ZL11ARM. Uniwersalna płytka bazowa dla modułów diparm

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZL11ARM. Uniwersalna płytka bazowa dla modułów diparm"

Transkrypt

1 ZL11ARM Uniwersalna płytka bazowa dla modułów diparm ZL11ARM to uniwersalna płyta bazowa dla modułów diparm (np. ZL12ARM i ZL19ARM) z mikrokontrolerami wyposażonymi w rdzenie ARM produkowanymi przez różnych producentów. Jest ona wyposażona w wiele urządzeń peryferyjnych, a także możliwość wygodnego dołączenia dodatkowych peryferiów, jak choćby konwertera UART2USB, pamięci i innych układów z interfejsami I2C, SPI, 1-Wire itp. ver. 1.0

2 2 Spis treści ZL11ARM uniwersalna płytka bazowa dla modułów diparm Podstawowe parametry płyty bazowej ZL11ARM...3 Informacje podstawowe...4 Konfiguracja zestawu...7 Klawiatura...8 Sterowanie wyświetlacza LCD...9 Sterowanie diod LED...10 Przetwornik piezoceramiczny...11 Nastawnik napięcia...11 Interfejs RS232 i konwerter UART2USB...12 Wybór źródła zasilania...13 Wzmacniacz audio...14 Interfejs JTAG...15 Interfejs MMC...16 Źródło napięcia referencyjnego...17 Jumpery do zastosowań specjalnych...18 Złącza uniwersalne...19 Wyposażenie standardowe...20

3 ZL11ARM uniwersalna płytka bazowa dla modułów diparm 3 Podstawowe parametry płyty bazowej ZL11ARM płytka bazowa dla modułów diparm (np. ZL12ARM z mikrokontrolerami AT91SAM7S i ZL19ARM z mikrokontrolerami ADUC7020), złącze kart MMC, gniazdo USB z elementami pomocniczymi dla mikrokontrolerów AT91SAM7S, złącze interfejsu USB (dla modułu ZL1USB), złącze JTAG (ZL14PRG), 2 interfejsy RS232, głośnik piezoceramiczny, wzmacniacz audio o mocy 400 mw (z regulacją głośności), 4 diody LED, złącze wyświetlacza LCD 2x16 znaków, 4 przyciski uniwersalne, przycisk ręcznego zerowania, termistor NTC dołączony do wejścia A/C, regulowane źródło napięcia odniesienia dla toru analogowego, potencjometryczny zadajnik napięcia wejściowego dla przetwornika A/C, możliwość zasilania z USB, linie I/O wyprowadzone na złącza szpilkowe, zasilanie VDC (dołączenie napięcia zasilającego jest sygnalizowane za pomocą diody LED).! diparm Podczas montażu modułu diparm w gnieździe płyty bazowej należy zwrócić uwagę, aby trójkątne znaczniki umieszczone na płytkach były ulokowane obok siebie! Odwrotne zamontowanie modułu może spowodować jego uszkodzenie.

4 4 Informacje podstawowe ZL11ARM uniwersalna płytka bazowa dla modułów diparm Schemat blokowy zestawu ZL11ARM pokazano na rysunku poniżej. Zestaw wyposażono w podstawowe peryferia, często stosowane w typowych systemach mikroprocesorowych, a także we wzmacniacz audio o regulowanej mocy wyjściowej oraz złącze karty MMC (zasilanej napięciem 3,3 V, pracującej w trybie SPI). Zestaw może być zasilany z zasilacza sieciowego o napięciu wyjściowym 9 12 VDC lub z komputera PC za pośrednictwem złącza USB (5 VDC). Schemat elektryczny zestawu (bez wzmacniacza audio, interfejsów komunikacyjnych, źródła napięcia referencyjnego i interfejsu MMC) pokazano na rys. 2. Na rys. 3 pokazano schemat elektryczny pozostałej części zestawu.! korzystano We wszystkich odwołaniach do linii I/O mikrokontrolerów zamontowanych na module diparm wynomenklaturę firmy Atmel, stosowaną dla mikrokontrolerów AT91SAM7S. Schemat blokowy zestawu ZL11ARM

5 ZL11ARM uniwersalna płytka bazowa dla modułów diparm 5 Schemat elektryczny zestawu ZL11ARM (część 1)

6 6 ZL11ARM uniwersalna płytka bazowa dla modułów diparm Schemat elektryczny zestawu ZL11ARM (część 2)

7 ZL11ARM uniwersalna płytka bazowa dla modułów diparm 7 Konfiguracja zestawu Ze względu na dużą liczbę elementów peryferyjnych zastosowanych w zestawie ZL11ARM, przewidziano możliwość ich selektywnego dołączania do linii I/O mikrokontrolera zamontowanego na module diparm.

8 8 Klawiatura ZL11ARM uniwersalna płytka bazowa dla modułów diparm Klawiatura zastosowana w zestawie składa się z 4 przycisków, które mogą być dołączone bezpośrednio do wejść portów PA17 PA20 lub do wejścia analogowego AD7. O sposobie dołączenia klawiatury decyduje zworka JP18 (tab. 1).W pierwszym przypadku klawiatura zajmuje cztery linie I/O, w drugim zajęte jest tylko jedno wejście analogowe, a stan klawiatury jest określony przez napięcie podawane na wejście AD7. W cyfrowym trybie pracy przyciski S2 S5 są dołączane indywidualnie za pomocą zworek JP6 JP9 do linii portów PA17 PA20 (tab. 2). W przypadku skonfigurowania klawiatury jako analogowej wciśnięcie każdego z przycisków powoduje podanie na wejście AD7 przetwornika A/C napięcia zależnego od stosunku rezystancji, zgodnie z tab. 3. Napięcie podawane na wejście AD7 można obliczyć zgodnie ze wzorem: U AD7 = R Sx 3,3/(4,7 + R Sx ), gdzie: R Sx wartość rezystora R16 R19, w zależności od wciśniętego przycisku (w [kω]), U AD7 napięcie na wejściu AD7 (w [V]). Przycisk S1 służy do ręcznego zerowania mikrokontrolera. Jest on na stałe dołączony do linii nrst mikrokontrolera zamontowanego na module diparm. Tab. 1. Wybór sposobu pracy klawiatury Pozycja Opis Cyfrowa przyciski S2 S5 są dołączone poprzez zworki JP6 JP9 do linii PA17 PA20 Analogowa przyciski są dołączone poprzez dzielniki napięcia do linii AD7 Tab. 2. Konfiguracje zworek służących do konfiguracji klawiatury Przycisk/port Zworka Zwarte styki 1-2 (Off) Zwarte styki 2-3 (On) S2/PA17 JP6 Odłączony Dołączony S3/PA18 JP7 Odłączony Dołączony S4/PA19 JP8 Odłączony Dołączony Tab. 3. Nominalne wartości napięć na wejściu AD7 po wciśnięciu przycisków S2 S5 Nominalna wartość napięcia na Wciśnięty przycisk wejściu AD7 [V] Żaden 3,3 S2 2,1 S3 1,95 S4 1,65 S5 1,36 Uwaga! W tablicy podano wartości wyliczone. W praktyce napięcia mogą się różnić od podanych o ±10%. S5/PA20 JP9 Odłączony Dołączony

9 ZL11ARM uniwersalna płytka bazowa dla modułów diparm 9 Sterowanie wyświetlacza LCD Zestaw ZL11ARM może być opcjonalnie wyposażony w alfanumeryczny wyświetlacz LCD z wbudowanym sterownikiem HD44780 (złącze W1). Pracuje on w trybie 4-bitowym i jest dołączony do linii I/O mikrokontrolera zgodnie z tab. 4. Tab. 4. Przypisanie sygnałów sterownika LCD do portów mikrokontrolera Nazwa wyprowadzenia LCD Numer wyprowadzenia LCD Nazwa linii portu mikrokontrolera RS 4 PA26 RW 5 Zwarta do masy E 6 PA27 D4 11 PA28 D5 12 PA29 D6 13 PA30 D7 14 PA31

10 10 Sterowanie diod LED ZL11ARM uniwersalna płytka bazowa dla modułów diparm Diody LED zamontowane na płytce ZL11ARM są sterowane poprzez bufor U5, który dołącza je do linii PA0 PA3 zgodnie z tab. 5. Diody można odłączyć od portu mikrokontrolera za pomocą zworki JP23 (tab. 6). Tab. 5. Sposób dołączenia LED do portów mikrokontrolera Oznaczenie diody na płytce LED Linia portu mikrokontrolera LED0 D1 PA0 LED1 D2 PA1 LED2 D3 PA2 LED3 D4 PA3 Tab. 6. Sterowanie pracą bufora U5 zworka JP23 Pozycja Opis 1-2 LED dołączone do linii PA0 PA3 2-3 LED odłączone

11 ZL11ARM uniwersalna płytka bazowa dla modułów diparm 11 Przetwornik piezoceramiczny Odtwarzanie dźwięków umożliwia przetwornik piezoceramiczny Gl2, który za pomocą zworki JP14 może być dołączany do linii PA15 (tab. 7). Tab. 7. Zworka JP14 służy do dołączania/odłączania przetwornika piezoceramicznego Pozycja Przetwornik Gl2 1-2 odłączony 2-3 dołączony do linii PA15 Nastawnik napięcia Zastosowany na płytce potencjometr P2 służy do podawania napięcia o wartości z zakresu 0 +3,3 V na wejście AD4 przetwornika A/C wbudowanego w mikrokontroler.

12 12 ZL11ARM uniwersalna płytka bazowa dla modułów diparm Interfejs RS232 i konwerter UART2USB Gniazdo Zl1 służy do dołączenia do współpracującego komputera interfejsu UART0 (w mikrokontrolerach AT91SAM7S) lub interfejsu szeregowego DBGU (za pomocą którego można m.in. programować pamięć Flash mikrokontrolera). Konfiguracje zworek dla UART0 pokazano w tab. 10. Interfejs UART1 (w mikrokontrolerach AT91SAM7S) można dołączyć do gniazda DB9 oznaczonego Zl2 lub do opcjonalnego konwertera ZL1USB, montowanego w gnieździe Zl3. Wyboru toru komunikacyjnego można dokonać za pomocą zworek JP4 i JP5 zgodnie z tab. 11. i Dodatkowe informacje o konwerterze UART2USB (ZL1USB_A) przystosowanym do zamontowania w zestawie ZL11ARM można znaleźć w Internecie pod adresem:?id_prod=6698. Tab. 10. Konfiguracje interfejsu UART0 (mikrokontroler AT91SAM7S) Pozycja JP10 Pozycja JP11 Pozycja JP12 Pozycja JP13 COM RX TX Konfiguracja 1-2 (COM) 1-2 (COM) 1-2 (On) 1-2 (On) Aktywny UART0 2-3 (DBG) 2-3 (DBG) 1-2 (On) 1-2 (On) Aktywny DBGU 2-3 (Off) 2-3 (Off) U2 odłączony od linii mikrokontrolera Uwaga: Inne pozycje zworek zabronione! Tab. 11. Konfiguracje interfejsu UART1 (mikrokontroler AT91SAM7S) Pozycja JP4 TX Pozycja JP5 RX Konfiguracja 1-2 (USB) 1-2 (USB) Aktywny konwerter USB (Zl3) 2-3 (RS) 2-3 (RS) Aktywny RS232 (COM1)

13 ZL11ARM uniwersalna płytka bazowa dla modułów diparm 13 Wybór źródła zasilania Zestaw może być zasilany napięciem o wartości 9 12 VDC z zewnętrznego zasilacza sieciowego lub z interfejsu USB dowolnego komputera PC. Do wyboru źródła służy zworka JP15 (tab. 8). Polaryzacja napięcia podawanego na złącze Zl6 nie jest istotna, wejście stabilizatorów jest zabezpieczone za pomocą mostka Graetz a. Tab. 8. Wybór źródła zasilania zworka JP15 Pozycja Zasilanie z 1-2 USB 2-3 zasilacza zewnętrznego

14 14 Wzmacniacz audio ZL11ARM uniwersalna płytka bazowa dla modułów diparm Standardowym wyposażeniem zestawu jest wzmacniacz mocy audio, na wejście którego jest podawany sygnał z portu PA23 mikrokontrolera. Potencjometr P1 służy do regulacji głośności, a zworka JP3 umożliwia dołączenie wejścia wzmacniacza do linii PA23 (tab. 9). Głośnik o impedancji większej lub równej 8 Ω należy dołączyć do złącza Gl1 (SPK). Tab. 9. Dołączenie wejścia wzmacniacza do PA23 zworka JP3 Pozycja Wejście wzmacniacza 1-2 odłączone 2-3 dołączone do linii PA23

15 ZL11ARM uniwersalna płytka bazowa dla modułów diparm 15 Interfejs JTAG Zestaw wyposażono w złącze JTAG (Zl7) umożliwiające dołączenie do mikrokontrolera specjalnego interfejsu umożliwiającego debugowanie pracy mikrokontrolera oraz programowanie pamięci Flash (jak np. ZL14PRG). Interfejs JTAG jest uaktywniany za pomocą zworki JP1 (tab. 12). Po zmianie położenia jumpera mikrokontroler musi zostać zrestartowany (np. za pomocą przycisku S1). i Dodatkowe informacje o interfejsie-programatorze ZL14PRG można znaleźć w Internecie pod adresem:?id_prod=6581. Tab. 12. Konfiguracje interfejsu JTAG zworka JP1 Pozycja JTAG 1-2 wyłączony 2-3 aktywny

16 16 Interfejs MMC ZL11ARM uniwersalna płytka bazowa dla modułów diparm Interfejs karty MMC (MultiMedia Card) składa się z bufora U3, który jest uaktywniany za pomocą zworki JP16 (tab. 15). Należy pamiętać, że buforowana przez U3 linia danych DO karty MMC jest dołączona do linii I/O PA12 mikrokontrolera! W przypadku uaktywnienia bufora U3 linia ta musi być skonfigurowana jako wejściowa. Tab. 15. Aktywność interfejsu MMC zworka JP16 Pozycja Bufor U3 1-2 aktywny (linia PA12 mikrokontrolera musi być skonfigurowana jako wejściowa!) 2-3 wyłączony Zworka JP17 umożliwia wybranie stanu logicznego na wejściu CS karty MMC (tab. 16). Tab. 16. Sterowanie wejściem CS karty MMC zworka JP17 Pozycja Stan CS zależy od stanu linii PA11 mikrokontrolera

17 ZL11ARM uniwersalna płytka bazowa dla modułów diparm 17 Źródło napięcia referencyjnego Zestaw wyposażono w źródło regulowanego napięcia odniesienia dla toru przetwarzania A/C i C/A (U4 i elementy pomocnicze). Napięcie to jest podawane na styk EXT_VREF podstawki modułu diparm, a jego wartość można regulować za pomocą P3 (VREF) w zakresie 2,6 3,3 V.

18 18 Jumpery do zastosowań specjalnych ZL11ARM uniwersalna płytka bazowa dla modułów diparm Na płytce zastosowano dwa jumpery (JP2 i JP24) przeznaczone do zastosowań zależnych od typu mikrokontrolera zamontowanego na module diparm. Ich funkcje zostały szczegółowo opisane w dokumentacjach modułów przystosowanych do współpracy z płytką bazową ZL11ARM.

19 ZL11ARM uniwersalna płytka bazowa dla modułów diparm 19 Złącza uniwersalne Linie I/O modułów diparm wyprowadzono na złącza szpilkowe JP20 i JP22. W zależności od typu modułu diparm oznaczenia styków są różne (poza przypisanymi na stałe dla interfejsu JTAG, sygnału zerującego i zasilania), dlatego na płytce ZL11ARM oznaczono je liczbami z sufiksami A i B. Przypisanie funkcji do wyprowadzeń mikrokontrolerów AT91SAM7S256 (stosowane z modułach ZL12ARM_7S256, oznaczanych także diparm_sam7s256) i AT91SAM7S64 (stosowane z modułach ZL12ARM_7S64, oznaczanych także diparm_sam7s64) pokazano na rysunku. Przypisanie funkcji do wyprowadzeń mikrokontrolerów AT91SAM7S256 (stosowane z modułach ZL12ARM-256, oznaczanych także diparm-sam7s256) i AT91SAM7S64 (stosowane z modułach ZL12ARM-64, oznaczanych także diparm-sam7s64)

20 20 ZL11ARM uniwersalna płytka bazowa dla modułów diparm Wyposażenie standardowe Kod ZL11ARM zmontowana i uruchomiona płyta ZL11ARM; Opis płyta CD-ROM z dokumentacją techniczną zestawu, notami katalogowymi mikrokontrolerów AT91SAM7S oraz ADuC7000, kompilatorem języka C GCC, demonstracyjną wersją Keil uvision (ograniczenie do 16 kb). BTC Korporacja Warszawa ul. Inowłodzka 5 tel./faks: (22) biuro@kamami.pl Zastrzegamy prawo do wprowadzania zmian bez uprzedzenia. Oferowane przez nas płytki drukowane mogą się różnić od prezentowanej w dokumentacji, przy czym zmianom nie ulegają jej właściwości użytkowe. BTC Korporacja gwarantuje zgodność produktu ze specyfikacją. BTC Korporacja nie ponosi odpowiedzialności za jakiekolwiek szkody powstałe bezpośrednio lub pośrednio w wyniku użycia lub nieprawidłowego działania produktu. BTC Korporacja zastrzega sobie prawo do modyfikacji niniejszej dokumentacji bez uprzedzenia.

ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x

ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x ZL9ARM Płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x 1 ZL9ARM to uniwersalna płyta bazowa dla modułów diparm

Bardziej szczegółowo

ZL9AVR. Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019)

ZL9AVR. Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019) ZL9AVR Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019) ZL9AVR to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów związanych z zastosowaniem mikrokontrolerów AVR w aplikacjach

Bardziej szczegółowo

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S]

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S] ZL25ARM Płyta bazowa dla modułów diparm z mikrokontrolerami STR912 [rdzeń ARM966E-S] ZL25ARM to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów z mikrokontrolerami STR912 (ARM966E-S).

Bardziej szczegółowo

ZL8AVR. Płyta bazowa dla modułów dipavr

ZL8AVR. Płyta bazowa dla modułów dipavr ZL8AVR Płyta bazowa dla modułów dipavr Zestaw ZL8AVR to płyta bazowa dla modułów dipavr (np. ZL7AVR z mikrokontrolerem ATmega128 lub ZL12AVR z mikrokontrolerem ATmega16. Wyposażono ją w wiele klasycznych

Bardziej szczegółowo

ZL11ARM. Uniwersalna płyta bazowa

ZL11ARM. Uniwersalna płyta bazowa ZL11ARM Uniwersalna płyta bazowa dla modułów diparm ZL11ARM to uniwersalna płyta bazowa dla modułów diparm (np. ZL12ARM i ZL19ARM) z mikrokontrolerami wyposażonymi w rdzenie ARM produkowanymi przez różnych

Bardziej szczegółowo

LITEcomp. Zestaw uruchomieniowy z mikrokontrolerem ST7FLITE19

LITEcomp. Zestaw uruchomieniowy z mikrokontrolerem ST7FLITE19 LITEcomp Zestaw uruchomieniowy z mikrokontrolerem ST7FLITE19 Moduł LITEcomp to miniaturowy komputer wykonany na bazie mikrokontrolera z rodziny ST7FLITE1x. Wyposażono go w podstawowe peryferia, dzięki

Bardziej szczegółowo

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC ZL28ARM Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC Zestaw ZL28ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów AT91SAM7XC. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

ZL27ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103

ZL27ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 ZL27ARM Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 Zestaw ZL27ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów STM32F103. Dzięki wyposażeniu w szeroką gamę zaawansowanych układów

Bardziej szczegółowo

ZL2ST7. Zestaw uruchomieniowy dla mikrokontrolerów ST7LITE

ZL2ST7. Zestaw uruchomieniowy dla mikrokontrolerów ST7LITE ZL2ST7 Zestaw uruchomieniowy dla mikrokontrolerów ST7LITE ZL2ST7 to uniwersalny zestaw uruchomieniowy dla szerokiej gamy mikrokontrolerów z rodziny ST7LITE. Zestaw zawiera typowe peryferia stosowane w

Bardziej szczegółowo

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami

Bardziej szczegółowo

Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów AVR

Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów AVR Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów AVR ZL10AVR Zestaw ZL10AVR umożliwia wszechstronne przetestowanie aplikacji wykonanych z wykorzystaniem mikrokontrolerów z rodziny AVR (ATtiny, ATmega,

Bardziej szczegółowo

Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP

Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP ZL32ARM ZL32ARM z mikrokontrolerem LPC1114 (rdzeń Cotrex-M0) dzięki wbudowanemu programatorowi jest kompletnym zestawem uruchomieniowym.

Bardziej szczegółowo

ZL2AVR. Zestaw uruchomieniowy z mikrokontrolerem ATmega8

ZL2AVR. Zestaw uruchomieniowy z mikrokontrolerem ATmega8 ZL2AVR Zestaw uruchomieniowy z mikrokontrolerem ATmega8 ZL2AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega8 (oraz innych w obudowie 28-wyprowadzeniowej). Dzięki wyposażeniu w

Bardziej szczegółowo

ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami mikrokontrolerów PIC. Jest on przystosowany do współpracy z mikrokontrolerami

Bardziej szczegółowo

STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32 Butterfly Zestaw STM32 Butterfly jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

ZL29ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

ZL29ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 ZL29ARM Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw ZL29ARM jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity Line (STM32F107).

Bardziej szczegółowo

ZL10PLD. Moduł dippld z układem XC3S200

ZL10PLD. Moduł dippld z układem XC3S200 ZL10PLD Moduł dippld z układem XC3S200 Moduły dippld opracowano z myślą o ułatwieniu powszechnego stosowania układów FPGA z rodziny Spartan 3 przez konstruktorów, którzy nie mogą lub nie chcą inwestować

Bardziej szczegółowo

Tab. 1. Zestawienie najważniejszych parametrów wybranych mikrokontrolerów z rodziny LPC2100, które można zastosować w zestawie ZL3ARM.

Tab. 1. Zestawienie najważniejszych parametrów wybranych mikrokontrolerów z rodziny LPC2100, które można zastosować w zestawie ZL3ARM. ZL3ARM płytka bazowa dla modułu diparm_2106 (ZL4ARM) ZL3ARM Płytka bazowa dla modułu diparm_2106 Płytkę bazową ZL3ARM opracowano z myślą o elektronikach chcących szybko poznać mozliwości mikrokontrolerów

Bardziej szczegółowo

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega32 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S)

ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) ZL2ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) 1 Zestaw ZL2ARM opracowano z myślą

Bardziej szczegółowo

ADuCino 360. Zestaw uruchomieniowy dla mikrokontrolerów ADuCM360/361

ADuCino 360. Zestaw uruchomieniowy dla mikrokontrolerów ADuCM360/361 Zestaw uruchomieniowy dla mikrokontrolerów ADuCM360/361 ADuCino 360 Zestaw ADuCino jest tanim zestawem uruchomieniowym dla mikrokontrolerów ADuCM360 i ADuCM361 firmy Analog Devices mechanicznie kompatybilnym

Bardziej szczegółowo

ZL30ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103

ZL30ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 ZL30ARM Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 Zestaw ZL30ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów STM32F103. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega32 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S)

ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) ZL2ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) 1 Zestaw ZL2ARM opracowano z myślą o elektronikach chcących szybko zaznajomić się z mikrokontrolerami z rdzeniem ARM7TDMI-S.

Bardziej szczegółowo

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami

Bardziej szczegółowo

ZL5PIC. Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887

ZL5PIC. Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887 ZL5PIC Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887 ZL5PIC jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów PIC16F887 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

ZL11AVR. Zestaw uruchomieniowy z mikrokontrolerem ATtiny2313

ZL11AVR. Zestaw uruchomieniowy z mikrokontrolerem ATtiny2313 ZL11AVR Zestaw uruchomieniowy z mikrokontrolerem ATtiny2313 Zestaw przeznaczony do budowania prostych aplikacji z mikrokontrolerem ATtiny2313 (w podstawkę można również zamontować AT90S1200 lub AT90S2313).

Bardziej szczegółowo

ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168

ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerówavr w obudowie 28-wyprowadzeniowej (ATmega8/48/88/168). Dzięki

Bardziej szczegółowo

LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy:

LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy: LITEcompLPC1114 Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Bezpłatny zestaw dla Czytelników książki Mikrokontrolery LPC1100. Pierwsze kroki LITEcompLPC1114 jest doskonałą platformą mikrokontrolerową

Bardziej szczegółowo

KAmduino UNO. Płytka rozwojowa z mikrokontrolerem ATmega328P, kompatybilna z Arduino UNO

KAmduino UNO. Płytka rozwojowa z mikrokontrolerem ATmega328P, kompatybilna z Arduino UNO Płytka rozwojowa z mikrokontrolerem ATmega328P, kompatybilna z Arduino UNO to płytka rozwojowa o funkcjonalności i wymiarach typowych dla Arduino UNO. Dzięki wbudowanemu mikrokontrolerowi ATmega328P i

Bardziej szczegółowo

KAmduino UNO. Rev Źródło:

KAmduino UNO. Rev Źródło: KAmduino UNO Rev. 20170811113756 Źródło: http://wiki.kamami.pl/index.php?title=kamduino_uno Spis treści Podstawowe cechy i parametry... 2 Wyposażenie standardowe... 3 Schemat elektryczny... 4 Mikrokontroler

Bardziej szczegółowo

ZL6PLD zestaw uruchomieniowy dla układów FPGA z rodziny Spartan 3 firmy Xilinx

ZL6PLD zestaw uruchomieniowy dla układów FPGA z rodziny Spartan 3 firmy Xilinx ZL6PLD Zestaw uruchomieniowy dla układów FPGA z rodziny Spartan 3 firmy Xilinx 1 ZL6PLD jest zestawem uruchomieniowym dla układów FPGA z rodziny Spartan 3 firmy Xilinx. Oprócz układu PLD o dużych zasobach

Bardziej szczegółowo

ZL6ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC213x. Tab. 1. Zestawienie najważniejszych parametrów wybranych mikrokontrolerów z rodziny LPC213x

ZL6ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC213x. Tab. 1. Zestawienie najważniejszych parametrów wybranych mikrokontrolerów z rodziny LPC213x ZL6ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC213x (rdzeń ARM7TMDI-S) Kompatybilny z zestawem MCB2130 firmy Keil! Zestaw ZL6ARM opracowano z myślą o elektronikach chcących szybko zaznajomić się

Bardziej szczegółowo

KA-NUCLEO-F411CE. Płytka rozwojowa z mikrokontrolerem STM32F411CE

KA-NUCLEO-F411CE. Płytka rozwojowa z mikrokontrolerem STM32F411CE Płytka rozwojowa z mikrokontrolerem STM32F411CE to płytka rozwojowa o rozstawie złącz typowym dla Arduino UNO, bazująca na mikrokontrolerze STM32F411CE. Dzięki wbudowanemu programatorowi zgodnemu z ST-Link/v2-1,

Bardziej szczegółowo

KA-NUCLEO-UniExp. Wielofunkcyjny ekspander dla NUCLEO i Arduino z Bluetooth, MEMS 3DoF, LED-RGB i czujnikiem temperatury

KA-NUCLEO-UniExp. Wielofunkcyjny ekspander dla NUCLEO i Arduino z Bluetooth, MEMS 3DoF, LED-RGB i czujnikiem temperatury Wielofunkcyjny ekspander dla NUCLEO i Arduino z Bluetooth, MEMS 3DoF, LED-RGB i czujnikiem temperatury jest uniwersalnym ekspanderem dla komputerów NUCLEO oraz Arduino, wyposażonym w analogowy czujnik

Bardziej szczegółowo

Programator ZL2PRG jest uniwersalnym programatorem ISP dla mikrokontrolerów, o budowie zbliżonej do STK200/300 (produkowany przez firmę Kanda).

Programator ZL2PRG jest uniwersalnym programatorem ISP dla mikrokontrolerów, o budowie zbliżonej do STK200/300 (produkowany przez firmę Kanda). ZL2PRG Programator ISP dla mikrokontrolerów AVR firmy Atmel Programator ZL2PRG jest uniwersalnym programatorem ISP dla mikrokontrolerów, o budowie zbliżonej do STK200/300 (produkowany przez firmę Kanda).

Bardziej szczegółowo

KAmodRPiADCDAC. Moduł przetwornika A/C i C/A dla komputerów RaspberryPi i RaspberryPi+

KAmodRPiADCDAC. Moduł przetwornika A/C i C/A dla komputerów RaspberryPi i RaspberryPi+ Moduł przetwornika A/C i C/A dla komputerów RaspberryPi i RaspberryPi+ jest ekspanderem funkcjonalnym dla komputerów RaspberryPi oraz Raspberry Pi+ zapewniającym możliwość konwersji A/C i C/A z rozdzielczością

Bardziej szczegółowo

ZL5ARM. Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) Kompatybilność z zestawem MCB2100 firmy Keil

ZL5ARM. Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) Kompatybilność z zestawem MCB2100 firmy Keil ZL5ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) ZL5ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) 1 Zestaw ZL5ARM opracowano z myślą o

Bardziej szczegółowo

Programator-debugger JTAG/SWIM dla mikrokontrolerów STM32 i STM8

Programator-debugger JTAG/SWIM dla mikrokontrolerów STM32 i STM8 Programator-debugger JTAG/SWIM dla mikrokontrolerów STM32 i STM8 ZL30PRG Nowoczesny programator-debugger z USB obsługujący interfejsy JTAG (mikrokontrolery STM32) i SWIM (mikrokontrolery STM8). W pełni

Bardziej szczegółowo

FREEboard. Zestaw startowy z mikrokontrolerem z rodziny Freescale KINETIS L (Cortex-M0+) i sensorami MEMS 7 DoF

FREEboard. Zestaw startowy z mikrokontrolerem z rodziny Freescale KINETIS L (Cortex-M0+) i sensorami MEMS 7 DoF FREEboard Zestaw startowy z mikrokontrolerem z rodziny Freescale KINETIS L (Cortex-M0+) i sensorami MEMS 7 DoF FREEboard to bogato wyposażona platforma startowa wyposażona w mikrokontroler z rodziny Freescale

Bardziej szczegółowo

ZL19PRG. Programator USB dla układów PLD firmy Altera

ZL19PRG. Programator USB dla układów PLD firmy Altera ZL19PRG Programator USB dla układów PLD firmy Altera Nowoczesny programator i konfigurator układów PLD produkowanych przez firmę Altera, w pełni zgodny ze standardem USB Blaster, dzięki czemu współpracuje

Bardziej szczegółowo

KA-NUCLEO-Weather. ver. 1.0

KA-NUCLEO-Weather. ver. 1.0 Ekspander funkcjonalny dla NUCLEO i Arduino z zestawem sensorów środowiskowych: ciśnienia, wilgotności, temperatury i natężenia światła oraz 5-pozycyjnym joystickiem i LED RGB jest uniwersalnym ekspanderem

Bardziej szczegółowo

ZL17PRG. Programator ICP dla mikrokontrolerów ST7F Flash

ZL17PRG. Programator ICP dla mikrokontrolerów ST7F Flash ZL17PRG Programator ICP dla mikrokontrolerów ST7F Flash Programator ZL17PRG umożliwia programowanie mikrokontrolerów z rodziny ST7 firmy STMicroelectronics. Programator pracuje w oparciu o protokół ICC

Bardziej szczegółowo

KA-Nucleo-Weather. Rev Źródło:

KA-Nucleo-Weather. Rev Źródło: KA-Nucleo-Weather Rev. 20170811113639 Źródło: http://wiki.kamami.pl/index.php?title=ka-nucleo-weather Spis treści Podstawowe cechy i parametry... 2 Wyposażenie standardowe... 3 Schemat elektryczny... 4

Bardziej szczegółowo

ZL3ST7. Zestaw uruchomieniowy dla mikrokontrolerów

ZL3ST7. Zestaw uruchomieniowy dla mikrokontrolerów ZL3ST7 Zestaw uruchomieniowy dla mikrokontrolerów ST7FLITE3x Zestaw ZL3ST7 jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ST7FLITE3x. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

MAXimator. Zestaw startowy z układem FPGA z rodziny MAX10 (Altera) Partnerzy technologiczni projektu:

MAXimator. Zestaw startowy z układem FPGA z rodziny MAX10 (Altera) Partnerzy technologiczni projektu: Zestaw startowy z układem FPGA z rodziny MAX10 (Altera) MAXimator Zestaw startowy z nowoczesnym układem FPGA z rodziny Altera MAX10, wyposażony w złącze zgodne z Arduino Uno Rev 3, interfejsy wideo HDMI+CEC+DCC

Bardziej szczegółowo

E-TRONIX Sterownik Uniwersalny SU 1.2

E-TRONIX Sterownik Uniwersalny SU 1.2 Obudowa. Obudowa umożliwia montaż sterownika na szynie DIN. Na panelu sterownika znajduje się wyświetlacz LCD 16x2, sygnalizacja LED stanu wejść cyfrowych (LED IN) i wyjść logicznych (LED OUT) oraz klawiatura

Bardziej szczegółowo

KAmodQTR8A. Moduł QTR8A z ośmioma czujnikami odbiciowymi

KAmodQTR8A. Moduł QTR8A z ośmioma czujnikami odbiciowymi Moduł QTR8A z ośmioma czujnikami odbiciowymi to moduł czujnika odbiciowego z ośmioma transoptorami KTIR0711S. Pozwala na wykrycie krawędzi lub linii, zaś dzięki wyjściom analogowym możliwe jest dołączenie

Bardziej szczegółowo

Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32. Instrukcja Obsługi. SKN Chip Kacper Cyrocki Page 1

Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32. Instrukcja Obsługi. SKN Chip Kacper Cyrocki Page 1 Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32 Instrukcja Obsługi SKN Chip Kacper Cyrocki Page 1 Spis treści Wstęp... 3 Wyposażenie płytki... 4 Zasilanie... 5 Programator... 6 Diody LED...

Bardziej szczegółowo

JTAG Isolator. Separator galwaniczny JTAG dla ARM, AVR i FPGA

JTAG Isolator. Separator galwaniczny JTAG dla ARM, AVR i FPGA Separator galwaniczny JTAG dla ARM, AVR i FPGA JTAG Isolator JTAG Isolator jest galwanicznym separatorem interfejsu JTAG, zapobiegającym uszkodzeniom sprzętu wywołanym różnicami potencjałów odniesienia

Bardziej szczegółowo

ZL1MSP430 Zestaw startowy dla mikrokontrolerów MSP430F11xx/11xxA ZL1MSP430

ZL1MSP430 Zestaw startowy dla mikrokontrolerów MSP430F11xx/11xxA ZL1MSP430 ZL1MSP430 Zestaw startowy dla mikrokontrolerów MSP430F11xx/11xxA ZL1MSP430 Zestaw startowy dla mikrokontrolerów MSP430F11xx/11xxA Mikrokontrolery z rodziny MSP430 słyną z niewielkiego poboru mocy i możliwości

Bardziej szczegółowo

Moduł uruchomieniowy AVR ATMEGA-16 wersja 2

Moduł uruchomieniowy AVR ATMEGA-16 wersja 2 Dane aktualne na dzień: 30-08-2016 20:09 Link do produktu: /modul-uruchomieniowy-avr-atmega-16-wersja-2-p-572.html Moduł uruchomieniowy AVR ATMEGA-16 wersja 2 Cena Cena poprzednia Dostępność 211,00 zł

Bardziej szczegółowo

Uniwersalny zestaw uruchomieniowy ZL4PIC

Uniwersalny zestaw uruchomieniowy ZL4PIC Uniwersalny zestaw uruchomieniowy ZL4PIC Uniwersalny zestaw uruchomieniowy ZL4PIC przeznaczony jest testowania aplikacji realizowanych na bazie mikrokontrolerów PIC. Jest on przystosowany do współpracy

Bardziej szczegółowo

ZL11PRG v.2. Uniwersalny programator ISP. Odpowiednik: Byte Blaster II DLC5 Programmer AT89ISP STK-200 Lattice ISP ARM Wiggler

ZL11PRG v.2. Uniwersalny programator ISP. Odpowiednik: Byte Blaster II DLC5 Programmer AT89ISP STK-200 Lattice ISP ARM Wiggler ZL11PRG v.2 Uniwersalny programator ISP Odpowiednik: Byte Blaster II DLC5 Programmer AT89ISP STK-200 Lattice ISP ARM Wiggler Nowoczesna konstrukcja czyni z programatora ZL11PRG v.2 urządzenie niezwykle

Bardziej szczegółowo

AVREVB1. Zestaw uruchomieniowy dla mikrokontrolerów AVR. Zestawy uruchomieniowe www.evboards.eu

AVREVB1. Zestaw uruchomieniowy dla mikrokontrolerów AVR. Zestawy uruchomieniowe www.evboards.eu AVREVB1 Zestaw uruchomieniowy dla mikrokontrolerów AVR. 1 Zestaw AVREVB1 umożliwia szybkie zapoznanie się z bardzo popularną rodziną mikrokontrolerów AVR w obudowach 40-to wyprowadzeniowych DIP (układy

Bardziej szczegółowo

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem

Bardziej szczegółowo

dokument DOK 02-05-12 wersja 1.0 www.arskam.com

dokument DOK 02-05-12 wersja 1.0 www.arskam.com ARS3-RA v.1.0 mikro kod sterownika 8 Linii I/O ze zdalną transmisją kanałem radiowym lub poprzez port UART. Kod przeznaczony dla sprzętu opartego o projekt referencyjny DOK 01-05-12. Opis programowania

Bardziej szczegółowo

ARMputer, część 1 AVT 922

ARMputer, część 1 AVT 922 P R O J E K T Y ARMputer, część 1 AVT 922 Mikrokontrolery z rdzeniem ARM7TDMI szybko wspinają się na szczyty popularności, czego jedną z najważniejszych przyczyn są ekspresowo malejące ceny tych układów.

Bardziej szczegółowo

Płytka ewaluacyjna z ATmega16/ATmega32 ARE0021/ARE0024

Płytka ewaluacyjna z ATmega16/ATmega32 ARE0021/ARE0024 Płytka ewaluacyjna z ATmega16/ATmega32 ARE0021/ARE0024 Płytka idealna do nauki programowania mikrokontrolerów i szybkiego budowanie układów testowych. Posiada mikrokontroler ATmega16/ATmega32 i bogate

Bardziej szczegółowo

ALNET USB - RS Konwerter USB RS 232/422/485 Instrukcja obsługi

ALNET USB - RS Konwerter USB RS 232/422/485 Instrukcja obsługi ALNET USB - RS Konwerter USB RS 232/422/485 Instrukcja obsługi AN-ALNET USB - RS-1-v_1 Data aktualizacji: 03/2012r. 03/2012 ALNET USB RS 1-v_1 1 Spis treści 1. Przeznaczenie... 3 2. Parametry urządzenia...

Bardziej szczegółowo

Rys. 1. Schemat ideowy karty przekaźników. AVT 5250 Karta przekaźników z interfejsem Ethernet

Rys. 1. Schemat ideowy karty przekaźników. AVT 5250 Karta przekaźników z interfejsem Ethernet Głównym elementem jest mikrokontroler PIC18F67J60, który oprócz typowych modułów sprzętowych, jak port UART czy interfejs I2C, ma wbudowany kompletny moduł kontrolera Ethernet. Schemat blokowy modułu pokazano

Bardziej szczegółowo

Kod produktu: MP-1W-2480

Kod produktu: MP-1W-2480 Kod produktu: MODUŁ INTERFEJSU -WIRE, CHIPSET DS480B zbudowane jest na bazie kontrolera DS480B firmy Dallas-Maxim (konwerter RS3 - Wire). posiada układ zawierający unikalny numer seryjny (DS40), wykorzystywany

Bardziej szczegółowo

ZL15PLD. Płyta bazowa dla modułów z układem XC2C256

ZL15PLD. Płyta bazowa dla modułów z układem XC2C256 ZLPLD Płyta bazowa la moułów z ukłaem XCC ZLPLD to płyta bazowa la moułów ippld z ukłaem CoolRunner XCC firmy Xilinx (ZLPLD). Płyta jest wyposażona w wiele stanarowych urzązeń peryferyjnych, m.in. -cyfrowy

Bardziej szczegółowo

ARS3 RZC. z torem radiowym z układem CC1101, zegarem RTC, kartą Micro SD dostosowany do mikro kodu ARS3 Rxx. dokument DOK 01 05 12. wersja 1.

ARS3 RZC. z torem radiowym z układem CC1101, zegarem RTC, kartą Micro SD dostosowany do mikro kodu ARS3 Rxx. dokument DOK 01 05 12. wersja 1. ARS RZC projekt referencyjny płytki mikrokontrolera STMF z torem radiowym z układem CC0, zegarem RTC, kartą Micro SD dostosowany do mikro kodu ARS Rxx dokument DOK 0 0 wersja.0 arskam.com . Informacje

Bardziej szczegółowo

Technika Mikroprocesorowa

Technika Mikroprocesorowa Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa

Bardziej szczegółowo

ZL24PRG. Interfejs JTAG dla mikrokontrolerów ARM

ZL24PRG. Interfejs JTAG dla mikrokontrolerów ARM ZL24PRG Interfejs JTAG dla mikrokontrolerów ARM ZL24PRG to interfejs JTAG dla mikrokontrolerów z rdzeniem ARM. Umożliwia programowanie oraz debugowanie popularnych rodzin mikrokontrolerów z rdzeniem ARM

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawowe kroki programowania zestawu uruchomieniowego ZL9AVR z systemem operacyjnym NutOS w środowisku

Bardziej szczegółowo

LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2

LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2 LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2 1. Cel ćwiczenia Celem ćwiczenia jest pokazanie budowy systemów opartych na układach Arduino. W tej części nauczymy się podłączać różne czujników,

Bardziej szczegółowo

Płytka uruchomieniowa XM32

Płytka uruchomieniowa XM32 2015 Płytka uruchomieniowa XM32 Instrukcja obsługi - www.barion-st.com 2015-08-07 2 SPIS TREŚCI 1. WSTĘP... 3 1.1 Co to jest XM32?... 3 1.2 Budowa oraz parametry techniczne... 3 1.3 Schemat połączeń...

Bardziej szczegółowo

TRB-0610 Konwerter USB RS 232/422/485 Instrukcja obsługi

TRB-0610 Konwerter USB RS 232/422/485 Instrukcja obsługi TRB-0610 Konwerter USB RS 232/422/485 Instrukcja obsługi AN-TRB-0610-1-v_1 Data aktualizacji: 09/2009r. 09/2009 AN-TRB-0610-1-v_1 1 Spis treści Symbole i oznaczenia... 3 Ogólne zasady instalacji i bezpieczeństwa...

Bardziej szczegółowo

Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515

Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515 Laboratorium Techniki Mikroprocesorowej Informatyka studia dzienne Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515 Cel ćwiczenia Celem ćwiczenia jest poznanie możliwości nowoczesnych

Bardziej szczegółowo

Moduł prototypowy.. Leon Instruments. wersja 1.0

Moduł prototypowy.. Leon Instruments. wersja 1.0 wersja 1.0 Moduł extrino XL umożliwia prototypowanie urządzeń z wykorzystaniem procesora ATmega128A3U-AU AU oraz naukę programowania nowoczesnych mikrokontrolerów z serii XMEGA firmy Atmel. Moduł znajdzie

Bardziej szczegółowo

1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33

1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33 Spis treści 3 1. Wprowadzenie...11 1.1. Wstęp...12 1.2. Mikrokontrolery rodziny ARM...13 1.3. Architektura rdzenia ARM Cortex-M3...15 1.3.1. Najważniejsze cechy architektury Cortex-M3... 15 1.3.2. Rejestry

Bardziej szczegółowo

Płyta uruchomieniowa EBX51

Płyta uruchomieniowa EBX51 Dariusz Kozak ZESTAW URUCHOMIENIOWY MIKROKOMPUTERÓW JEDNOUKŁADOWYCH MCS-51 ZUX51 Płyta uruchomieniowa EBX51 INSTRUKCJA OBSŁUGI Wszystkie prawa zastrzeżone Kopiowanie, powielanie i rozpowszechnianie w jakiejkolwiek

Bardziej szczegółowo

WYKŁAD 5. Zestaw DSP60EX. Zestaw DSP60EX

WYKŁAD 5. Zestaw DSP60EX. Zestaw DSP60EX Zestaw DSP60EX Karta DSP60EX współpracuje z sterownikiem DSP60 i stanowi jego rozszerzenie o interfejs we/wy cyfrowy, analogowy oraz użytkownika. Karta z zamontowanym sterownikiem pozwala na wykorzystanie

Bardziej szczegółowo

Moduł prototypowy X3-DIL64 z procesorem ATxmega128A3U-AU

Moduł prototypowy X3-DIL64 z procesorem ATxmega128A3U-AU Moduł prototypowy X3-DIL64 z procesorem ATxmega128A3U-AU wersja 2.1 Moduł X3-DIL64 umożliwia prototypowanie urządzeń z wykorzystaniem procesora ATmega128A3U-AU oraz naukę programowania nowoczesnych mikrokontrolerów

Bardziej szczegółowo

ISP ADAPTER. Instrukcja obsługi rev.1.1. Copyright 2009 SIBIT

ISP ADAPTER. Instrukcja obsługi rev.1.1. Copyright 2009 SIBIT Instrukcja obsługi rev.1.1 Spis treści 1.Wprowadzenie... 3 2. Rozmieszczenie elementów...4 3. Opis wyprowadzeń złącza ISP...6 4. Zasilanie adaptera...7 5. Wybór źródła taktowania...8 6. Wybór programowanego

Bardziej szczegółowo

Stanowisko laboratoryjne dla mikrokontrolera ATXmega32A4 firmy Atmel

Stanowisko laboratoryjne dla mikrokontrolera ATXmega32A4 firmy Atmel Katedra Metrologii i Optoelektroniki Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska LABORATORIUM MIKROKONTROLERY I MIKROSYSTEMY Stanowisko laboratoryjne dla mikrokontrolera ATXmega32A4

Bardziej szczegółowo

Kod produktu: MP01611

Kod produktu: MP01611 CZYTNIK RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi tani i prosty w zastosowaniu czytnik RFID dla transponderów UNIQUE 125kHz, umożliwiający szybkie konstruowanie urządzeń do bezstykowej

Bardziej szczegółowo

KAmodRPi ADC DAC. Rev Źródło:

KAmodRPi ADC DAC. Rev Źródło: KAmodRPi ADC DAC Rev. 20170811113936 Źródło: http://wiki.kamami.pl/index.php?title=kamodrpi_adc_dac Spis treści Wymagania... 2 Sposób podłączenia... 3 Konfiguracja... 4 Kod programu w Pythonie... 5 Do

Bardziej szczegółowo

DOKUMENTACJA PROJEKTU

DOKUMENTACJA PROJEKTU Warszawa, dn. 16.12.2015r. Student: Artur Tynecki (E.EIM) atynecki@stud.elka.pw.edu.pl Prowadzący: dr inż. Mariusz Jarosław Suchenek DOKUMENTACJA PROJEKTU Projekt wykonany w ramach przedmiotu Mikrokontrolery

Bardziej szczegółowo

KONWERTER RS-422 TR-43

KONWERTER RS-422 TR-43 LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 KONWERTER RS-422 TR-43 IO-43-2C Marzec 2004 LANEX S.A., ul.ceramiczna 8, 20-150 Lublin serwis: tel. (81) 443 96 39

Bardziej szczegółowo

Karta katalogowa JAZZ OPLC JZ20-T40/JZ20-J-T wejść cyfrowych, 2 wejścia analogowe/cyfrowe, 2 wejścia analogowe. 20 wyjść tranzystorowych

Karta katalogowa JAZZ OPLC JZ20-T40/JZ20-J-T wejść cyfrowych, 2 wejścia analogowe/cyfrowe, 2 wejścia analogowe. 20 wyjść tranzystorowych Karta katalogowa JAZZ OPLC JZ20-T40/JZ20-J-T40 16 wejść cyfrowych, 2 wejścia analogowe/cyfrowe, 2 wejścia analogowe 20 wyjść tranzystorowych Specyfikacja techniczna Zasilanie Napięcie zasilania 24 VDC

Bardziej szczegółowo

4 Adres procesora Zworkami A0, A1 i A2 umieszczonymi pod złączem Z7 ustalamy adres (numer) procesora. Na rysunku powyżej przedstawiono układ zworek dl

4 Adres procesora Zworkami A0, A1 i A2 umieszczonymi pod złączem Z7 ustalamy adres (numer) procesora. Na rysunku powyżej przedstawiono układ zworek dl 1 Wstęp...1 2 Nie zamontowane elementy...1 3 Złącza...1 4 Adres procesora...2 5 Zasilanie...2 6 Podłączenie do komputera...3 7 Proste połączenie kilku modułów z komputerem i wspólnym zasilaniem...3 8 Wejścia

Bardziej szczegółowo

Tester samochodowych sond lambda

Tester samochodowych sond lambda Tester samochodowych P R O sond J E lambda K T Y Tester samochodowych sond lambda Elektroniczny analizator składu mieszanki AVT 520 Przyrz¹d opisany w artykule s³uøy do oceny sprawnoúci sondy lambda oraz

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Kod przedmiotu: TS1C 622 388 Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Elektronika samochodowa Temat: Programowanie

Bardziej szczegółowo

Murasaki Zou むらさきぞう v1.1 Opis programowania modułu LPC2368/LPC1768 z wykorzystaniem ISP

Murasaki Zou むらさきぞう v1.1 Opis programowania modułu LPC2368/LPC1768 z wykorzystaniem ISP Murasaki Zou むらさきぞう v1.1 Opis programowania modułu LPC2368/LPC1768 z wykorzystaniem ISP Moduł mikroprocesorowy Murasaki Zou v1.1 wyposaŝony jest w jeden z dwóch mikrokontrolerów tj. ARM7 LPC2368, oraz

Bardziej szczegółowo

Jednym z najlepszych sposobów poznawania nowego typu mikrokontrolera

Jednym z najlepszych sposobów poznawania nowego typu mikrokontrolera Zestaw startowy dla P R O J E K T Y procesora MSP430F413, część 1 AVT 920 Z dostępnych na rynku mikrokontrolerów trudno jest jednoznacznie wybrać najlepszy. Każdy ma jakieś swoje zalety i wady. Nawet popularność

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI. WZMACNIACZY HQM (modele 4060 i 4120)

INSTRUKCJA OBSŁUGI. WZMACNIACZY HQM (modele 4060 i 4120) INSTRUKCJA OBSŁUGI WZMACNIACZY HQM (modele 4060 i 4120) CECHY PRODUKTU Moc: 60W / 120W Wyjścia głośnikowe: 4-16Ω, 70V, 100V Pasmo przenoszenia: 80Hz-16KHz ZASTOSOWANIE 4 strefy nagłośnienia 3 wejścia mikrofonowe

Bardziej szczegółowo

Płytka uruchomieniowa XM64

Płytka uruchomieniowa XM64 2015 Płytka uruchomieniowa XM64 - Instrukcja obsługi www.barion-st.com 2015-05-12 2 SPIS TREŚCI 1. WSTĘP... 3 1.1 Co to jest XM64?... 3 1.2 Budowa oraz parametry techniczne... 3 1.3 Schemat połączeń...

Bardziej szczegółowo

Vinculum scalony host USB

Vinculum scalony host USB Vinculum scalony host USB Układy USB firmy FTDI zdobyły w ciągu ostatnich kilku lat dużą popularność głównie dzięki łatwości ich stosowania i dostępności sterowników. Firma ta może pochwalić się kolejnym

Bardziej szczegółowo

MikloBit ul. Cyprysowa 7/ Jaworzno. rev MB-AVR-ISP programator

MikloBit ul. Cyprysowa 7/ Jaworzno.  rev MB-AVR-ISP programator MikloBit ul. Cyprysowa 7/5 43-600 Jaworzno www.miklobit.com support@miklobit.com rev. 1.0 2004.08.10 Spis treści 1.Wprowadzenie... 3 2.Przygotowanie do pracy... 3 3.Opis wyprowadzeń... 4 3.1.Złącze ISP

Bardziej szczegółowo

ZL4ST7. Zestaw uruchomieniowy dla mikrokontrolera

ZL4ST7. Zestaw uruchomieniowy dla mikrokontrolera ZLST7 Zestaw uruchomieniowy dla mikrokontrolera ST7FLITE9 Zestaw ZLST7 jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ST7FLITE9. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie:

Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie: Zaliczenie Termin zaliczenia: 14.06.2007 Sala IE 415 Termin poprawkowy: >18.06.2007 (informacja na stronie: http://neo.dmcs.p.lodz.pl/tm/index.html) 1 Współpraca procesora z urządzeniami peryferyjnymi

Bardziej szczegółowo

ISBN Copyright by Wydawnictwo BTC Legionowo 2008

ISBN Copyright by Wydawnictwo BTC Legionowo 2008 Duża popularność graficznych wyświetlaczy LCD powoduje, że w coraz większej liczbie aplikacji warto byłoby wykorzystać ich możliwości (np. dla zwiększenia atrakcyjności urządzenia lub ułatwienia jego obsługi).

Bardziej szczegółowo

MSA-1 Mikroprocesorowy sterownik do przełącznika antenowego

MSA-1 Mikroprocesorowy sterownik do przełącznika antenowego MSA-1 Mikroprocesorowy sterownik do przełącznika antenowego Instrukcja obsługi Autor projektu: Grzegorz Wołoszun SP8NTH Wstęp Sterownik MSA-1 powstał w odpowiedzi na zapotrzebowanie rynku krótkofalarskiego

Bardziej szczegółowo

Deklaracja zgodności jest dostępna pod adresem

Deklaracja zgodności jest dostępna pod adresem GENERATOR KOMUNIKATÓW GŁOSOWYCH INT-VMG int-vmg_pl 03/12 Moduł INT-VMG umożliwia głośne odtwarzanie nagranych uprzednio komunikatów w przypadku wystąpienia określonych zdarzeń. Współpracuje z centralami

Bardziej szczegółowo

Szkolenia specjalistyczne

Szkolenia specjalistyczne Szkolenia specjalistyczne AGENDA Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin info@gryftec.com

Bardziej szczegółowo