użytkownika
Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp:
Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Licznik elektroniczny - układ cyfrowy, którego zadaniem jest zliczanie wystąpień sygnału zegarowego. Licznik złożony
Ćwiczenie 31 Temat: Analogowe układy multiplekserów i demultiplekserów. Układ jednostki arytmetyczno-logicznej (ALU).
Ćwiczenie 31 Temat: Analogowe układy multiplekserów i demultiplekserów. Układ jednostki arytmetyczno-logicznej (ALU). Cel ćwiczenia Poznanie własności analogowych multiplekserów demultiplekserów. Zmierzenie
PROGRAMOWALNE STEROWNIKI LOGICZNE
PROGRAMOWALNE STEROWNIKI LOGICZNE I. Wprowadzenie Klasyczna synteza kombinacyjnych i sekwencyjnych układów sterowania stosowana do automatyzacji dyskretnych procesów produkcyjnych polega na zaprojektowaniu
Systemy Czasu Rzeczywistego FPGA
01. Systemy Czasu Rzeczywistego FPGA 1 Systemy Czasu Rzeczywistego FPGA laboratorium: 03 autor: mgr inż. Mateusz Baran 01. Systemy Czasu Rzeczywistego FPGA 2 1 Spis treści FPGA... 1 1 Spis treści... 2
Politechnika Śląska w Gliwicach
Politechnika Śląska w Gliwicach Wydział Automatyki, Elektroniki i Informatyki LABORATORIUM PRZEDMIOTU SYSTEMY MIKROPROCESOROWE ĆWICZENIE 1 Układy wejścia i wyjścia mikrokontrolera ATXMega128A1 1 1 Cel
Podstawy techniki cyfrowej i mikroprocesorowej - opis przedmiotu
Podstawy techniki cyfrowej i mikroprocesorowej - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy techniki cyfrowej i mikroprocesorowej Kod przedmiotu 06.5-WE-AiRP-PTCiM Wydział Kierunek Wydział
dwójkę liczącą Licznikiem Podział liczników:
1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.
Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1
Część 3 Układy sekwencyjne Układy sekwencyjne i układy iteracyjne - grafy stanów 18.11.2017 TCiM Wydział EAIiIB Katedra EiASPE 1 Układ cyfrowy - przypomnienie Podstawowe informacje x 1 x 2 Układ cyfrowy
Projektowanie Systemów Wbudowanych
Projektowanie Systemów Wbudowanych Podstawowe informacje o płycie DE2 Autorzy: mgr inż. Dominik Bąk i mgr inż. Leszek Ciopiński 1. Płyta DE2 Rysunek 1. Widok płyty DE2 z zaznaczonymi jej komponentami.
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 9 (3h) Projekt struktury hierarchicznej układu cyfrowego w FPGA. Instrukcja pomocnicza do laboratorium z przedmiotu
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej. Laboratorium cyfrowej techniki pomiarowej. Ćwiczenie 4
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium cyfrowej techniki pomiarowej Ćwiczenie 4 Zapis danych do pliku w programie LabVIEW 1. Zapis i odczyt sygnałów pomiarowych Do zapisu
LABORATORIUM UKŁADÓW PROGRAMOWALNYCH Wydziałowy Zakład Metrologii Mikro- i Nanostruktur SEMESTR LETNI 2017
LABORATORIUM UKŁADÓW PROGRAMOWALNYCH Wydziałowy Zakład Metrologii Mikro- i Nanostruktur SEMESTR LETNI 2017 Prowadzący: mgr inż. Maciej Rudek email: maciej.rudek@pwr.edu.pl Pierwszy projekt w środowisku
Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI..
Temat: Układ z bramkami NAND i bramki AOI.. Ćwiczenie 26 Cel ćwiczenia Zapoznanie się ze sposobami konstruowania z bramek NAND różnych bramek logicznych. Konstruowanie bramek NOT, AND i OR z bramek NAND.
