Elementy elektroniczne Wykłady 4: Diody półprzewodnikowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elementy elektroniczne Wykłady 4: Diody półprzewodnikowe"

Transkrypt

1 Elementy elektroniczne Wykłady 4: Diody półprzewodnikowe

2 Część pierwsza Diody - wprowadzenie

3 Diody półprzewodnikowe - wprowadzenie Podstawowe równanie: AK R exp 1 mt proszczenia w zakresie przewodzenia dla diod małej i średniej mocy : m=1 i pomijamy we wzorze 1. Wtedy: R exp T AK

4 Diody półprzewodnikowe - wprowadzenie

5 Diody półprzewodnikowe - Charakterystyka diody wprowadzenie F napięcie w kierunku przewodzenia (FORWARD) F prąd w kierunku przewodzenia R napięcie w kierunku zaporowym (REVERSE) R prąd w kierunku zaporowym

6 Diody półprzewodnikowe - wprowadzenie

7 Diody półprzewodnikowe wpływ temperatury 1N4001 Wpływ temperatury na charakterystykę diody w kierunku przewodzenia

8 Diody półprzewodnikowe - parametry 1. Prąd przewodzenia F (forward) : - AV(M) (average) średni, maksymalny - RMS (root mean square) skuteczny - SM (surge maximum) impulsowy maksymalny, niepowtarzalny 2. Napięcie przewodzenia F (forward) 3. Prąd wsteczny R (reverse); (M) - maksymalny 4. Napięcie wsteczne R (reverse) : - RMM (repetitive reverse maksimum) maksymalne, powtarzalne - SM (surge maximum) impulsowe maksymalne 5. Czas powrotu t rr (recovery time)

9 Diody półprzewodnikowe - parametry nne parametry: 6. Szybkość narastania R d R /dt 7. Moc 8. Zakres temperatur pracy 9. Rezystancja cieplna

10 Diody półprzewodnikowe - parametry

11 Diody półprzewodnikowe - budowa

12 Diody półprzewodnikowe - budowa

13 proszczone modele stałoprądowe Model odcinkowo - liniowy

14 proszczone modele stałoprądowe Model o stałym spadku napięcia

15 proszczone modele stałoprądowe Model idealny

16 Modele diod nieliniowy model statyczny Dla polaryzacji w kierunku przewodzenia i zaporowej: A K r r S () 1 exp 1 2 exp T S T G m

17 Modele diod nieliniowy model statyczny Dla polaryzacji w kierunku przewodzenia: A () r S K R exp 1 mt R wypadkowy prąd wsteczny podawany w katalogach (typowa wartość dla Si A) m współczynnik niedoskonałości równy 1 do 2 R S G r S wypadkowa rezystancja szeregowa strat na złączach i doprowadzeniach równa 0...5

18 Nieliniowy model statyczny - zastosowania Zastosowania modelu: - obliczenia stałoprądowe (układów polaryzacji diody) - zależność na spadek napięcia na diodzie wyznaczona z równania na wartość prądu, pomijając -1 we wzorze: - zmiana napięcia na diodzie przy stałym prądzie 2mV/ 0 C - podwojenie wartości prądu wstecznego na 8 0 C: m T ln - badanie wpływu temperatury na punkt pracy diody: R R 1 8 T T 2 1 R 0 T T 0

19 Nieliniowy model statyczny - zastosowania teracyjne wyznaczanie punktu pracy diody: CC D D R 1 R T 10 m 1 14 A 26mV R CC 1 9V 1k Równania opisujące układ: D D 1) D 2) D T ln S CC R 1

20 Nieliniowy model statyczny - zastosowania Algorytm iteracji: 1. Założyć D np. równe 650mV 2. Obliczyć z równania 1 D 3. Obliczyć z równania 2 nową wartość D 4. Wrócić do punktu nr 2 algorytmu k D [mv] D [ma]

21 Nieliniowy model statyczny - zastosowania Graficzne wyznaczanie parametrów układu polaryzacji diody CC D R 1 R T 10 m 1 14 A 26mV D R D CC 1 1mA? 2V

22 Nieliniowy model statyczny - zastosowania AK 1. Korzystając z zależności: R exp 1 mt wyznaczamy charakterystykę =f() diody, zaznaczając na niej punkt Q dla D = 1mA 2. Równanie analizowanego układu ma postać: CC D DR 1 Jest to równanie prostej w postaci: D DR1 CC

23 Nieliniowy model statyczny - zastosowania 3. Znajduję punkt przecięcia prostej z osią x ( D =0): Dmax = CC = 2V 4. Łączę wyznaczony punkt, z punktem Q tworząc prostą. Znajduję przecięcie tej prostej z osią y ( D = 0): Dmax = CC /R 1 = 1.7mA 5. Wyznaczam wartość rezystora: R 1 cc Dmax 1.176k 1.2k

24 Nieliniowy model statyczny - zastosowania D [ma] Dmax AK R exp 1 mt 1 Q CC D DR Dmax D [V]

25 Nieliniowy model statyczny - zastosowania Wyznaczenie zmian napięcia na diodzie w funkcji temperatury DC D D m T k q R 300K D K mV C C K J K 9 A

26 Nieliniowy model statyczny - zastosowania Obliczenia można przeprowadzić: - korzystając z zależności analitycznej opisującej spadek napięcia na diodzie: R T m T T ln R 1 8 T T 2 1 R 0 T T 0 D T T T kt q - z wykorzystaniem temperaturowego współczynnika zmian napięcia na złączu PN równego 2mV/ 0 C - z wykorzystaniem programu Pspice (rozbudowany model diody)

27 Nieliniowy model statyczny - zastosowania D = 1.3mA D = 13mA T T [mv] R 10-9 D [mv] D [mv] D [mv] T [mv] R 10-9 D [mv] D [mv] D [mv] [A] (równ.) (wsp.) (Pspice) [A] (równ.) (wsp.) (Pspice) 10 0 C C C avg (d/ dt) mv/k mv/k mv/k mv/k mv/k mv/k

28 Nieliniowy model statyczny - zastosowania DC1 CC DC2 T m T T ln R kt T T q D T D1 R D2 R D 2 D1 mt ln D2 D1 d dt R nk q ln D2 D1

29 Diody półprzewodnikowe nieliniowy model statyczny Dla polaryzacji w kierunku zaporowym: r A K R G S Gdzie r u jest rezystancją upływu. Dla zwykej diody ważne są parametry graniczne: maksymalne napięcie R i prąd R wsteczne.

30 Nieliniowy model dynamiczny (wielkosygnałowy) pojemność złączowa i dyfuzyjna () 1 exp 1 2 exp T S T G m A K r r S C j C d C 0 D d C 2 m D j j C C 1 0 C 0 pojemność obudowy diody

31 Nieliniowy model dynamiczny (wielkosygnałowy) - zastosowania Zastosowania analiza pracy diody w układach impulsowych, np. jako klucz (przełącznik). R L D G D

32 Nieliniowy model dynamiczny (wielkosygnałowy) - zastosowania

33 Nieliniowy model dynamiczny (wielkosygnałowy) - zastosowania E G -E G t D max F t OFF = F D F t rr t s t f max - ładowanie pojemności złączowej t t t F S f rr E G R R ln 2. 3 t S S F F OFF RS RC j t f t rr (reverse recovery time) parametr katalogowy t

34 Nieliniowy model dynamiczny - Pspice d1 V d S T exp 1 NVt d 2 BV exp BV V V t d S T _ area S T TNOM XT 1 N EG T TNOM exp NV TNOM t Dodatkowo w modelu Pspice parametry: Cj, Vj i EG zmieniają wartości ze zmianą temperatury.

35 Nieliniowy model dynamiczny - Pspice

36 Liniowy model dynamiczny A K r r S c j c d C 0 D d c 2 m D j j C c 1 0 r d T D d r

37 Liniowy model dynamiczny Po co polaryzacja wstępna??? Co to jest punkt pracy???

38 Liniowy model dynamiczny

39 Liniowy model dynamiczny

40 Liniowy model dynamiczny Zastosowania modelu liniowego - małosygnałowego: - obliczenia parametrów roboczych układów elektronicznych - wyznaczanie częstotliwości granicznych układów elektronicznych

41 Liniowy model dynamiczny Pspice V N V V N T g t d t S d exp t d t z V V BV V BV g exp M j d j j T V V T C c 1 0 V N V V N T TT c t d t s d exp r g 1

42 Część druga Rodzaje diod

43 Diody prostownicze Symbol i charakterystyka D Fmax F = r d Rmax F F F D R F r d F F

44 Diody prostownicze Cechy charakterystyczne: - duża powierzchnia warstw zaporowych - niewielkie częstotliwości pracy (głównie 50 lub 100 Hz); chyba, że szykie np.. Schottkye go - szeroki zakres mocy dopuszczalnych - stosowane głównie w układach zasilających do prostowania prądów przemiennych

45 Diody prostownicze R1 D V1: t t F =912mV D V amp 3V f 50Hz 1

46 Diody prostownicze

47 Diody prostownicze

48 Diody detekcyjne i mieszające Charakterystyki i symbol takie jak dla diody prostowniczej (oprócz diody wstecznej). Cechy charakterystyczne: - szeroki zakres częstotliwości pracy: Hz GHz - bardzo mała powierzchnia złącz małe pojemności: pf - praca ze znacznie mniejszymi prądami w porównaniu do diod prostowniczych. Do grupy tej należą: diody ostrzowe germanowe lub krzemowe, diody Schottkye go, diody wsteczne.

49 Diody detekcyjne i mieszające diody ostrzowe Parametry dynamiczne: - pojemność diody przy określonej częstotliwości i określonym napięciu wstecznym - sprawność detekcji: stosunek mocy sygnału zdemodulowanego do mocy sygnału zmodulowanego - czułość prądowa zdolność do oddawania przez diodę użytecznych sygnałów wyjściowych dla danego sygnału zmodulowanego w. cz. - względna temperatura szumów diody stosunek mocy szumów diody w danym paśmie do mocy szumów cieplnych idealnego rezystora liniowego mającego tą samą temperaturę co dioda - moc admisyjna

50 Diody detekcyjne i mieszające diody ostrzowe Małosygnałowy schemat zastępczy: C 0 r A L 0 K r d FQ T c j c d r d C j r S C 1 j0 D m C d 2 D

51 Diody detekcyjne i mieszające diody ostrzowe Zastosowania: - detektory - mieszacze - ograniczniki napięcia

52 Cechy: Diody detekcyjne i mieszające diody Schottkye go Symbol Charakterystyka, taka jak dla diod prostowniczych i detekcyjnych z wiekszą stromością w zakresie przewodzenia szybsze działanie, mała pojemność złącza metal - półprzewodnik - szybsze działanie, mała pojemność złącza metal półprzewodnik - mała wartość r S, - mały poziom szumów własnych - duża odporność na wstrząsy i udary

53 Diody detekcyjne i mieszające diody Schottkye go

54 Diody detekcyjne i mieszające dioda wsteczna Rodzaj diody tunelowej. Powstaje przy koncentracji domieszek w obszarach P i N nieco mniejszych niż wymagane do wystąpienia efektu tunelowego w kierunku przewodzenia. część użyteczna charakterystyki Dla kierunku przewodzenia zachowuje się jak zwykła dioda.

55 Diody detekcyjne i mieszające dioda wsteczna Cechy charakterystyczne: - małe napięcie progowe (wzros prądu praktycznie od zerowego napięcia) - duża szybkość działania (praca na nośnikach większościowych) - duża odpornośc na wpływ temperatury i promieniowania - mały poziom szumów własnych

56 Diody detekcyjne i mieszające dioda wsteczna Zastosowanie: - mikrofalowe detektory małych sygnałow - mieszacze mikrofalowe

57 Diody impulsowe Cechy charakterystyczne: - bardzo mała rezystancja w kierunku przewodzenia i bardzo duża w kierunku zaporowym - bezzwłoczna reakcja na impulsy czyli brak opóźnień i zniekształceń impulsów Ważne parametry dynamiczne: - czas przełączania t rr (ładunek przełaczania Q rr ) przy określonych warunkach: wysterowaniu i obciążeniu diody - pojemność diody przy określonej częstotliwości i określonym napięciu wstecznym

58 Diody impulsowe

59 Diody impulsowe Diody ładunkowe: diody impulsowe mogące pracować z bardzo krótkimi impulsami, posiadające bardzo krótkie czasy zaniku. Poprzez odpowiedni rozkład domieszek w półprzewodniku wytwarza się pole, które przeciwdziała przepływowi wstrzykiwanych nośników mniejszościowych do bazy diody zasada działania diod ładunkowych.

60 Diody stabilizacyjne Zenera (stabilitrony) Symbol, charakterystyka układ polaryzacji zmax z zmin + R we ZQ wy = ZQ zmax P max -

61 Diody stabilizacyjne Zenera (stabilitrony) ZQ Z ZQ Z min r d dla: Z min ZQ Z max Z ZQ Z Z zmin ZQ Z = r d P max r d Z Z

62 Diody stabilizacyjne Zenera - parametry - napięcie stabilizowane zależne od Zmin i P max - rezystancja dynamiczna (najmniejsza dla napięcia 7.5V) d Z rd d - temperaturowy współczynnik zmian napięcia stabilizowanego TW Z (zerowy dla diod o napięciu 5 7V) Z Z Z 1 T 0 TW T Z 0

63 Diody stabilizacyjne Zenera - parametry

64 Diody stabilizacyjne Zenera - parametry - rezystancja statyczna (w punkcie pracy) ZQ RST - współczynnik stabilizacji S - moc admisyjna P max d d - rezystancja cieplna (sposób chłodzenia diody) Z ZQ Z ZQ ZQ R r ST d

65 Diody stabilizacyjne Zenera - parametry Zastosowania???

66 Diody stabilizacyjne Zenera parametryczny stabilizator napięcia we R 1 ZQ L R L wy Dioda _ C5V 1 r Z min d R R S Z L WY WE ZQ 1 3mA 5.1V V 9V?? d d WY WE

67 Diody pojemnościowe Rozróżniamy dwa typy (zastosowania i różne częstotliwości pracy): - warikapy (VARiable CAPacitance) o zmiennej pojemności (np.. przestrajane obwody rezonansowe) - waraktory (VARiable reactor) o zmiennej reaktancji pojemnościowej (np. elementy czynne nieliniowe w układach w. cz.) L s R s Symbole: C 0 R C j

68 Diody pojemnościowe - warikapy Parametry charakterystyczne: - pojemność złącza C j przy określonej częstotliwości i określonym napięciu wstecznym - stosunek pojemności C j przy dwóch różnych (granicznych) wartościach napięcia polaryzacji wstecznej - rezystancja szeregowa R s lub dobroć przy określonej częstotliwości i napięciu polaryzacji wstecznej - zakres częstotliwości pracy

69 Diody pojemnościowe - warikapy Schemat zastępczy i charakterystyki: R s R C j

70 Diody pojemnościowe - warikapy Zależności: S j S j R R C R R R C Q Dla Q = 1: s j j R C f R C f max min

71 Diody pojemnościowe - waraktory Parametry charakterystyczne: - pojemność złącza C j przy określonej częstotliwości i określonym napięciu wstecznym (zwykle maksymalna) - stosunek pojemności C j przy dwóch różnych (granicznych) wartościach napięcia polaryzacji wstecznej - prąd wsteczny R przy okreslonym napięciu wstecznym R - częstotliwość maksymalna przy określonym napięciu polaryzacji wstecznej - parametry pasożytnicze: L s, C 0 i R s

72 Diody pojemnościowe - waraktory Schemat zastępczy: L s R s C 0 R C j

73 Diody pojemnościowe

74 Mikrofalowe diody modulacyjne, tłumiące i przełaczające typu PN Budowa a) i schematy zastępcze: b) polaryzacja zaporowa, c) polaryzacja w kierunku przewodzenia W kierunku zaporowym dioda stanowi kondensator o niewielkiej pojemności.

75 Mikrofalowe diody modulacyjne, tłumiące i przełaczające typu PN W kierunku przewodzenia do obszaru o dużej rezystywności (półprzewodnik samoistny) wstrzykiwane są dziury z P i elektrony z N, powodując wzrost konduktywności tego obszaru proporcjonalny do płynącego prądu. Zastosowania: - modulator amplitudy - klucz - tłumik

76 Mikrofalowe diody modulacyjne, tłumiące i przełaczające typu PN

77 Mikrofalowe diody generacyjne diody tunelowe Symbol i charakterystyka

78 Mikrofalowe diody generacyjne diody tunelowe P Główna właściwość ujemna rezystancja dynamiczna: r d Odtłumianie obwodów rezonansowych - generator V P V

79 Mikrofalowe diody generacyjne diody tunelowe Parametry charakterystyczne: - współrzędne punktów ( P, P ) oraz ( V, V ) lub współrzędne wierzchołka ( P, P ) oraz stosunek prądów P / V - ujemna rezystancja dynamiczna: minimalna: rd min 2 P P średnia: r davg V V P P - pojemność warstwy zaporowej C j - rezystancja szeregowa R S

80 Mikrofalowe diody generacyjne diody tunelowe -wartości elementów pasożytniczych: L S i C 0 - graniczna częstotliwość odtłumiania Parametry graniczne: - maksymalny prąd w kierunku przewodzenia F i w kierunku zaporowym R - maksymalną temperaturę pracy C 0 Schemat zastępczy: L s -r d R s C j

81 Mikrofalowe diody generacyjne diody tunelowe

82 Mikrofalowe diody generacyjne diody tunelowe G f g L 2 g d L 0 1 C 0 C j Generator mikrofalowy

83 Mikrofalowe diody generacyjne. Diody lawinowe: Reada, mpatt, Trapatt W diodach lawinowo-przelotowych ujemną konduktancję dynamiczną uzyskuje się w efekcie przesunięci fazowego pomiędzy prądem a napięciem o kąt Opóźnienie to jest wywołane procesem lawinowym i skończonym czasem przelotu nośników przez występującą w strukturze diody warstwę, zbudowaną z półprzewodnika samoistnego, w której tworzy się rozkład ładunku przestrzennego. Zastosowania: generatory mikrofalowe.

84 Mikrofalowe diody generacyjne - diody Gunna Efekt Gunna wzbudzenie się oscylacji elektrycznych w półprzewodnikach (np. GaAs) typu n, wynikający z powstawania ujemnej rezystancji dynamicznej wywołanej międzydolinowymi przejściami elektronów w pasmie przewodnictwa pod wpływem odpowiednio dużych pól elektrycznych.

Diody półprzewodnikowe. Model diody półprzewodnikowej Shockley a. Dioda półprzewodnikowa U D >0 model podstawowy

Diody półprzewodnikowe. Model diody półprzewodnikowej Shockley a. Dioda półprzewodnikowa U D >0 model podstawowy iody półprzewodnikowe Model diody półprzewodnikowej Shockley a U U + U gr0 exp 1 0 exp 1 2ϕT ϕt gr0 prąd generacyjno-rekombinacyjny 0 prąd nasycenia φ T potencjał termiczny elektronów kt/e26mv dla T300K

Bardziej szczegółowo

EL08s_w03: Diody półprzewodnikowe

EL08s_w03: Diody półprzewodnikowe EL08s_w03: Diody półprzewodnikowe Złącza p-n i m-s Dioda półprzewodnikowa ( Zastosowania diod ) 1 Złącze p-n 2 Rozkład domieszek w złączu a) skokowy b) stopniowy 3 Rozkłady przestrzenne w złączu: a) bez

Bardziej szczegółowo

Diody półprzewodnikowe

Diody półprzewodnikowe Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki

Bardziej szczegółowo

Diody półprzewodnikowe

Diody półprzewodnikowe Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki

Bardziej szczegółowo

Badanie diod półprzewodnikowych

Badanie diod półprzewodnikowych POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie diod półprzewodnikowych (E 7) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

Elementy elektroniczne Wykłady 5,6: Tranzystory bipolarne

Elementy elektroniczne Wykłady 5,6: Tranzystory bipolarne lementy elektroniczne Wykłady 5,6: Tranzystory bipolarne Wprowadzenie Złacze PN spolaryzowane zaporowo: P N U - + S S U SAT =0.1...0.2V U S q D p L p p n D n n L n p gdzie: D p,n współczynniki dyfuzji

Bardziej szczegółowo

Diody półprzewodnikowe

Diody półprzewodnikowe Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja

Bardziej szczegółowo

Base. Paul Sherz Practical Electronic for Inventors McGraw-Hill 2000

Base. Paul Sherz Practical Electronic for Inventors McGraw-Hill 2000 Złącze p-n Base Paul Sherz Practical Electronic for Inventors McGraw-Hill 2000 Dyfuzja aż do stanu równowagi 6n+3p+6D Dipol ładunku elektrycznego 6p+3n+6A Pole elektryczne Nadmiarowe nośniki mniejszościowe

Bardziej szczegółowo

Diody prostownicze. częstotliwo. ową 50 Hz) przy znacznych lub zgoła a duŝych mocach wydzielanych w obciąŝ

Diody prostownicze. częstotliwo. ową 50 Hz) przy znacznych lub zgoła a duŝych mocach wydzielanych w obciąŝ Diody 1 Diody prostownicze Ogólna charakterystyka Diodami prostowniczymi nazywa się diody przeznaczone do prostowania prądu przemiennego. W domyśle rozumie się prostowanie prądu o małej częstotliwo stotliwości

Bardziej szczegółowo

DIODY SMK WYK. 7 W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, W-wa 1987

DIODY SMK WYK. 7 W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, W-wa 1987 DIODY SMK WYK. 7 W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, W-wa 1987 DIODY IMPULSOWE - diody przeznaczone do zastosowań w układach impulsowych, w których najczęściej spełniają one

Bardziej szczegółowo

Diody półprzewodnikowe cz II

Diody półprzewodnikowe cz II Diody półprzewodnikowe cz II pojemnościowe Zenera tunelowe PIN Schottky'ego Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku

Bardziej szczegółowo

Podstawy działania elementów półprzewodnikowych - diody

Podstawy działania elementów półprzewodnikowych - diody Podstawy działania elementów półprzewodnikowych - diody Wrocław 2010 Ciało stałe Ciało, którego cząstki (atomy, jony) tworzą trwały układ przestrzenny (sieć krystaliczną) w danych warunkach (tzw. normalnych).

Bardziej szczegółowo

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy półprzewodnikowe Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy elektroniczne i ich zastosowanie. Elementy stosowane w elektronice w większości

Bardziej szczegółowo

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.

Bardziej szczegółowo

Miłosz Andrzejewski IE

Miłosz Andrzejewski IE Miłosz Andrzejewski IE Diody Diody przepuszczają prąd tylko w jednym kierunku; służą do prostowania. W tym celu używa się ich w: prostownikach wchodzących w skład zasilaczy. Ogólnie rozpowszechnione są

Bardziej szczegółowo

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej

Bardziej szczegółowo

Lista zagadnień do egzaminu z Elementów Elektronicznych W3-4

Lista zagadnień do egzaminu z Elementów Elektronicznych W3-4 Lista zagadnień do egzaminu z Elementów Elektronicznych W3-4 1. Dioda półprzewodnikowa: podaj symbol oraz zapisz równanie opisujące zależność pomiędzy prądem i napięciem. Narysuj charakterystyki napięciowo

Bardziej szczegółowo

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki

Bardziej szczegółowo

Równanie Shockley a. Potencjał wbudowany

Równanie Shockley a. Potencjał wbudowany Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i

Bardziej szczegółowo

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier) 7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

Elementy przełącznikowe

Elementy przełącznikowe Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia

Bardziej szczegółowo

4. Diody DIODY PROSTOWNICZE. Są to diody przeznaczone do prostowania prądu przemiennego.

4. Diody DIODY PROSTOWNICZE. Są to diody przeznaczone do prostowania prądu przemiennego. 4. Diody 1 DIODY PROSTOWNICE Są to diody przeznaczone do prostowania prądu przemiennego. jawisko prostowania: przepuszczanie przez diodę prądu w jednym kierunku, wtedy gdy chwilowa polaryzacja diody jest

Bardziej szczegółowo

DIODY WYK. VI SMK W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, W-wa 1987

DIODY WYK. VI SMK W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, W-wa 1987 DIODY WYK. VI SMK W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, W-wa 1987 Nadając konkretny kształt konstrukcyjny bryle półprzewodnika, będącej złączem p-n, czyli definiując jej rozmiary,

Bardziej szczegółowo

Modelowanie diod półprzewodnikowych

Modelowanie diod półprzewodnikowych Modelowanie diod półprzewodnikowych Programie PSPICE wbudowane są modele wielu elementów półprzewodnikowych takich jak diody, tranzystory bipolarne, tranzystory dipolowe złączowe, tranzystory MOSFET, tranzystory

Bardziej szczegółowo

Badanie diod półprzewodnikowych

Badanie diod półprzewodnikowych POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie diod półprzewodnikowych (E - 7) www.imiue.polsl.pl/~wwwzmiape Opracował:

Bardziej szczegółowo

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie

Bardziej szczegółowo

WARYSTORY, TERMISTORY, DIODY.

WARYSTORY, TERMISTORY, DIODY. WARYSTORY, TERMISTORY, DIODY. 1. Warystory. Warystor jest rezystorem, którego wartośd rezystancji zmniejsza się silnie wraz ze wzrostem napięcia. Warystory produkuje się obecnie najczęściej z granulowanego

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo

Przegląd półprzewodnikowych przyrządów mocy

Przegląd półprzewodnikowych przyrządów mocy Przegląd półprzewodnikowych przyrządów mocy Rozwój przyrządów siłą napędową energoelektroniki Najważniejsze: zdolność do przetwarzania wielkich mocy (napięcia i prądy znamionowe), szybkość przełączeń,

Bardziej szczegółowo

Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK

Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Budowa diody Dioda zbudowana jest z dwóch warstw półprzewodników: półprzewodnika typu n (nośnikami prądu elektrycznego są elektrony) i półprzewodnika

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Cel ćwiczenia: Zapoznanie się z własnościami warstwowych złącz półprzewodnikowych p-n. Wyznaczanie charakterystyk stałoprądowych

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI 1. Wybrane zastosowania diod półprzewodnikowych Materiały pomocnicze do pracowni specjalistycznej z przedmiotu: Systemy CAD

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw

Bardziej szczegółowo

Półprzewodniki typu n, p, złącze p-n - diody

Półprzewodniki typu n, p, złącze p-n - diody Półprzewodniki typu n, p, złącze p-n - diody Wrocław 2016 Ciało stałe Ciało, którego cząstki (atomy, jony) tworzą trwały układ przestrzenny (sieć krystaliczną) w danych warunkach (tzw. normalnych). Ruchy

Bardziej szczegółowo

3. DIODY. Przyrządy dwukońcówkowe, gdzie obszarem roboczym jest złącze.

3. DIODY. Przyrządy dwukońcówkowe, gdzie obszarem roboczym jest złącze. 3. DODY Przyrządy dwukońcówkowe, gdzie obszarem roboczym jest złącze. Ogólny symbol graficzny Przykładając + do anody wymuszamy prąd przewodzenia (forward direction) odwrotny kierunek daje prąd zaporowy

Bardziej szczegółowo

Elementy elektroniczne Wykłady 7: Tranzystory polowe

Elementy elektroniczne Wykłady 7: Tranzystory polowe Elementy elektroniczne Wykłady 7: Tranzystory polowe Podział Tranzystor polowy (FET) Złączowy (JFET) Z izolowaną bramką (GFET) ze złączem m-s (MFET) ze złączem PN (PNFET) Typu MO (MOFET, HEXFET) cienkowarstwowy

Bardziej szczegółowo

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki

Bardziej szczegółowo

Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n.

Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n. Wydział Elektroniki Mikrosystemów i otoniki Politechniki Wrocławskiej TUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 4 Charakterystyki = f(u) złącza p-n.. Zagadnienia do samodzielnego

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n.

Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n. Wydział Elektroniki Mikrosystemów i otoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, wona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław ynowiec, Bogusław

Bardziej szczegółowo

. Diody, w których występuje przebicie Zenera, charakteryzują się małymi, poniŝej 5V, wartościami napięcia stabilizacji oraz ujemną wartością α

. Diody, w których występuje przebicie Zenera, charakteryzują się małymi, poniŝej 5V, wartościami napięcia stabilizacji oraz ujemną wartością α 2 CEL ĆWCENA Celem ćwiczenia jest praktyczne zapoznanie się z charakterystykami statycznymi oraz waŝniejszymi parametrami technicznymi diod stabilizacyjnych Są to diody krzemowe przeznaczone min do zastosowań

Bardziej szczegółowo

Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET)

Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET) Tranzystory polowe Podział Tranzystor polowy (FET) Złączowy (JFET) Z izolowaną bramką (IFET) ze złączem ms (MFET) ze złączem PN (PNFET) Typu MO (MOFET, HEXFET) cienkowarstwowy (TFT) z kanałem zuobożanym

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

III. TRANZYSTOR BIPOLARNY

III. TRANZYSTOR BIPOLARNY 1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka

Bardziej szczegółowo

Wykład V Złącze P-N 1

Wykład V Złącze P-N 1 Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI

LABORATORIUM ELEKTRONIKI LABOATOIM ELEKTONIKI ĆWICENIE 1 DIODY STABILIACYJNE K A T E D A S Y S T E M Ó W M I K O E L E K T O N I C N Y C H 21 CEL ĆWICENIA Celem ćwiczenia jest praktyczne zapoznanie się z charakterystykami statycznymi

Bardziej szczegółowo

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16 20 Półprzewodniki Materiały, w których

Bardziej szczegółowo

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza Elementy półprzewodnikowe i układy scalone 1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza ELEKTRONKA Jakub Dawidziuk sobota,

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Ćwiczenie 2 Badanie charakterystyk elementów półprzewodnikowych 1. WSTĘP TEORETYCZNY 1.1. Diody Podstawę większości diod półprzewodnikowych stanowi złącze p-n. Ze względu na powszechność zastosowania dzieli

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2 Ćwiczenie 2 Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji parametrów odpowiadających im modeli małosygnałowych, poznanie metod

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Rys Schemat parametrycznego stabilizatora napięcia

Rys Schemat parametrycznego stabilizatora napięcia ĆWICZENIE 12 BADANIE STABILIZATORÓW NAPIĘCIA STAŁEGO 12.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie zasady działania, budowy oraz podstawowych właściwości różnych typów stabilizatorów półprzewodnikowych

Bardziej szczegółowo

Cel ćwiczenia. Podstawowe informacje. eu exp mkt ] 1 (1) I =I S[

Cel ćwiczenia. Podstawowe informacje. eu exp mkt ] 1 (1) I =I S[ Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z diodami półprzewodnikowymi poprzez pomiar ich charakterystyk prądowonapięciowych oraz jednoczesne doskonalenie techniki pomiarowej. Zakres ćwiczenia

Bardziej szczegółowo

Własności i zastosowania diod półprzewodnikowych

Własności i zastosowania diod półprzewodnikowych Własności i zastosowania diod półprzewodnikowych 1. zas trwania: 6h 2. el ćwiczenia Badanie charakterystyk prądowo-napięciowych różnych typów diod półprzewodnikowych. Montaż i badanie wybranych układów,

Bardziej szczegółowo

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa

Bardziej szczegółowo

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA 3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony

Bardziej szczegółowo

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 2 PRWO OHM. BDNIE DWÓJNIKÓW LINIOWYCH I NIELINIOWYCH . Cel ćwiczenia. - Zapoznanie się z właściwościami

Bardziej szczegółowo

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor)

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor) 14 Modulatory FM CELE ĆWICZEŃ Poznanie zasady działania i charakterystyk diody waraktorowej. Zrozumienie zasady działania oscylatora sterowanego napięciem. Poznanie budowy modulatora częstotliwości z oscylatorem

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA NWERSYTET TECHNOLOGCZNO-PRZYRODNCZY W BYDGOSZCZY WYDZAŁ NŻYNER MECHANCZNEJ NSTYTT EKSPLOATACJ MASZYN TRANSPORT ZAKŁAD STEROWANA ELEKTROTECHNKA ELEKTRONKA ĆWCZENE: E7 BADANE DODY PROSTOWNCZEJ DODY ZENERA

Bardziej szczegółowo

DIODY PÓŁPRZEWODNIKOWE

DIODY PÓŁPRZEWODNIKOWE Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym

Bardziej szczegółowo

4. DIODY 4.1. WSTĘP 4.2. DIODY PROSTOWNICZE

4. DIODY 4.1. WSTĘP 4.2. DIODY PROSTOWNICZE 4. DIODY 4.1. WSTĘP Diodą nazywamy element dwukońcówkowy składający się z bryły półprzewodnika mającego złącze p-n, zamknięty w obudowie z wyprowadzeniami elektrycznymi osobno z obszaru typu p i obszaru

Bardziej szczegółowo

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. ĆWICZENIE 3 Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie małosygnałowych parametrów tranzystorów bipolarnych na podstawie ich charakterystyk

Bardziej szczegółowo

Ćwiczenie nr 123: Dioda półprzewodnikowa

Ćwiczenie nr 123: Dioda półprzewodnikowa Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

7. TYRYSTORY 7.1. WSTĘP

7. TYRYSTORY 7.1. WSTĘP 7. TYRYSTORY 7.1. WSTĘP Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe, tj. mające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych . Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich

Bardziej szczegółowo

Wzmacniacze, wzmacniacze operacyjne

Wzmacniacze, wzmacniacze operacyjne Wzmacniacze, wzmacniacze operacyjne Schemat ideowy wzmacniacza Współczynniki wzmocnienia: - napięciowy - k u =U wy /U we - prądowy - k i = I wy /I we - mocy - k p = P wy /P we >1 Wzmacniacz w układzie

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy

Bardziej szczegółowo

12.7 Sprawdzenie wiadomości 225

12.7 Sprawdzenie wiadomości 225 Od autora 8 1. Prąd elektryczny 9 1.1 Budowa materii 9 1.2 Przewodnictwo elektryczne materii 12 1.3 Prąd elektryczny i jego parametry 13 1.3.1 Pojęcie prądu elektrycznego 13 1.3.2 Parametry prądu 15 1.4

Bardziej szczegółowo

Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF):

Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Zadania z podstaw elektroniki Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Układ stanowi szeregowe połączenie pojemności C1 z zastępczą pojemnością równoległego połączenia

Bardziej szczegółowo

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody II stopnia 1. Wykorzystując rachunek liczb zespolonych wyznacz impedancję

Bardziej szczegółowo

11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu

11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu 11. Wzmacniacze mocy 1 Wzmacniacze mocy są układami elektronicznymi, których zadaniem jest dostarczenie do obciążenia wymaganej (na ogół dużej) mocy wyjściowej przy możliwie dużej sprawności i małych zniekształceniach

Bardziej szczegółowo

Spis treści 3. Spis treści

Spis treści 3. Spis treści Spis treści 3 Spis treści Przedmowa 11 1. Pomiary wielkości elektrycznych 13 1.1. Przyrządy pomiarowe 16 1.2. Woltomierze elektromagnetyczne 18 1.3. Amperomierze elektromagnetyczne 19 1.4. Watomierze prądu

Bardziej szczegółowo

Diody i tranzystory. - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy)

Diody i tranzystory. - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy) Diody i tranzystory - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy) bipolarne (NPN i PNP) i polowe (PNFET i MOSFET), Fototranzystory i IGBT (Insulated

Bardziej szczegółowo

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie

Bardziej szczegółowo

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody)

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) I. Zakres ćwiczenia 1. Zastosowanie diod i wzmacniacza operacyjnego µa741 w następujących układach nieliniowych: a) generator funkcyjny b) wzmacniacz

Bardziej szczegółowo

Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b)

Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b) Ćwiczenie E11 UKŁADY PROSTOWNIKOWE Elementy półprzewodnikowe złączowe 1. Złącze p-n Złącze p-n nazywamy układ dwóch półprzewodników.jednego typu p w którym nośnikami większościowymi są dziury obdarzone

Bardziej szczegółowo

kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II

kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II iody prostownicze i diody Zenera Zadanie Podać schematy zastępcze zlinearyzowane dla diody

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH L B O R T O R I U M ELEMENTY ELEKTRONICZNE PRMETRY MŁOSYGNŁOWE TRNZYSTORÓW BIPOLRNYCH REV. 1.0 1. CEL ĆWICZENI - celem ćwiczenia jest zapoznanie się z metodami pomiaru i wyznaczania parametrów małosygnałowych

Bardziej szczegółowo

Wiadomości podstawowe

Wiadomości podstawowe Wiadomości podstawowe Tranzystory są urządzeniami półprzewodnikowymi umożliwiającymi sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Wykorzystuje się je do wzmacniania małych sygnałów

Bardziej szczegółowo

MATERIAŁY PÓŁPRZEWODNIKOWE

MATERIAŁY PÓŁPRZEWODNIKOWE MATERIAŁY PÓŁPRZEWODNIKOWE Półprzewodniki obejmują obszerną grupę materiałów, które ze względu na przewodnictwo elektryczne zajmują pośrednie miejsce pomiędzy metalami a izolatorami. Półprzewodniki stanowią

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Badanie diody półprzewodnikowej Symulacja komputerowa PSPICE 9.1 www.pspice.com 1. Wyznaczanie charakterystyki statycznej diody spolaryzowanej w kierunku przewodzenia Rysunek nr 1. Układ do wyznaczania

Bardziej szczegółowo

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. 1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W W4 Unoszenie Dyfuzja 2 Półprzewodnik w stanie nierównowagi termodynamicznej np n 2 i n = n0 + n' p = p0 + p ' Półprzewodnik w stanie nierównowagi termodynamicznej Generacja i rekombinacja

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo