Informacja i jej przetwarzanie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Informacja i jej przetwarzanie"

Transkrypt

1 Informacja i jej przetwarzanie Wiele nauk wprowadza tzw. pewniki, czyli aksjomaty, na podstawie których buduje się definicje wszystkich elementów występujących w tych dziedzinach - tak działa np. matematyka i geometria. W informatyce pojęcie informacji jest pierwotne - nie podaje się ogólnej definicji. Istnieją tylko definicje specyficzne dla określonych zastosowań - np. do pomiaru ilości informacji. Definicja jest sama w sobie informacją, a z punktu widzenia logiki obiektu nie możemy definiować nim samym - np. SŁOŃ TO SŁOŃ. Przyjmijmy zatem, iż jest pojęciem pierwotnym, którego nie będziemy definiowali. Ma to pewien sens, ponieważ każdy z nas posiada wewnętrzne zrozumienie tego terminu. Zastanówmy się natomiast, jak można reprezentować czyli przedstawiać informację. Za pomocą słów - nie ma wątpliwości, iż ludzie opracowali bardzo efektywny dla siebie sposób reprezentowania różnych pojęć za pomocą słów. System ten stosujemy codziennie do komunikowania się. Skoro działa, jest zatem dobry dla nas. Za pomocą pisma - słowa możemy zapisać, np. na papierze. W ten sposób utrwalimy je dla innych ludzi, którzy nie mieli okazji ich usłyszeć. A być może wcale nic nie mówiliśmy, tylko od razu zapisaliśmy naszą informację w formie pisemnej. Za pomocą gestów - wzruszenie ramion, rozłożenie rąk, uchwycenie się za głowę - gesty te niewątpliwie niosą dla nas różne informacje. Za pomocą innych sposobów - np. liczby, znaki drogowe, kolory, fale radiowe, prąd elektryczny i setki innych sposobów, które wymyślił człowiek (lub przyroda - np. kod DNA) do przekazania określonych informacji. Zatem słowa, pismo, gesty, znaki, wszystko to może służyć do reprezentowania informacji. Elementy te będziemy ogólnie nazywali symbolami. Z kolei zbiór takich symboli nazwiemy danymi - czyli dane, to symbole, które mogą reprezentować informację. Aby wydobyć informację z danych, musimy wiedzieć, w jaki sposób została z tymi danymi skojarzona, powiązana. Nie jest to wcale oczywiste. Jeśli masz wątpliwości, to proponuję taki prosty eksperyment: Nastaw odbiornik radiowy na audycję w obcym sobie języku i posłuchaj jej przez chwilę. Czy rozumiesz o czym mówią ludzie w tej audycji? A jeśli nie, to z jakiego powodu? Oczywiście odpowiesz - bo nie znam tego języka, co w tym dziwnego. Masz rację. Nie znasz języka i nie rozumiesz. Ale przecież odbierasz dane - czyli słowa. Gdyby dane były równoważne informacji, to odczytanie jej z tych danych nikomu nie sprawiałoby żadnej trudności i nie musiałbyś uczyć się w szkole języków obcych (wszystkie języki byłyby nasze). Niestety tak nie jest. Zatem wniosek może być tylko jeden. Same dane nie są informacją. Musimy jeszcze znać sposób przypisania danych do określonych informacji - w przypadku języka oznacza to konieczność poznania znaczenia słówek oraz gramatyki, inaczej będziesz miał poważne kłopoty ze zrozumieniem. Daną informację można reprezentować za pomocą różnych symboli. Przykładowo pojęcie PRZYJACIEL w różnych językach to różne słówka: friend - angielski

2 der Freund - niemiecki el amigo - hiszpański le ami - francuski barát - węgierski mellon - elficki z Władcy Pierścieni Tolkiena (czarodziej Gandalf wypowiada to słowo, aby otworzyć magiczne wejście do kopalń Morii). :) c'khrng - dźwięk wydawany na widok przyjaciela przez żabopodobne stwory, żyjące w bagnistych kraterach na czwartym księżycu ósmej planety systemu Syriusza. Ich krewniacy Lekhomonty w tej samej sytuacji wysyłają błysk promieni gamma :) Symbole są różne, lecz znaczenie takie samo. Istnieją oczywiście kontrprzykłady - ten sam symbol oznacza różne informacje, np. słowa wieloznaczne: zamek (w drzwiach, w kurtce lub duży dom dla rycerza) dziób (ptaka, samolotu, okrętu) blok (mieszkanie, krążek z liną, zablokowanie ciosu w karate) Jednakże w większości przypadków nie dochodzi do zamieszania, ponieważ właściwe znaczenie słowa wybieramy w zależności od sytuacji, w której jest ono używane. Jeśli mówimy o zamykaniu zamka na klucz, to oczywiście mamy na myśli zamek w drzwiach, a nie miejsce noclegowe dla rycerzy (chociaż te zamki też pewnie można było zamykać na klucze). Taka jednoznaczna sytuacja nazywa się kontekstem użycia danych. Co z tego dla nas wynika? Otóż jeśli chcemy wyrażać informację w jakiejś czytelnej dla innych formie, to:. Musimy znaleźć odpowiednie symbole, czyli określić dane 2. Musimy tym danym nadać odpowiednie znaczenia, czyli określić ich interpretację 3. Znaczenia danych musimy upowszechnić w grupie, w której będą one wykorzystywane, czyli określić kontekst. DANE + INTERPRETACJA + KONTEKST INFORMACJA Jeśli powyższe trzy punkty spełnimy, otrzymamy system reprezentacji określonych informacji za pomocą wybranych symboli - danych. Gdy to już wiemy i rozumiemy, możemy przejść do pojęcia bitu. Postawmy się w roli pioniera komputerów. Mamy przed sobą bardzo poważne zadanie - budowę komputera, czyli maszyny liczącej, która będzie przetwarzała informację. Zanim zaczniemy montować to ogromniaste urządzenie z tysięcy podzespołów i setek kilometrów kabli, musimy określić zbiór symboli, które maszyna ma przetwarzać. Innymi słowy musimy określić zbiór danych

3 dla maszyny oraz sposoby ich interpretacji. Jakie symbole wybrać? Mowę? Za trudna i jak ją zapisywać wewnątrz maszyny! Pismo? Też trudne. Gesty lepiej zapomnieć. Ideałem byłby symbole najprostsze z możliwych. Dla takich symboli może znaleźlibyśmy jakieś w miarę proste sposoby ich realizacji w naszym komputerze za pomocą odpowiednich obwodów elektronicznych. Co to mogłoby być? I w tym miejscu ktoś kiedyś dostał olśnienia - najprostszym symbolem byłby taki symbol, który mógłby występować tylko w dwóch rozróżnialnych postaciach, w dwóch formach, najlepiej przeciwnych. Dlaczego akurat w dwóch a nie w trzech. Bo dwie postacie są prostsze od trzech, jasne?! W układzie elektronicznym taki symbol mógłby być przedstawiany przez np. dwa różne napięcia elektryczne - pierwsza postać symbolu to napięcie powiedzmy 5V, a druga postać to napięcie V. Dwa różne napięcia da się łatwo rozróżnić i projekt układów elektronicznych, które na takie napięcia reagują nie jest wcale taki trudny (dla inżyniera elektronika oczywiście - dla większości licealistów jest to problem typu niemożliwego). Zamiast napięcia można na przedstawiciela naszego symbolu wybrać wybrać prąd elektryczny - prąd płynie w obwodach - pierwsza postać, prąd nie płynie - druga postać. A może światło? Jest strumień świetlny - pierwsza postać, nie ma strumienia - postać druga (cały czas czekam, aż w końcu pojawią się komputery wykorzystujące, zamiast prądów i napięć, fotony. Przyjemnie byłoby zdjąć obudowę i popatrzyć sobie, jak nasz komputerek ładnie w środku sobie świeci). W tym momencie powinieneś zapytać - no dobrze, ale po co mi to wszystko jest potrzebne? Cały czas chodzi nam o przedstawianie informacji przy pomocy jak najprostszych symboli. Znaleźliśmy proste dane - symbole dwustanowe. Musimy pokazać, iż takie symbole będą dobrze nadawały się do naszego celu, czyli pozwolą kojarzyć ze sobą dowolną ilość informacji. Aby ułatwić sobie życie, oznaczmy stany naszego symbolu cyframi (stan wysoki - np. napięcie 5V, prąd płynie, jest światło, itp.) oraz (stan niski - np. napięcie V, brak prądu, brak światła, itp.). Dlaczego akurat wybraliśmy cyfry i? A dlaczego nie? Są to znaki równie dobre jak każde inne (np. elektronicy często w tym samym charakterze wykorzystują literki H - stan wysoki i L - stan niski), a dodatkowo, co zobaczymy w dalszych rozdziałach, cyfry i posiadają wiele pożytecznych dla nas zalet. Otrzymany zbiór danych zawiera teraz dwa rozróżnialne symbole: Zbiór danych = {, } Dwóm symbolom można przypisać dwa różne znaczenia, dwie informacje. Jakie? Potrzebne nam w danym zastosowaniu. Dla przykładu wyobraźmy sobie, iż nasz system komputerowy zbiera dane od czujników pożarowych, umieszczonych w różnych punktach budynku. Czujnik pożarowy reaguje na wzrost temperatury lub dym. Jeśli temperatura osiągnie krytyczną wartość lub pojawi się dym w otaczającym czujnik powietrzu, wewnątrz zostają zwarte dwa przewody i zaczynie płynąć prąd elektryczny. Brak prądu (stan niski ) oznacza zatem normalną temperaturę w chronionym pomieszczeniu. Pojawienie się prądu (stan wysoki ) informuje nas o wysokiej temperaturze, czyli o wybuchu pożaru. W tym kontekście stany i mają oczywiste znaczenie: - wszystko jest w porządku, - pożar W innym kontekście symbole i mogą posiadać zupełnie inne znaczenia (np. - mamy czekoladę, jest dobrze; - brakło czekolady, panika!). To od nas zależy co im przypiszemy - o znaczeniu używanych przez ludzi słów decydowali używający je ludzie, a nie niedźwiedzie w Alpach (te być może przyczyniły się do powstania słów w stylu AUUUUU..., które są rzadkimi,

4 wspólnymi słowami dla prawie wszystkich języków, których użytkownicy mieli okazję spotkać niedźwiedzia. Jest to fascynujące, ale nie na temat). Symbol, który może występować w jednym z dwóch stanów (form, postaci), nazwano bitem. Twórcą tej nazwy był amerykański statystyk John Turkey, który ją wymyślił w trakcie drugiego śniadania (najprawdopodobniej po wypiciu dokładnie dwóch łyków kawy z niewielkim dodatkiem mleka, co jednakże nie ma wpływu na dalsze losy bitów) na jednej z konferencji naukowych w zimie roku W owym czasie istniały już komputery wykorzystujące opisane przez nas powyżej symbole dwustanowe do wykonywania różnych obliczeń. Informatycy oznaczali je cyframi i, ponieważ w tej postaci nadawały się doskonale do przedstawiania liczb binarnych, dwójkowych, za pomocą których komputery liczyły. John Turkey utworzył nazwę bit z literek dwóch słów angielskich: binary digit (cyfra dwójkowa, czyli lub ): bit = binary digit W późniejszym okresie John ujawnił, iż rozważał jeszcze dwie inne kombinacje literek: bigit = binary digit bin it = binary digit Jak dzisiaj już wiemy, przyjęła się tylko pierwsza forma. Określenie bit w charakterze symbolu dwustanowego, przeznaczonego do symbolicznego reprezentowania informacji pojawiło się po raz pierwszy w 948 roku w pracach wybitnego informatyka, Claude Shannona, twórcy teorii informacji. Zapamiętaj: Bit jest symbolem występującym tylko w dwóch różnych stanach, które w informatyce najczęściej oznaczamy cyframi dwójkowymi i. Nazwa bit pochodzi od słów angielskich binary digit (cyfra dwójkowa). Nazwę tę wymyślił John Turkey w 943 roku. Jednemu bitowi możemy przypisać maksymalnie dwie różne informacje - jedną dla stanu oraz drugą dla stanu. Co jednak mamy zrobić, jeśli w pewnym kontekście musimy operować większą ilością informacji? Cóż, musimy potraktować bity jako literki i tworzyć z nich słowa - zupełnie tak samo jak w naszym ojczystym języku. Zbadajmy tę możliwość. Słowo bitowe - pierwsza - druga Nowe kombinacje słówek binarnych otrzymujemy z poprzednich kombinacji dołączając do nich raz bit o stanie, a następnie jeszcze raz dołączając bit o stanie. W efekcie ilość kombinacji zawsze podwaja się

5 Słowo 2 bitowe: - pierwsza - druga - trzecia - czwarta Słowo 3 bitowe: - pierwsza - druga - trzecia - czwarta - piąta - szósta - siódma - ósma... Widzimy wyraźnie, iż dodanie kolejnego bitu do słówka binarnego zwiększa dwukrotnie ilość możliwych kombinacji stanów bitów tworzących to słowo. Większa ilość kombinacji przekłada się na większą ilość informacji, które można bezpośrednio przypisać tworzonym słówkom binarnym. Ponieważ ilość kombinacji podwaja się przy każdym dodanym bicie, otrzymujemy proste zależności: bit 2 informacje 2 informacji 2 bity 4 informacje 2 2 informacji 3 bity 8 informacji 2 3 informacji 4 bity 6 informacji 2 4 informacji n bitów... 2 n informacji Co z tego wynika? Otóż dla każdej skończonej ilości informacji x zawsze możemy dobrać takie n, aby n bitowe słówka binarne przyjęły tyle różnych stanów, ile jest potrzebne do zakodowania tej

6 ilości informacji. W tym celu wystarczy, aby był spełniony warunek: Przykład: dla x > : n log 2 x, n Ν Załóżmy, iż w pewnym systemie informatycznym musimy przetwarzać (posługiwać się) różnych informacji. Przetwarzane informacje będziemy w tym systemie przedstawiać n bitowymi słówkami. Ile musi wynosić n, aby n bitowe słówka binarne przyjęły co najmniej różnych kombinacji? Odpowiedź: n log 2 9, , Przyjmijmy zatem n =. Dla słówek bitowych liczba wszystkich możliwych kombinacji wynosi 2 = 24. Wynika z tego, iż w naszym systemie 24 słówka nie będą posiadały żadnego znaczenia - to nic, pozostaną na zapas, gdyby w przyszłości okazało się, iż zamiast informacji będziemy potrzebowali np. 5. Zapamiętaj: Słówka n bitowe przyjmują 2 n różnych kombinacji swoich stanów lub. Aby przyjąć x kombinacji, słówka binarne muszą składać się z (n log 2 x) bitów. Teraz możemy odpowiedzieć na postawione na początku rozdziału pytania: Czym jest bit? Bit jest dwustanowym sygnałem, daną, która może być skojarzona z dokładnie dwoma różnymi mi. Stany bitu oznaczamy cyfrą i. Do czego jest nam potrzebny bit? Bitu potrzebujemy do tworzenia słówek binarnych, które z kolei kojarzymy z odpowiednimi mi. W ten sposób dowolną ale skończoną ilość informacji możemy przypisać do odpowiedniej liczby różnych słówek binarnych. Procedura kodowania informacji za pomocą bitów. Określ dokładnie informację, którą chcesz reprezentować bitami. 2. Policz dokładnie liczbę wszystkich informacji, które będziesz potrzebował w swoim systemie. 3. Określ liczbę bitów w słówkach binarnych tak, aby ilość ich kombinacji pokryła liczbę

7 twoich informacji. 4. Zastanów się nad najbardziej efektywnym sposobem przyporządkowania informacji poszczególnym słówkom binarnym. 5. Przydziel słówkom binarnym poszczególne informacje. W ten sposób zbudujemy tzw. kod binarny (ang. binary code). Słówka tego kodu będą reprezentowały przydzielone im informacje. Oczywiście aby odczytać te informacje, należy znać dokładnie sposób kodowania, czyli przydzielania informacji słówkom kodowym. Kodowanie grafiki Na pierwszy rzut oka zadanie wydaje się beznadziejne - jak mogę przekształcić piękne obrazy Rubensa w jakieś tam bity przyjmujące stany lub? Na pewno masz rację, przekształcić ich nie możemy, lecz z pewnym przybliżeniem możemy zakodować zawartą w tych obrazach informację o kolorach. Na początek musimy zastanowić się, w jaki sposób będziemy przedstawiali informację zawartą w grafice, czyli nad sposobami jej reprezentacji. Postawmy sobie chwilowo mniej ambitne zadanie. Załóżmy, iż nasza grafika zawiera tylko dwa różne kolory - biały i czarny. Za pomocą bitów zakodujemy kolor na obrazku. Ponieważ mamy tylko dwa różne kolory, wystarczy na to jeden bit: bit - kolor biały bit - kolor czarny

8 Określiliśmy sposób przyporządkowania informacji do bitu - to jakby język naszej nowej mowy kodującej grafikę czarno-białą. Pozostaje tylko problem, w jaki sposób ta zawarta w bitach będzie połączona z obrazkiem. Rozwiązanie jest dosyć proste. Obrazek dzielimy na drobną siateczkę punktów, tzw. raster. W obrębie danego punktu (zwanego pikselem - ang. pixel = picture element, czyli element obrazowy) kolor jest stały - albo biały, albo czarny. Na pewno jest to pewnym oszustwem. Ale jeśli siateczka punktów jest bardzo gęsta, to możemy dać się na nie nabrać - po prostu nasze oko nie zobaczy poszczególnych punktów, tylko obraz. O to właśnie chodzi. Poniżej ten sam obrazek, ale w "normalnej wielkości". Wygląda całkiem miło. Tak otrzymany obrazek zamieniamy na bity: punkty czarne kodujemy bitem o stanie, a punkty białe kodujemy bitem o stanie. W postaci bitowej obrazek wygląda tak:

9 W takiej formie obrazek może być przechowywany we wnętrzu komputera (pamiętamy oczywiście, iż bity są kodowane w komputerze poziomami napięć), przesłany przez sieć teleinformatyczną lub przetwarzany przez odpowiednie algorytmy operujące na bitach. Z postaci bitowej też można bez problemu odzyskać zawartość obrazka. W tym celu wystarczy zbudować urządzenie, które na ekranie monitora obrazuje siatkę punktów graficznych, czyli raster. Następnie do urządzenia przesyłamy informację w postaci bitów dla poszczególnych punktów siatki, a ono wyświetla na ekranie odpowiednio punkt biały dla bitu i czarny dla bitu. Tak właśnie działa karta graficzna komputera. Zadanie kodowania grafiki pozornie się komplikuje, gdy obrazek zawiera więcej kolorów. Załóżmy, iż do narysowania naszej mordki wykorzystamy cztery kolory:

10 Ponieważ teraz każdy piksel obrazka może przyjąć jeden z czterech różnych kolorów, to informacji tej nie zmieścimy w jednym bicie - potrzebujemy pary bitów. Dwa bity mogą przyjąć cztery różne kombinacje swoich stanów:,, i tworząc cztery różne binarne słówka kodowe. Każdemu słowu kodowemu przypiszemy jeden kolor piksela. Określmy takie przypisanie: Taki sposób kodowania kolorów nazywa się kodowaniem palety barw. Polega on na tym, iż każdemu kolorowi na obrazku przypisujemy osobne słowo kodowe. Zdefiniowawszy paletę można już bez problemów przekształcić obrazek w odpowiedni ciąg bitów: Odkodowanie obrazka nie nastarcza większych trudności, jeśli znamy paletę kolorów i sposób jej przyporządkowania słowom kodu. Paleta dwubitowa pozwala na zdefiniowanie czterech kolorów. Paleta 8 bitowa definiuje już 256 kolorów. Paleta 6 bitowa to barw. Wniosek: bity nadają się do kodowania grafiki. Kodowanie tekstów