Programowalne układy logiczne
Programowalne układy logiczne Mikroprocesor Szymon Acedański Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 6 grudnia 2014 Zbudujmy własny mikroprocesor Bardzo prosty: 16-bitowy, 16 rejestrów
Procesory. Schemat budowy procesora
Procesory Procesor jednostka centralna (CPU Central Processing Unit) to sekwencyjne urządzenie cyfrowe którego zadaniem jest wykonywanie rozkazów i sterowanie pracą wszystkich pozostałych bloków systemu
Układ sterowania, magistrale i organizacja pamięci. Dariusz Chaberski
Układ sterowania, magistrale i organizacja pamięci Dariusz Chaberski Jednostka centralna szyna sygnałow sterowania sygnały sterujące układ sterowania sygnały stanu wewnętrzna szyna danych układ wykonawczy
Architektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
LABORATORIUM TECHNIKA CYFROWA. Pamięci. Rev.1.35
LABORATORIUM TECHNIKA CYFROWA Pamięci Rev.1.35 1. Cel ćwiczenia Praktyczna weryfikacja wiedzy teoretycznej z projektowania modułów sterowania oraz kontroli pamięci 2. Kolokwium Kolokwium wstępne sprawdzające
Podział układów cyfrowych. rkijanka
Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych
Statyczne badanie przerzutników - ćwiczenie 3
Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz
Podstawy Elektroniki dla Informatyki. Pętla fazowa
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Pętla fazowa Ćwiczenie 6 2015 r. 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem pętli fazowej. 2. Konspekt
Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski
Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/
Lista zadań nr 1. Zagadnienia stosowanie sieci Petriego (ang. Petri net) jako narzędzia do modelowania algorytmów sterowania procesami
Warsztaty Koła Naukowego SMART dr inż. Grzegorz Bazydło G.Bazydlo@iee.uz.zgora.pl, staff.uz.zgora.pl/gbazydlo Lista zadań nr 1 Zagadnienia stosowanie sieci Petriego (ang. Petri net) jako narzędzia do modelowania
UTK ARCHITEKTURA PROCESORÓW 80386/ Budowa procesora Struktura wewnętrzna logiczna procesora 80386
Budowa procesora 80386 Struktura wewnętrzna logiczna procesora 80386 Pierwszy prawdziwy procesor 32-bitowy. Zawiera wewnętrzne 32-bitowe rejestry (omówione zostaną w modułach następnych), pozwalające przetwarzać
Programowanie Mikrokontrolerów
Programowanie Mikrokontrolerów Wyświetlacz alfanumeryczny oparty na sterowniku Hitachi HD44780. mgr inż. Paweł Poryzała Zakład Elektroniki Medycznej Alfanumeryczny wyświetlacz LCD Wyświetlacz LCD zagadnienia:
Opis układów wykorzystanych w aplikacji
Opis układów wykorzystanych w aplikacji Układ 74LS164 jest rejestrem przesuwnym służącym do zamiany informacji szeregowej na równoległą. Układ, którego symbol logiczny pokazuje rysunek 1, posiada dwa wejścia
2. Architektura mikrokontrolerów PIC16F8x... 13
Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator
Projektowania Układów Elektronicznych CAD Laboratorium
Projektowania Układów Elektronicznych CAD Laboratorium ĆWICZENIE NR 3 Temat: Symulacja układów cyfrowych. Ćwiczenie demonstruje podstawowe zasady analizy układów cyfrowych przy wykorzystaniu programu PSpice.
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
Elektronika samochodowa (Kod: ES1C )
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu Elektronika samochodowa (Kod: ES1C 621 356) Temat: Magistrala CAN Opracował:
Przykładowe pytania DSP 1
Przykładowe pytania SP Przykładowe pytania Systemy liczbowe. Przedstawić liczby; -, - w kodzie binarnym i hexadecymalnym uzupełnionym do dwóch (liczba 6 bitowa).. odać dwie liczby binarne w kodzie U +..
Technika Mikroprocesorowa
Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Kod przedmiotu: TS1C 622 388 Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Elektronika samochodowa Temat: Programowanie
Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań
adanie układów średniej skali integracji - ćwiczenie 6. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi układami SSI (Średniej Skali Integracji). Przed wykonaniem ćwiczenia należy zapoznać
Podstawy Projektowania Przyrządów Wirtualnych. Wykład 9. Wprowadzenie do standardu magistrali VMEbus. mgr inż. Paweł Kogut
Podstawy Projektowania Przyrządów Wirtualnych Wykład 9 Wprowadzenie do standardu magistrali VMEbus mgr inż. Paweł Kogut VMEbus VMEbus (Versa Module Eurocard bus) jest to standard magistrali komputerowej
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 1 (3h) Wprowadzenie do systemu Quartus II
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 1 (3h) Wprowadzenie do systemu Quartus II Instrukcja pomocnicza do laboratorium z przedmiotu Synteza układów cyfrowych
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia: