Zielone światło dla fotoniki
|
|
- Jarosław Wilk
- 7 lat temu
- Przeglądów:
Transkrypt
1 FOTON 92, Wiosna Zielone światło dla fotoniki Wojciech Gawlik Instytut Fizyki UJ Czym jest światło, wie każdy... W końcu, parafrazując nieco ks. Chmielowskiego z Nowych Aten, można powiedzieć światło jakie jest, każdy widzi. Czy jednak wszyscy widzą to samo i tak samo odpowiedzieliby na powyższe pytanie? Gdybyśmy je zadali różnym ludziom, usłyszelibyśmy wiele różnych odpowiedzi. Jedni twierdziliby, że to źródło życia na Ziemi; inni, że to środek postrzegania rzeczywistości; kto inny podkreślałby, że światło jest źródłem inspiracji artystów i poetów. Każda z tych odpowiedzi byłaby słuszna, jednak żadna nie wyczerpywałaby złożoności problemu. Nic więc dziwnego, że światło będące dla wielu ludzi odwiecznym przedmiotem fascynacji jest też od zarania wyzwaniem dla naukowców. Fizycy od wieków próbowali odpowiedzieć na pytanie, czym jest światło. O ile do korzystania ze światła nie potrzebna jest żadna wiedza (światło, jakie jest, każdy widzi...), o tyle wyjaśnienie jego natury przez wieki angażowało najtęższe umysły. Zajmowały się tym takie autorytety, jak m.in. Newton, Einstein, a także Johann Wolfgang von Goethe, który był nie tylko wielkim poetą romantycznym, lecz o czym się nie wie tak powszechnie również wybitnym przyrodnikiem, który wszedł do historii nauki dzięki swemu dziełu Zur Farbenlehre. Choć przełom w naszym rozumieniu światła dokonał się już w XIX wieku w wyniku odkryć teoretycznych (James Clark Maxwell) i doświadczalnych (Heinrich Hertz), to w pełni zagadka światła została wyjaśniona całkiem niedawno: dopiero w 2005 r. Nagroda Nobla dla Roya Glaubera za kwantową teorię spójności światła ostatecznie zamknęła ten problem. Gdy już zrozumieliśmy, czym jest światło, stało się możliwe naukowe badanie sposobów jego wytwarzania, przemiany, detekcji tym zajmowała się optyka, a później fizyka atomów i cząsteczek. Są to dziedziny, które były i są aktywnie i z sukcesami uprawiane w Polsce. W Krakowie na Uniwersytecie Jagiellońskim badania w tym kierunku rozwinęły się szczególnie po II wojnie światowej, kiedy to w ramach ówczesnych wędrówek ludów przybył z Wilna do Krakowa wielki polski fizyk Profesor Henryk Niewodniczański. Wśród wielu jego zasług dla krakowskiej nauki jest też i wkład w rozwój optyki atomowej, jak wówczas nazywano tę dyscyplinę. W IF UJ powstał Zakład Optyki Atomowej pod kierunkiem Profesor Danuty Kunisz, w którym rozpoczęto uprawianie nowoczesnej fizyki i optyki atomowej. W latach 70. dyscyplina ta przeżywała szczególnie żywy rozwój dzięki powstaniu laserów, co przyciągało do niej coraz liczniejszych entuzjastów. Ten entuzjazm był nam
2 12 FOTON 92, Wiosna 2006 wówczas bardzo potrzebny, bo braki aparatury były tak dotkliwe, że bez niego nie można byłoby prowadzić żadnych badań. Mimo tych braków mogliśmy jednak stosunkowo łatwo jeździć i nawiązywać kontakty z najlepszymi uczonymi na świecie. Wiele z kontaktów nawiązanych wtedy trwa i owocuje do dzisiaj. Lasery to niezwykłe źródła światła. Są one całkowicie wytworem pracy fizyków, w zasadzie niewystępującym w naturalnej formie w przyrodzie. Emitowane przez nie światło ma unikalne własności spójność, intensywność, wysoki stopień kolimacji, a także może być wytwarzane w bardzo precyzyjnie określonym kolorze (monochromatyczność), który ponadto możemy obecnie dostrajać do rezonansowego oddziaływania z dowolnym atomem. Takie własności z jednej strony pozwalają nam bardzo precyzyjnie badać nieznane jeszcze aspekty oddziaływania atomów z silnym polem laserowym, a z drugiej zmieniać i manipulować własnościami atomów i cząsteczek. Pojawiły się dzięki temu nowe dyscypliny, takie jak optyka nieliniowa, optyka kwantowa czy żywiołowo rozwijająca się obecnie fotonika. Nazwa fotonika nie jest precyzyjnie zdefiniowana nie jest to łatwe wobec ciągłego rozwoju dyscypliny. W największej ogólności dotyczy procesów wytwarzania, przesyłania i przetwarzania informacji za pomocą fotonów podobnie jak w przypadku elektroniki dzieje się to za pomocą elektronów. Na szybki rozwój optyki i fotoniki składa się kilka przyczyn. Z jednej strony, z pomocą nowych źródeł światła i metod optycznych, znacznie przecież tańszych od ogromnych akceleratorów i mieszczących je centrów naukowych, uzyskano wiele wyników o najwyższym znaczeniu dla badań podstawowych. Wystarczy tu wspomnieć liczne Nagrody Nobla przyznane z fizyki i chemii (z czego aż cztery w ostatnich ośmiu latach!) za badania wykorzystujące metody optyczne. Z drugiej strony, metody optyczne coraz częściej są wykorzystywane w innych dziedzinach. Ten kontakt różnych dyscyplin działa inspirująco w obu kierunkach i w wyniku tego rozwijają się nowe zastosowania (np. sprzęt komputerowy: drukarki laserowe czy pamięci optyczne, techniki światłowodowego przesyłania danych, ultraprecyzyjne urządzenia do najrozmaitszych pomiarów i diagnostyki oraz terapii medycznej, i bardzo wiele innych), a także nowe interdyscyplinarne kierunki badawcze nanofotonika, biofotonika itp. Czytelnikom Fotonu pokażemy ten rozwój fotoniki na przykładzie badań fizyków krakowskich, a zwłaszcza Zakładu Fotoniki. W Zakładzie Fotoniki IF UJ działa obecnie kilka grup badawczych. Jedna z nich od lat rozwija diagnostykę plazmy metodami precyzyjnej spektroskopii laserowej. Metody te są bardzo ważne dla charakterystyki i kontroli procesów, w których wytwarza się nowoczesne materiały m.in. niezwykle wytrzymałe cienkie warstwy diamentowe. W przypadku otrzymania materiałów o oczekiwanych parametrach konieczna jest precyzyjna diagnostyka źródeł plazmowych, których działanie w temperaturach rzędu tysięcy stopni podlega bardzo złożonym
3 FOTON 92, Wiosna i nie do końca znanym prawom. W Zakładzie Fotoniki opracowano bardzo czułe metody badania plazmy za pomocą laserów, obecnie stosowane w laboratoriach na całym świecie. O ile pierwsza grupa wykorzystuje w Zakładzie Fotoniki lasery do badań ośrodków bardzo gorących, o tyle druga grupa stosuje fotonikę także do ekstremalnych temperatur, ale tym razem skrajnie niskich bliskich absolutnego zera (ok. 0,00003 Kelwina powyżej zera bezwzględnego). W takich temperaturach znacznie niższych niż w kosmosie materia przejawia bardzo niezwykłe własności, ogromnie interesujące dla wyjaśnienia wielu problemów współczesnej fizyki: nadciekłości, nadprzewodnictwa, stworzenia nowej generacji komputerów kwantowych i wielu innych problemów podstawowych oraz fascynujących i ważnych zastosowań. Rzeczą niezwykłą nawet dla fizyków jest fakt, że te ultraniskie temperatury osiągamy za pomocą światła laserowego, które powszechnie kojarzy się ze źródłem energii, a więc ciepła. Jak widać, badania niskich temperatur prowadzone są naprawdę na wysokim poziomie...
4 14 FOTON 92, Wiosna 2006 Kolejne pole aktywności Zakładu to badania nieliniowych efektów magnetooptycznych, indukowanych przez spójne promieniowanie laserowe. Zjawiska te mają jeszcze większe możliwości zastosowań, m.in. w informatyce przyszłości informatyce kwantowej. W odróżnieniu od znanych obecnie komputerów, w informatyce kwantowej nośnikiem informacji nie jest zwykły bit, ale specjalny stan kwantowy, tzw. qubit. Różnica nie ogranicza się tylko do nazwy, ale dotyczy całkowicie innych operacji logicznych, jakie wykonywane być mogą na qubitach (patrz artykuł Komputery kwantowe Szymona Pustelnego w Fotonie 81). Ta nowa logika może pozwolić na znacznie szybszą pracę komputerów kwantowych. Choć do osiągnięcia tego celu droga jest jeszcze bardzo daleka, o tym, że jest ona realna, świadczą sukcesy innego działu informatyki kwantowej tzw. kryptografii kwantowej, która po okresie prób weszła już w fazę komercjalizacji. Kolejne ważne zastosowania to budowa niezwykle czułych urządzeń pomiarowych. Np. precyzyjne magnetometry, nad których podstawami fizycznymi pracujemy, będą zdolne wykrywać zarówno ukryte w ziemi surowce, jak i łodzie podwodne czy niebezpieczne materiały, od pojedynczych bakterii (np. wąglika) po materiały wybuchowe. Z drugiej strony, mogą one służyć również do bezinwazyjnych badań pracy serca czy mózgu. Serce i mózg aparatury
5 FOTON 92, Wiosna Tematykę medyczną, a ściślej: badania wpływu promieniowania laserowego na elementarne procesy biologiczne i medyczne oraz własności różnych substancji ważnych dla życia i prawidłowego funkcjonowania organizmów, uprawiamy też we współpracy z kolegami z innych zespołów badawczych, w tym również z Collegium Medium UJ. Szczególnie interesują nas procesy, w których światło działa jako katalizator specyficznych reakcji chemicznych, które sterują określonymi procesami biologicznymi w tkankach i organizmach. Powszechnie znanym przykładem jest proces fotosyntezy, którego pełne zbadanie wciąż stanowi wyzwanie dla uczonych różnych specjalności. Dla medycyny, a zwłaszcza dla walki z nowotworami, szczególnie atrakcyjna jest też tzw. diagnostyka i terapia fotodynamiczna. Polega ona na wprowadzeniu do organizmu pacjenta specjalnej substancji, która ma dwie niezwykłe własności. Z jednej strony, wiąże się ona wybiórczo z tkanką nowotworową, a z drugiej po oświetleniu światłem o odpowiedniej długości fali wchodzi w reakcje chemiczne ze swym otoczeniem, dzięki którym możliwe jest selektywne niszczenie nowotworu bez skutków ubocznych dla tkanek zdrowych. O ile sama zasada tej metody jest znana, o tyle do jej powszechnego zastosowania niezbędne są szczegółowe badania wymagające połączenia wiedzy fizycznej, zwłaszcza z zakresu optyki i fotoniki, z medyczną. Innym rodzajem badań, które rozwijamy w Zakładzie Fotoniki, są badania nowych materiałów optycznych i fotonicznych. Unikalna aparatura i wyrafinowane metody, jakie przez wiele lat rozwijaliśmy w odniesieniu do badań podstawowych, mogą być bardzo przydatne do takich zastosowań. Nawiązaliśmy w tym zakresie współpracę m.in. z Instytutem Technologii Materiałów Elektronicznych w Warszawie, gdzie są syntetyzowane rozmaite materiały o niezwykłych parametrach. Zakład jest też członkiem konsorcjum Optoelektronika Polska, będącej platformą, na której odbywa się kontakt między działającymi w fotonice naukowcami i przemysłem. Bez wątpienia dla fotoniki zapaliło się zielone światło. W Krakowie dyscyplina ta ma i wspaniałe tradycje, i doskonałe warunki rozwoju. Mamy nadzieję je wykorzystać i zachęcamy wszystkich, którzy mieliby ochotę nam w tym pomóc, do studiów fizyki, SMP, inżynierii materiałowej, po których możliwe jest specjalizowanie się w zakresie fotoniki.
PLAN STUDIÓW STACJONARNYCH studia inżynierskie pierwszego stopnia
Egzamin po semestrze Kierunek: FIZYKA TECHNICZNA wybór specjalności po semestrze czas trwania: 7 semestrów profil: ogólnoakademicki PLAN STUDIÓW STACJONARNYCH studia inżynierskie pierwszego stopnia 01/015-1
Laboratorium FAMO. Laboratorium ultrazimnej. Laboratorium małych zespołów jonów Laboratorium inżynierii kwantowej
Laboratorium FAMO Laboratorium ultrazimnej materii Laboratorium małych zespołów jonów Laboratorium inżynierii kwantowej Otwarcie Krajowego Laboratorium FAMO - 11 maja 2002 Krajowe Laboratorium Fizyki Atomowej,
Politechnika Wrocławska Wydział Podstawowych Problemów Techniki
Politechnika Wrocławska Wydział Podstawowych Problemów Techniki specjalność FOTONIKA 3,5-letnie studia stacjonarne I stopnia (studia inżynierskie) FIZYKA TECHNICZNA Charakterystyka wykształcenia: - dobre
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap)
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Z uwagi na ogólno wydziałowy charakter specjalizacji i możliwość wykonywania prac
Załącznik 1. Nazwa kierunku studiów: FIZYKA Techniczna Poziom kształcenia: II stopień (magisterski) Profil kształcenia: ogólnoakademicki Symbol
Efekty kształcenia dla kierunku studiów FIZYKA TECHNICZNA - studia II stopnia, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia w obszarze nauk ścisłych Objaśnienia oznaczeń w symbolach
Podstawy inżynierii fotonicznej
Podstawy inżynierii fotonicznej Prof.dr hab.inż. Romuald Jóźwicki Instytut Mikromechaniki i Fotoniki Pokój 513B tylko konsultacje Rok III, semestr V, wykład 30 godz., laboratorium 15 godz. Zaliczenie wykładu
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Podstawowych Problemów Techniki Kierunek studiów: Fizyka Techniczna (FTE) Stopień studiów: Drugi (2) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku w obszarze
Nowości w kształceniu studentów PWr na kierunkach Fizyka i Fizyka techniczna
Nowości w kształceniu studentów PWr na kierunkach Fizyka i Fizyka techniczna Autor: dr hab. inż. Włodzimierz Salejda, prof. nadzw., Współpraca: prof. dr hab. inż. Jan Misiewicz, prof. zw., prof. dr hab.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Historia. Zasada Działania
Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia
Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
Załącznik 1. Nazwa kierunku studiów: FIZYKA Poziom kształcenia: II stopień (magisterski) Profil kształcenia: ogólnoakademicki Symbol
Efekty kształcenia dla kierunku studiów FIZYKA TECHNICZNA - studia II stopnia, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia w obszarze nauk ścisłych Kierunek studiów fizyka techniczna
CENTRUM OPTYKI KWANTOWEJ W TORUNIU
Lumeny 2015 Kategoria Infrastruktura Stanisław Chwirot CENTRUM OPTYKI KWANTOWEJ W TORUNIU Centrum Optyki Kwantowej Projekt: Rozbudowa Wydziału Fizyki, Astronomii i Informatyki Stosowanej UMK w Toruniu
IBM. Fizyka Medyczna. Brygida Mielewska, specjalność: Fizyka Medyczna
Fizyka Medyczna Brygida Mielewska, specjalność: Fizyka Medyczna Kierunek: Inżynieria Biomedyczna Wiedza i doświadczenie lekarza to wypadkowa wielu dziedzin: Specjalność: Fizyka Medyczna Czego możecie się
Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa
Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia zdefiniowanymi dla poszczególnych modułów
Objaśnienia oznaczeń w symbolach K przed podkreślnikiem kierunkowe efekty kształcenia W kategoria wiedzy
Efekty kształcenia dla kierunku studiów FIZYKA - studia II stopnia, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia w obszarze nauk ścisłych Kierunek studiów fizyka należy do obszaru
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Wydział Fizyki PASJA MA SIŁĘ PRZYCIĄGANIA. STUDIUJ Z NAMI I UCZYŃ Z NIEJ SPOSÓB NA ŻYCIE. O WYDZIALE Wydział Fizyki to duża jednostka naukowo-dydaktyczna, której
FORMULARZ DLA OGŁOSZENIODAWCÓW WARSZAWA. Adiunkt, Lider zespołu badawczego
FORMULARZ DLA OGŁOSZENIODAWCÓW INSTYTUCJA: MIASTO: STANOWISKO: UNIWERSYTET WARSZAWSKI, WYDZIAŁ FIZYKI. WARSZAWA Adiunkt, Lider zespołu badawczego LICZBA STANOWISK: 1 DYSCYPLINA NAUKOWA: fizyka DATA OGŁOSZENIA:
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki
Załącznik nr 1 Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów chemia należy do obszaru
Popularne współczesne źródła światła dla medycyny
Popularne współczesne źródła światła dla medycyny 1. Lampy termiczne na ogół emitują szerokie widma i wymagają stosowania filtrów spektralnych 2. Diody luminescencyjne(ledy) Light Emitting Diodes) - małe
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Teoria grawitacji. Grzegorz Hoppe (PhD)
Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Źródła światła: Lampy (termiczne) na ogół wymagają filtrów. Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18
Źródła światła: Lampy (termiczne) na ogół wymagają filtrów Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18 Lampy: a) szerokopasmowe, rozkład Plancka 2hc I( λ) = 5 λ 2 e 1 hc λk T B
Po ukończeniu studiów pierwszego stopnia absolwent studiów I stopnia na kierunku fizyka techniczna: WIEDZA
Załącznik nr 2 Efekty kształcenia dla kierunku studiów FIZYKA TECHNICZNA - studia I stopnia, inżynierskie, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia w obszarze nauk ścisłych oraz
POLITECHNIKA GDAŃSKA, WYDZIAŁ FTIMS. Wielkie umysły. Fizycy. Jan Kowalski, FT gr
POLITECHNIKA GDAŃSKA, WYDZIAŁ FTIMS Wielkie umysły Fizycy Jan Kowalski, FT gr.1 2013-09-28 Zaprezentowano wybrane wiadomości dotyczące kilku znanych wybitnych fizyków. A tak naprawdę, to chodzi tu o przećwiczenie
Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017
B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj
ZAKŁADANE EFEKTY UCZENIA SIĘ
ZAKŁADANE EFEKTY UCZENIA SIĘ Załącznik nr 2 do ZW 13/2019 Załącznik nr 1 do programu studiów Wydział: Podstawowych Problemów Techniki Kierunek studiów: Fizyka Techniczna (FTE) Poziom studiów: studia drugiego
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna 1. CHARAKTERYSTYKA STUDIÓW Specjalność Fizyka matematyczna ma charakter interdyscyplinarny. Obejmuje wiedzę
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
1. CHARAKTERYSTYKA STUDIÓW 2. SYLWETKA ABSOLWENTA
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Nauczanie i popularyzacja fizyki, specjalizacje: Nauczycielska; Dydaktyka i popularyzacja fizyki 1. CHARAKTERYSTYKA STUDIÓW Celem
Kierunek: Fizyka Techniczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Fizyki i Informatyki Stosowanej Kierunek: Techniczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 JFT-1-104-s Mechanika
Cele szczegółowe projektów realizowanych w ramach programu strategicznego pn. Nowe systemy uzbrojenia i obrony w zakresie energii skierowanej
Cele szczegółowe projektów realizowanych w ramach programu strategicznego pn. Nowe systemy uzbrojenia i obrony w zakresie energii skierowanej Uwaga: 1. Projekty powinny być realizowane z uwzględnieniem
Ramowy program szkolenia w dziedzinie ochrony radiologicznej pacjenta
Ramowy program szkolenia w dziedzinie ochrony radiologicznej pacjenta Liczba godzin lekcyjnych zależna od specjalności zgodnie z tabelą załącznika 7 Rozporządzenia Ministra Zdrowia z dnia 18 lutego 2011
Studia I stopnia kierunek: chemia Załącznik nr 3
Studia I stopnia kierunek: chemia Załącznik nr 3 Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia
Objaśnienie oznaczeń w symbolach K przed podkreślnikiem kierunkowe efekty kształcenia W kategoria wiedzy
Efekty kształcenia dla kierunku studiów FIZYKA - studia I stopnia, profil praktyczny - i ich odniesienia do efektów kształcenia w obszarze nauk ścisłych i obszarach pokrewnych Kierunek studiów fizyka należy
Centrum Diagnostyki i Terapii Laserowej Politechniki Łódzkiej
Centrum Diagnostyki i Terapii Laserowej Politechniki Łódzkiej Dyrektor CDTL PŁ dr n. med. Cezary Peszyński-Drews 215 Wolczanska str. Lodz, Poland tel. +4842 6313648, fax. +4842 6816139 HISTORIA CDTL Centrum
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Biofizyka molekularna. 2-letnie studia II stopnia (magisterskie)
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Biofizyka molekularna 2-letnie studia II stopnia (magisterskie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Biofizyka to uznana dziedzina nauk przyrodniczych
Wydział Fizyki Uniwersytet w Białymstoku. ul. Lipowa 41, Białystok. tel. (+48 85) fax ( ) EFEKTY KSZTAŁCENIA
Wydział Fizyki Uniwersytet w Białymstoku ul. Lipowa 41, 15-424 Białystok tel. (+48 85) 745 72 22 fax (+ 48 85) 745 72 23 EFEKTY KSZTAŁCENIA dla kierunku poziom kształcenia profil Fizyka studia 2 stopnia
Sławni Polscy Fizycy i Matematycy. Matematycy Fizycy Najważniejsi
Sławni Polscy Fizycy i Matematycy Matematycy Fizycy Najważniejsi Matematycy Mikołaj Kopernik Stefan Banach Jan Śniadecki Stanicław Saks Leon Chwistek Władysław Ślebodziński Mikołaj Kopernik 19 lutego 1473-24
PLAN STUDIÓW. efekty kształcenia
WYDZIAŁ: KIERUNEK: poziom kształcenia: profil: forma studiów: Lp. O/F Semestr 1 kod modułu/ przedmiotu* 1 O PG_00008512 CHEMIA 2 O PG_00019346 PODSTAWY MATEMATYKI 3 O PG_00008606 PODSTAWY PROGRAMOWANIA
th- Zakład Zastosowań Metod Obliczeniowych (ZZMO)
Zakład Zastosowań Metod Obliczeniowych (ZZMO) - prof. dr hab. Wiesław Płaczek - prof. dr hab. Elżbieta Richter-Wąs - prof. dr hab. Wojciech Słomiński - prof. dr hab. Jerzy Szwed (Kierownik Zakładu) - dr
1. CHARAKTERYSTYKA STUDIÓW 2. SYLWETKA ABSOLWENTA 3. PLAN STUDIÓW
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Nauczanie i popularyzacja fizyki, specjalizacje: Nauczycielska; Dydaktyka i popularyzacja fizyki 1. CHARAKTERYSTYKA STUDIÓW Celem specjalności
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Oglądanie świata w nanoskali mikroskop STM
FOTON 112, Wiosna 2011 23 Oglądanie świata w nanoskali mikroskop STM Szymon Godlewski Instytut Fizyki UJ Od zarania dziejów człowiek przejawiał wielką ciekawość otaczającego go świata. Prowadził obserwacje
Prof. dr hab. Krystyna Jabłońska
Prof. dr hab. Krystyna Jabłońska Krystyna Jabłońska jest fizykiem, profesorem doktorem habilitowanym, członkiem zarządu PTPS. 1. Proszę powiedzieć parę słów o sobie i czym zajmuje się Pani na co dzień.
Zadanie 9: Oferta edukacyjna na nowej specjalności Pomiary technologiczne i biomedyczne na kierunku Elektrotechnika, WEAIiE
Zadanie 9: Oferta edukacyjna na nowej specjalności Pomiary technologiczne i biomedyczne na kierunku Elektrotechnika, WEAIiE W ramach zadania nr 9 pt. Utworzenie nowej specjalności Pomiary technologiczne
Nazwa przedmioty. Elementy inżynierii i optyki kwantowej. Elementy inżynierii i optyki kwantowej ocena końcowa przedmiotu
Akademia Górniczo-Hutnicza Wydział Fizyki i Informatyki Stosowanej WZÓR WPISU Rok studiów: Przedmioty obieralne do indeksu Rok akademicki: Semestr: Nazwisko wykładającego dr Leszek Petryka dr Leszek Petryka
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Matematyczne i komputerowe modelowanie procesów fizycznych
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Matematyczne i komputerowe modelowanie procesów fizycznych 1. CHARAKTERYSTYKA STUDIÓW Celem specjalności Matematyczne i komputerowe
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Wydział Fizyki PASJA MA SIŁĘ PRZYCIĄGANIA. STUDIUJ Z NAMI I UCZYŃ Z NIEJ SPOSÓB NA ŻYCIE. O WYDZIALE Wydział Fizyki to duża jednostka naukowo-dydaktyczna, której
I. OPIS KIERUNKU. Fizyka techniczna studia stacjonarne I stopnia, inżynierskie
I. OPIS KIERUNKU Fizyka techniczna studia stacjonarne I stopnia, inżynierskie Studia trwają 7 semestrów i kończą się uzyskaniem dyplomu inżyniera. Głównym celem kształcenia na kierunku fizyka techniczna
Mechanizm działania terapii fotodynamicznej w diagnozowaniu i leczeniu nowotworów. Anna Szczypka Aleksandra Tyrawska
Mechanizm działania terapii fotodynamicznej w diagnozowaniu i leczeniu nowotworów Anna Szczypka Aleksandra Tyrawska Metody fotodynamiczne PDT Technika diagnostyczna i terapeutyczna zaliczana do form fotochemioterapii
STUDIA I STOPNIA NA KIERUNKU ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE. specjalność Biofizyka molekularna
STUDIA I STOPNIA NA KIERUNKU ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE 1. CELE KSZTAŁCENIA specjalność Biofizyka molekularna Biofizyka to uznana dziedzina nauk przyrodniczych o wielkich tradycjach, która
1. CHARAKTERYSTYKA STUDIÓW 2. SYLWETKA ABSOLWENTA
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Geofizyka, specjalizacje: Fizyka atmosfery; Fizyka Ziemi i planet; Fizyka środowiska 1. CHARAKTERYSTYKA STUDIÓW Celem specjalności
efekty kształcenia dla kierunku Elektronika studia stacjonarne drugiego stopnia, profil ogólnoakademicki
Opis efektów dla kierunku Elektronika Studia stacjonarne drugiego stopnia, profil ogólnoakademicki Objaśnienie oznaczeń: K kierunkowe efekty W kategoria wiedzy U kategoria umiejętności K (po podkreślniku)
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Podstawowych Problemów Techniki Kierunek studiów: Fizyka Techniczna (FTE) Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku w obszarze
INFORMATOR DLA KANDYDATÓW NA STUDIA 2017/2018. Wydział Fizyki POLITECHNIKI WARSZAWSKIEJ
INFORMATOR DLA KANDYDATÓW NA STUDIA PW 2017/2018 Wydział Fizyki POLITECHNIKI WARSZAWSKIEJ Wydział Fizyki POLITECHNIKI WARSZAWSKIEJ Drodzy Kandydaci, Gdy byłem w Waszym wieku, długo zastanawiałem się jaki
Pracownia Optyki Nieliniowej
Skład osobowy: www.if.pw.edu.pl/~nlo Kierownik pracowni: Prof. dr hab. inż. Mirosław Karpierz Kierownik laboratorium Dr inż. Urszula Laudyn Dr inż. Michał Kwaśny Dr inż. Filip Sala Dr inż. Paweł Jung Doktoranci:
PROGRAM NAUCZANIA. KIERUNEK: Fizyka techniczna WYDZIAŁ: Podstawowych Problemów Techniki STUDIA: II stopnia, stacjonarne SPECJALNOŚĆ: NanoinŜynieria
PROGRAM NAUCZANIA KIERUNEK: Fizyka techniczna WYDZIAŁ: Podstawowych Problemów Techniki STUDIA: II stopnia, stacjonarne SPECJALNOŚĆ: NanoinŜynieria Załącznik nr 1 Uchwała z dnia 22 II 2007 Obowiązuje od
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Laser pikselowy i frakselowy różnice i zastosowanie w kosmetologii. Barbara Kierlik Gr. 39Z
Laser pikselowy i frakselowy różnice i zastosowanie w kosmetologii Barbara Kierlik Gr. 39Z Light Amplification by Stimulated Emission of Radiation Wzmocnienie światła poprzez wymuszoną emisję Laser to
Fizyka medyczna. Czy warto ją wybrać?
Fizyka medyczna Czy warto ją wybrać? NASZ ZESPÓŁ PRACOWNIA FIZYKI UKŁADU KRĄŻENIA Kto jest kim: Jan J. Żebrowski (Dynamika Układów Nieliniowych, Seminarium Dyplomowe) Teodor Buchner (Analiza Sygnału w
PDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Optyka
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Optyka Cele kształcenia: Zadaniem specjalności Optyka jest kształcenie kadr w zakresie nowoczesnej optyki, tj. specjalistów w dziedzinie fizyki
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Biofizyka molekularna. 3-letnie studia I stopnia (licencjackie)
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Biofizyka molekularna 3-letnie studia I stopnia (licencjackie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Biofizyka to uznana dziedzina nauk przyrodniczych
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Geofizyka, specjalizacje: Fizyka atmosfery; Fizyka Ziemi i planet; Fizyka środowiska
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Geofizyka, specjalizacje: Fizyka atmosfery; Fizyka Ziemi i planet; Fizyka środowiska 1. CHARAKTERYSTYKA STUDIÓW Celem specjalności Geofizyka,
ZAKŁADANE EFEKTY UCZENIA SIĘ
ZAKŁADANE EFEKTY UCZENIA SIĘ Załącznik nr 2 do ZW 13/2019 Załącznik nr 1 do programu studiów Wydział: Podstawowych Problemów Techniki Kierunek studiów: Inżynieria Biomedyczna (IBM) Poziom studiów: studia
Aktualny stan i możliwości badawcze krajowych ośrodków naukowych i firm produkcyjnych w dziedzinie optoelektroniki i fotoniki
Polskie Stowarzyszenie Fotoniczne - Photonics Society of Poland (PSP) Sekcja Optoelektroniki Komitetu Elektroniki i Telekomunikacji (SOKEiT) PAN Polski Komitet Optoelektroniki (PKOpto) SEP Aktualny stan
Tabela odniesień efektów kierunkowych do efektów obszarowych (tabele odniesień efektów kształcenia)
Załącznik nr 7 do uchwały nr 514 Senatu Uniwersytetu Zielonogórskiego z dnia 25 kwietnia 2012 r. w sprawie określenia efektów kształcenia dla kierunków studiów pierwszego i drugiego stopnia prowadzonych
Metrologia wymiarowa dla zaawansowanych technologii wytwarzania
Metrologia wymiarowa dla zaawansowanych technologii wytwarzania Mapa drogowa EURAMET-u Komitetu Technicznego Długości Anna Kapińska Kiszko Główny Urząd Miar, Zakład Długości i Kąta Laboratorium Pomiarów
Kierunek: Fizyka Techniczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Fizyki i Informatyki Stosowanej Kierunek: Techniczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2013/2014 Język wykładowy: Polski Semestr 1 JFT-1-104-s Mechanika
Międzynarodowe Studia Doktoranckie w IF PAN. RAMOWY PROGRAM MIĘDZYNARODOWYCH STUDIÓW DOKTORANCKICH w IF PAN
Międzynarodowe Studia Doktoranckie w IF PAN RAMOWY PROGRAM MIĘDZYNARODOWYCH STUDIÓW DOKTORANCKICH w IF PAN Na Międzynarodowych Studiach Doktoranckich (MSD) doktoranci kształceni są w dziedzinie nauk fizycznych.
FIZYKA. Kierunek studiów Elektrotechnika Studia III stopnia
FIZYKA Kierunek studiów Elektrotechnika Studia III stopnia Przedmiot: Fizyka Rok: I Semestr: II Forma studiów: stacjonarne Rodzaj zajęć i liczba godzin w semestrze: Wykład 0 Ćwiczenia 0 Laboratorium 0
Centrum Zaawansowanych Materiałów i Technologii CEZAMAT
Centrum Zaawansowanych Materiałów i Technologii CEZAMAT Beneficjentem jest Politechnika Warszawska w imieniu Konsorcjum, którego członkami są: PW, UW, WAT, IChF PAN, IF PAN, IPPT PAN, IWC PAN, ITME Biuro
Proponujemy kandydatom kształcenie w zakresie nowego programu INŻYNIERII BIOMEDYCZNEJ.
Proponujemy kandydatom kształcenie w zakresie nowego programu INŻYNIERII BIOMEDYCZNEJ. Co to jest INŻYNIERIA BIOMEDYCZNA i dlaczego warto ją studiować? Warto o tym poczytać w zakładkach "O inżynierii biomedycznej"
Kierunek: Fizyka Techniczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Fizyki i Informatyki Stosowanej Kierunek: Techniczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2014/2015 Język wykładowy: Polski Semestr 1 JFT-1-104-s Mechanika
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
MAKROKIERUNEK NANOTECHNOLOGIE i NANOMATERIAŁY
POLITECHNIKA KRAKOWSKA im. Tadeusza Kościuszki WYDZIAŁ INŻYNIERII I TECHNOLOGII CHEMICZNEJ WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI STOSOWANEJ MAKROKIERUNEK NANOTECHNOLOGIE i NANOMATERIAŁY Kierunek i specjalności
Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Energetyka studia I stopnia
Załącznik 3 do uchwały nr /d/05/2012 Wydział Mechaniczny PK Kierunkowe efekty kształcenia wraz z odniesieniem do efektów Kierunek: Energetyka studia I stopnia Lista efektów z odniesieniem do efektów Kierunek:
SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI.
SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy. 1. Karta
KRAJOWE CENTRUM INŻYNIERII KOSMICZNEJ I SATELITARNEJ
KRAJOWE CENTRUM INŻYNIERII KOSMICZNEJ I SATELITARNEJ dr hab. inż. Mariusz Figurski, prof. WAT Prorektor ds. Rozwoju WAT III KONWENT MARSZAŁKÓW WOJEWÓDZTW RP 3-5 grudnia 2013 DZIAŁALNOŚĆ KOSMICZNA NA ŚWIECIE
CEZAMAT- ENVIRONMENT. czyli Centrum Zaawansowanych Materiałów i Technologii w służbie człowiekowi i naturze
CEZAMAT- ENVIRONMENT czyli Centrum Zaawansowanych Materiałów i Technologii w służbie człowiekowi i naturze CENTRUM PRZYSZŁOŚCI Centrum Zaawansowanych Materiałów i Technologii CEZAMAT to powstające w Warszawie
Efekty kształcenia dla: nazwa kierunku Fizyka Medyczna poziom kształcenia profil kształcenia
Uniwersytet Śląski w Katowicach str. 1 dla: nazwa kierunku Fizyka Medyczna poziom kształcenia profil kształcenia pierwszy ogólnoakademicki Kod efektu kształcenia (kierunek) Po ukończeniu studiów pierwszego
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
ZAKŁAD INŻYNIERII BIOMEDYCZNEJ
ZAKŁAD INŻYNIERII BIOMEDYCZNEJ PREZENTACJA DO WYBORU SPECJALNOŚCI NA KIERUNKU STUDIÓW INŻYNIERIA BIOMEDYCZNA I STOPIEŃ INŻYNIERSKI SPECJALNOŚCI NA KIERUNKU STUDIÓW INŻYNIERIA BIOMEDYCZNA Specjalność: Techniczny
Kształcenie w Szkole Doktorskiej Politechniki Białostockiej realizowane będzie według następującego programu:
Kształcenie w Szkole Doktorskiej Politechniki Białostockiej realizowane będzie według następującego programu: Semestr 1 2 3 4 Rodzaj Forma Forma Liczba zajęć zajęć zaliczeń godzin Szkolenie biblioteczne
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
WYKŁADY MONOGRAFICZNE DLA STUDENTÓW I SŁUCHACZY STUDIÓW DOKTORANCKICH
WYKŁADY MONOGRAFICZNE DLA STUDENTÓW I SŁUCHACZY STUDIÓW DOKTORANCKICH (30 godz. wykł. + 15 godz. semin.) SPEKTROSKOPIA Kryształy Fotoniczne Dr Jarosław W. Kłos Dynamiczne rozpraszanie światła Prof. dr
Światło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
CEZAMAT nowe miejsce współpracy nauki i biznesu na mapie polskiej infrastruktury laboratoryjnej. Piotr Wiśniewski
CEZAMAT nowe miejsce współpracy nauki i biznesu na mapie polskiej infrastruktury laboratoryjnej Piotr Wiśniewski Plan prezentacji O Centrum Misja i wizja Cele Laboratorium Centralne CEZAMAT Podsumowanie
ZORIENTOWANA OBSZAROWO MATRYCA EFEKTÓW KSZTAŁCENIA (EK0) W ODNIESIENIU DO MODUŁÓW KSZTAŁCENIA [PRZEDMIOTÓW] NAUK ŚCISŁYCH
ZORIENTOWANA OBSZAROWO MATRYCA EFEKTÓW KSZTAŁCENIA (EK0) W ODNIESIENIU DO MODUŁÓW KSZTAŁCENIA [PRZEDMIOTÓW] Nazwa Wydziału: Wydział Inżynierii Nazwa kierunku studiów: chemia kosmetyczna Poziom kształcenia:
W5. Komputer kwantowy
W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu
WYMAGANIA PROGRAMOWE dla studentów K MISMaP ubiegających się o DYPLOM MAGISTERSKI na Wydziale Fizyki UW zrealizowany w ramach K MISMaP
1 Zasady przyjmowania absolwentów studiów licencjackich na studia 2 UCHWAŁA NR 2/2003 RADY WYDZIAŁU FIZYKI UNIWERSYTETU WARSZAWSKIEGO z dnia 17 listopada 2003 r. w sprawie minimów programowych dla studentów
Wydział Fizyki i Informatyki Stosowanej ZAPRASZAMY NA STUDIA
Wydział Fizyki i Informatyki Stosowanej ZAPRASZAMY NA STUDIA ang. AGH University of Science and Technology Dlaczego Kraków? Dlaczego Kraków? Dlaczego Kraków? Dlaczego Kraków? Dlaczego Kraków? Dlaczego
WYNIKI ANKIETY PRZEPROWADZONEJ WŚRÓD UCZESTNIKÓW WARSZTATÓW W DNIACH
WYNIKI ANKIETY PRZEPROWADZONEJ WŚRÓD UCZESTNIKÓW WARSZTATÓW W DNIACH 21-23.02.2017 TYTUŁ ANKIETY: Ankietę Poglądy na temat istoty nauki przeprowadzono wśród uczestników warsztatów Natura nauki i jej powiązania