11 W tekstach występują litery oraz inne znaki pisarskie. To właśnie one będą mi kodowanymi za pomocą bitów. Dla uproszczenia załóżmy, iż nasze teksty składają tylko z wielkich liter, cyfr, przecinków, kropek oraz spacji. W ten sposób określimy zbiór informacji do zakodowania: {A, B, C, Ć, D, E, Ę, F, G, H, I, J, K, L, Ł, M, N, Ń, O, Ó, P, R, S, Ś, T, U, W, Y, Z, Ź, Ż,,, 2, 3, 4, 5, 6, 7, 8, 9, przecinek, kropka, spacja} Wybrany zbiór zawiera 44 różne znaki. Potrzebujemy słówek binarnych o liczbie bitów równej: n log 2 44 = 5, , n = 6 6 bitowe słówka binarne dają 2 6 = 64 różnych kombinacji. My wykorzystamy tylko 44, zatem 2 słów kodowych pozostanie wolne, bez określonego znaczenia (możemy je w przyszłości wykorzystać na nowe znaki - np. literę X, której chwilowo nie potrzebujemy). Sam przydział słówek binarnych literkom na etapie projektowania jest zupełnie dowolny (dobrze jednak zastosować tutaj pewien schemat - w przyszłości może to zaowocować uproszczeniem przy sortowaniu alfabetycznym tekstów) - ważne jest jedynie to, aby każda literka otrzymała inny kod. W przeciwnym razie skąd byśmy wiedzieli, o którą literkę chodzi?. Możemy to zrobić tak: ZNA K KOD ZNA K KOD ZNA K KOD ZNA K KOD A I S 2 Ą J Ś 3 B K T 4 C L U 5 Ć Ł W 6 D M Y 7 E Ń Z 8 Ę O Ź 9 F Ó Ż,

12 G P. H R spacja Określiliśmy tzw. kod znakowy (ang. character code). W takiej postaci literki mogą już być przetwarzane przez komputery. Dla przykładu zakodujmy w tym systemie jakieś zdanie: M I Ś U S Z A T E K W drugą stronę też nie ma specjalnych problemów. Mamy ciąg bitów: Ponieważ wiemy, iż literki kodowane są za pomocą słówek 6 bitowych, dzielimy ciąg bitów na takie właśnie słówka: Każde słówko kodowe zamieniamy na skojarzony z nim znak wg tabeli kodu znakowego. Otrzymujemy czytelną dla nas postać tekstu: A L A M A Ż Ó Ł W I A Wniosek: bity nadają się do kodowania znaków. Kodowanie liczb Teraz pokażemy sposób przedstawiania liczb naturalnych za pomocą bitów. Wyobraźmy sobie, iż żyjemy w takim dziwnym kraju (no, może tak bardzo tego nie musimy sobie wyobrażać, wystarczy się rozglądnąć), w którym wszystkie monety mają nominały równe potęgom liczby 2: Nomina Potęga 2

13 ł Załóżmy, iż w tym dziwnym kraju wyszło zarządzenie, które głosi, iż wszystkie kwoty należy wypłacać najmniejszą możliwą liczbą monet. Za nieprzestrzeganie tego zarządzenia rząd nałożył olbrzymią karę Cóż, nikt tyle pieniążków nie miał, zatem wszyscy rozpoczęli skrupulatne odmierzanie sum pieniężnych. Z sumami będącymi potęgami liczby 2 nie ma problemu - wystarczy jedna moneta o właściwym nominale. Pozostałe sumy wyliczamy następująco: Trzeba wypłacić 57. Aby monet było jak najmniej, każda o właściwym nominale powinna wystąpić co najwyżej raz. Ano zobaczmy: Pierwszą monetą może być 28 (256 byłoby za duże, a 64 musielibyśmy użyć dwukrotnie). Zatem płacimy 28. Pozostaje wciąż: = 29 Najbliższą monetą będzie 6. Płacimy 6. Pozostaje: Teraz płacimy 8. Pozostaje: Płacimy 4. Pozostaje: I na koniec wypłacamy. Podsumujmy: 29-6 = = = 57 = No dobrze, powiesz. Co to ma jednak wspólnego z bitami? A ma. Zwróć uwagę, iż przy wypłacie sumy podejmujemy dla poszczególnych nominałów monet jedną z decyzji: Wypłacić daną monetę - Nie wypłacać monety -

14 A to są przecież nasze kochane bity. Ułóżmy monety kolejno z prawa na lewo od najmniejszej do największej. Otrzymamy następujący ciąg nominałów: Nominał Potęga Teraz pod tak wypisanymi nominałami zapisujemy dla danej sumy pieniężnej wypłaconą liczbę monet danego nominału: Nominał Potęga = Ponieważ dana moneta może wystąpić co najwyżej raz, to pod nominałami zapisujemy tylko cyfry lub. Jeśli cyfry potraktujemy teraz jako bity, otrzymamy zapis binarny danej liczby dziesiętnej: 57 () =... (2) W zapisie tym bit o stanie ma wartość odpowiadającej mu potęgi liczby 2. Bit o stanie ma wartość. Aby obliczyć wartość całej liczby binarnej wystarczy zatem zsumować wartości bitów o stanie. Oto inny przykład: W dziwnym kraju na czeku bankier wypisał sumę pieniężną zaznaczając liczbę monet o kolejnych nominałach, które należy wypłacić klientowi banku. Zrobił to tak: Jaką sumę należy wypłacić? My już wiemy. Skoro poszczególne cyfry oznaczają liczbę monet o danym nominale, zapisujemy to tak: Nominał Potęga SUMA = Teraz sumujemy nominały wypłaconych monet i otrzymujemy:

15 = 749 Proste? Jeśli nie, to przeczytaj to kolejny raz, aż zrozumiesz. Formalnie rzecz biorąc, jeśli mamy n bitową liczbę binarną: b n- b n-2... b 2 b b, gdzie b i = lub, dla i =,,2,...,n- to jej wartość dziesiętną obliczamy zgodnie z poniższym wzorem: wartość = b n- 2 n- + b n-2 2 n b b 2 + b 2 Wniosek: bity nadają się do kodowania liczb. Podsumowanie W rozdziale pokazaliśmy trzy sposoby kodowania informacji za pomocą bitów: Kodowanie grafiki Kodowanie tekstu Kodowanie liczb Bity dają nieograniczone możliwości kodowania informacji. Jeśli tylko znajdziemy zbiór wiadomości, które chcemy zakodować, a następnie określimy sposoby przypisania tym wiadomościom słówek bitowych, będziemy mogli zakodować je za pomocą bitów i przetwarzać na komputerach. Dlatego bity są tak potężnym narzędziem w rękach informatyków. Zapamiętaj: Bity w świecie komputerów nie ograniczają się jedynie do kodowania różnych informacji - cała współczesna informatyka oraz technologia komputerowa jest na nich oparta. Komputery są maszynami bitowymi nie tylko w sensie przetwarzania danych, ale również w sensie swojej budowy - procesory, pamięci, porty wejścia/wyjścia - wszystkie te elementy mają budowę binarną. Dalsze rozdziały leksykonu opisują elementy logiczne, z których buduje się układy cyfrowe. Bity są podstawą funkcjonowania tych elementów. Zatem nie bez powodu komputery nazywamy binarnymi maszynami cyfrowymi.

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika: PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne

Bardziej szczegółowo

Krótka wycieczka do wnętrza komputera

Krótka wycieczka do wnętrza komputera Krótka wycieczka do wnętrza komputera Podstawy Technik Informatycznych Roman Simiński roman.siminski@us.edu.pl www.siminskionline.pl Kraina do której trafiła Alicja była zupełnie inna...... a co by zobaczyła

Bardziej szczegółowo

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10). Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych

Bardziej szczegółowo

Kodowanie informacji. Przygotował: Ryszard Kijanka

Kodowanie informacji. Przygotował: Ryszard Kijanka Kodowanie informacji Przygotował: Ryszard Kijanka Komputer jest urządzeniem służącym do przetwarzania informacji. Informacją są liczby, ale także inne obiekty, takie jak litery, wartości logiczne, obrazy

Bardziej szczegółowo

Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.

Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Instrukcje dla zawodników

Instrukcje dla zawodników Płock, 17 marca 2018 r. Instrukcje dla zawodników Arkusze otwieramy na wyraźne polecenie komisji. Wszystkie poniższe instrukcje zostaną odczytane i wyjaśnione. 1. Arkusz składa się z 3 zadań. 2. Każde

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

1. Operacje logiczne A B A OR B

1. Operacje logiczne A B A OR B 1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

ZADANIE 1. Rozwiązanie:

ZADANIE 1. Rozwiązanie: EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

L6.1 Systemy liczenia stosowane w informatyce

L6.1 Systemy liczenia stosowane w informatyce L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

PODSTAWY INFORMATYKI. Informatyka? - definicja

PODSTAWY INFORMATYKI. Informatyka? - definicja PODSTAWY INFORMATYKI Informatyka? - definicja Definicja opracowana przez ACM (Association for Computing Machinery) w 1989 roku: Informatyka to systematyczne badanie procesów algorytmicznych, które charakteryzują

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci PAMIĘĆ RAM Pamięć służy do przechowania bitów. Do pamięci musi istnieć możliwość wpisania i odczytania danych. Bity, które są przechowywane pamięci pogrupowane są na komórki, z których każda przechowuje

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Arytmetyka komputera

Arytmetyka komputera Arytmetyka komputera Systemy zapisu liczb System dziesiętny Podstawą układu dziesiętnego jest liczba 10, a wszystkie liczby można zapisywać dziesięcioma cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Jednostka

Bardziej szczegółowo

Systemy liczbowe używane w technice komputerowej

Systemy liczbowe używane w technice komputerowej Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.

Bardziej szczegółowo

B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:

B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską: Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka

Bardziej szczegółowo

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy 1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie)

Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie) Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie) Wprowadzenie Haszowanie jest to pewna technika rozwiązywania ogólnego problemu słownika. Przez problem słownika rozumiemy tutaj takie

Bardziej szczegółowo

Pracownia Komputerowa wykład V

Pracownia Komputerowa wykład V Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Wstęp do informatyki- wykład 1

Wstęp do informatyki- wykład 1 MATEMATYKA 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Dzielenie sieci na podsieci

Dzielenie sieci na podsieci e-damiangarbus.pl Dzielenie sieci na podsieci dla każdego Uzupełnienie do wpisu http://e-damiangarbus.pl/podzial-sieci-na-podsieci/ Dwa słowa wstępu Witaj, właśnie czytasz uzupełnienie do wpisu na temat

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles).

Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles). Wykład 1 1-1 Informatyka nauka zajmująca się zbieraniem, przechowywaniem i przetwarzaniem informacji. Informacja obiekt abstrakcyjny, który w postaci zakodowanej moŝe być przechowywany, przesyłany, przetwarzany

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

2. Zmienne i stałe. Przykłady Napisz program, który wypisze na ekran wynik dzielenia 281 i 117 w postaci liczby mieszanej (tj. 2 47/117).

2. Zmienne i stałe. Przykłady Napisz program, który wypisze na ekran wynik dzielenia 281 i 117 w postaci liczby mieszanej (tj. 2 47/117). 2. Zmienne i stałe Przykłady 2.1. Napisz program, który wypisze na ekran wynik dzielenia 281 i 117 w postaci liczby mieszanej (tj. 2 47/117). 5 int a = 281; int b = 117; 7 8 cout

Bardziej szczegółowo

Podział sieci na podsieci wytłumaczenie

Podział sieci na podsieci wytłumaczenie Podział sieci na podsieci wytłumaczenie Witam wszystkich z mojej grupy pozdrawiam wszystkich z drugiej grupy. Tematem tego postu jest podział sieci na daną ilość podsieci oraz wyznaczenie zakresów IP tychże

Bardziej szczegółowo

Wstęp do informatyki- wykład 2

Wstęp do informatyki- wykład 2 MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Metoda Karnaugh. B A BC A

Metoda Karnaugh. B A BC A Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który

Bardziej szczegółowo

Operacje arytmetyczne

Operacje arytmetyczne PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka PAMIĘCI Część 1 Przygotował: Ryszard Kijanka WSTĘP Pamięci półprzewodnikowe są jednym z kluczowych elementów systemów cyfrowych. Służą do przechowywania informacji w postaci cyfrowej. Liczba informacji,

Bardziej szczegółowo

Tajna wiadomość. Scenariusz lekcji

Tajna wiadomość. Scenariusz lekcji 1 scenariusz 1 CELE OGÓLNE poznanie metod szyfrowania wiadomości zrozumienie algorytmu szyfru Cezara Tajna wiadomość Scenariusz lekcji CELE SZCZEGÓŁOWE Uczeń: Zapamiętanie wiadomości (A): wymienia podstawowe

Bardziej szczegółowo

ARCHITEKTURA KOMPUTERÓW Systemy liczbowe

ARCHITEKTURA KOMPUTERÓW Systemy liczbowe ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7

Bardziej szczegółowo

Wskaźniki a tablice Wskaźniki i tablice są ze sobą w języku C++ ściśle związane. Aby się o tym przekonać wykonajmy cwiczenie.

Wskaźniki a tablice Wskaźniki i tablice są ze sobą w języku C++ ściśle związane. Aby się o tym przekonać wykonajmy cwiczenie. Część XXII C++ w Wskaźniki a tablice Wskaźniki i tablice są ze sobą w języku C++ ściśle związane. Aby się o tym przekonać wykonajmy cwiczenie. Ćwiczenie 1 1. Utwórz nowy projekt w Dev C++ i zapisz go na

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

O oszczędnym dziennikarzu, czyli czym jest

O oszczędnym dziennikarzu, czyli czym jest O oszczędnym dziennikarzu, czyli czym jest informacja i jak ja mierzymy? Adam Doliwa doliwa@matman.uwm.edu.pl WYKŁAD DLA MŁODZIEŻY WYDZIAŁ MATEMATYKI I INFORMATYKI UWM Olsztyn, 9 lutego 2016 r. Adam Doliwa

Bardziej szczegółowo

Wstęp do informatyki- wykład 1 Systemy liczbowe

Wstęp do informatyki- wykład 1 Systemy liczbowe 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,

Bardziej szczegółowo

Analiza i Przetwarzanie Obrazów. Szyfrowanie Obrazów. Autor : Mateusz Nawrot

Analiza i Przetwarzanie Obrazów. Szyfrowanie Obrazów. Autor : Mateusz Nawrot Analiza i Przetwarzanie Obrazów Szyfrowanie Obrazów Autor : Mateusz Nawrot 1. Cel projektu Celem projektu jest zaprezentowanie metod szyfrowania wykorzystujących zmodyfikowane dane obrazów graficznych.

Bardziej szczegółowo

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.

Bardziej szczegółowo

Informatyka. Michał Rad

Informatyka. Michał Rad Informatyka Michał Rad 13.10.2016 Co i po co będziemy robić Plan wykładów: Wstęp, historia Systemy liczbowe Co to jest system operacyjny i po co to jest Sprawy związane z tworzeniem i własnością oprogramowania

Bardziej szczegółowo

Logiczny model komputera i działanie procesora. Część 1.

Logiczny model komputera i działanie procesora. Część 1. Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.

Bardziej szczegółowo

Komputer i urządzenia cyfrowe

Komputer i urządzenia cyfrowe Temat 1. Komputer i urządzenia cyfrowe Cele edukacyjne Celem tematu 1. jest uporządkowanie i rozszerzenie wiedzy uczniów na temat budowy i działania komputera, przedstawienie różnych rodzajów komputerów

Bardziej szczegółowo

Pracownia Komputerowa wyk ad V

Pracownia Komputerowa wyk ad V Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory

Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Poniżej pozwoliłem sobie za cytować za wikipedią definicję zmiennej w informatyce.

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 1 Temat ćwiczenia: Adresacja w sieciach komputerowych podstawowe

Bardziej szczegółowo

Komunikujemy się z komputerem.

Komunikujemy się z komputerem. Wiemy już dużo o tym jak komputer liczy i zachowuje informacje. Ale w jaki sposób komunikuje się on ze światem zewnętrznym? Jeśli popatrzysz na swój komputer składa się on z jednostki centralnej, dużego

Bardziej szczegółowo

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz PODSTAWY TEORII UKŁADÓW CYFROWYCH Systemy liczbowe Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System liczbowy zbiór reguł jednolitego

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń

Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 4 kwietnia 2019 1 Dodajmy kontekst! Rozważaliśmy

Bardziej szczegółowo

Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia

Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA.  D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl http://orion.fis.agh.edu.pl/~grazyna/ D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI Plan wykładu 2 Wprowadzenie, trochę historii, systemy liczbowe

Bardziej szczegółowo

Nazwa implementacji: Nauka języka Python wyrażenia warunkowe. Autor: Piotr Fiorek. Opis implementacji: Poznanie wyrażeń warunkowych if elif - else.

Nazwa implementacji: Nauka języka Python wyrażenia warunkowe. Autor: Piotr Fiorek. Opis implementacji: Poznanie wyrażeń warunkowych if elif - else. Nazwa implementacji: Nauka języka Python wyrażenia warunkowe Autor: Piotr Fiorek Opis implementacji: Poznanie wyrażeń warunkowych if elif - else. Nasz kalkulator umie już liczyć, ale potrafi przeprowadzać

Bardziej szczegółowo

SYSTEMY LICZBOWE 275,538 =

SYSTEMY LICZBOWE 275,538 = SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

WOJEWÓDZKI KONKURS INFORMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ETAP SZKOLNY BIAŁYSTOK, 22 LISTOPADA 2017 R.

WOJEWÓDZKI KONKURS INFORMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ETAP SZKOLNY BIAŁYSTOK, 22 LISTOPADA 2017 R. WOJEWÓDZKI KONKURS INFORMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ETAP SZKOLNY BIAŁYSTOK, 22 LISTOPADA 2017 R. INSTRUKCJA DLA UCZESTNIKA KONKURSU: 1. Sprawdź, czy test zawiera 8 stron. Ewentualny

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości

Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry

Bardziej szczegółowo

O systemach liczbowych

O systemach liczbowych O systemach liczbowych 1. Systemy liczbowe Literatura:Turski,Propedeutyka...;Skomorowski,... 1.1. Dwójkowy system pozycyjny W dziesiętnym systemie pozycyjnym ciąg cyfr 321.23 oznacza liczbę 3 10 2 +2 10

Bardziej szczegółowo

Grafika komputerowa. Dla DSI II

Grafika komputerowa. Dla DSI II Grafika komputerowa Dla DSI II Rodzaje grafiki Tradycyjny podział grafiki oznacza wyróżnienie jej dwóch rodzajów: grafiki rastrowej oraz wektorowej. Różnica pomiędzy nimi polega na innej interpretacji

Bardziej szczegółowo

Materiały dla finalistów

Materiały dla finalistów Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

Temat 7. Dekodery, enkodery

Temat 7. Dekodery, enkodery Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej

Bardziej szczegółowo

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność

Bardziej szczegółowo

O sygnałach cyfrowych

O sygnałach cyfrowych O sygnałach cyfrowych Informacja Informacja - wielkość abstrakcyjna, która moŝe być: przechowywana w pewnych obiektach przesyłana pomiędzy pewnymi obiektami przetwarzana w pewnych obiektach stosowana do

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo