5.6. UKŁADY ZASILANIA Z PRZEKSZTAŁTNIKAMI

Wielkość: px
Rozpocząć pokaz od strony:

Download "5.6. UKŁADY ZASILANIA Z PRZEKSZTAŁTNIKAMI"

Transkrypt

1 5. Zasilanie odbiorników energii elektrycznej UKŁADY ZASILANIA Z PRZEKSZTAŁTNIKAMI Wiele urządzeń elektrycznych - czerpiąc energię z sieci elektroenergetycznej prądu przemiennego - nie jest zasilanych z niej bezpośrednio, lecz poprzez przekształtniki. Dzięki temu można uzyskać: - nieregulowane napięcie stałe (stabilizowane lub nie), - nieregulowane, o stabilizowanej amplitudzie (albo wartości skutecznej) oraz częstotliwości, napięcie przemienne, - regulowane napięcie stałe, - regulowaną wartość skuteczną prądu przemiennego, przy niezmiennej częstotliwości, - regulowaną wartość skuteczną i częstotliwość prądu (napięcia) przemiennego. Obecnie stosuje się prawie wyłącznie przekształtniki energoelektroniczne. Można je spotkać niemal na każdym kroku: w transporcie dalekim i bliskim, w przemyśle ciężkim i lekkim, w budownictwie, w rolnictwie, w przemyśle rolno-spożywczym, w gospodarstwach domowych. Wyparły, stosowane wcześniej, przekształtniki z zaworami rtęciowymi, przetwornice i złożone układy elektromaszynowe oraz wzmacniacze magnetyczne. Stosowanie przekształtników energoelektronicznych przyczynia się do mniejszego zużycia energii elektrycznej, zwiększa możliwości regulacyjne układów, ułatwia eksploatację urządzeń. Przebiegi czasowe napięć i prądów uzyskiwanych w przekształtnikach energoelektronicznych nie są jednak idealne (prąd stały ma tętnienia, a przemienny znacznie odbiega kształtem od sinusoidy), co wpływa m.in. na zwiększenie strat mocy w materiałach ferromagnetycznych. Prądy pobierane z sieci elektroenergetycznej są również odkształcone, a moc bierna związana z harmoniczną podstawową prądu - powiększona, szczególnie przy nagłych zmianach wysterowania tyrystorów. Spadki napięcia, pochodzące od dodatkowych składników harmonicznych prądu płynącego w sieci, powodują odkształcenie napięcia zasilającego inne odbiory; stwarzają też niebezpieczeństwo rezonansu prądów w obwodach z pojemnościami V_ (PKP) 750 V_ (metro) 600 V_ (tramwaj) Rys Schemat układu zasilania sieciowego odbiorów trakcyjnych prądu stałego: l - układ zastępczy części SEE, 2 - transformator WN/SN, 3 - linia elektroenergetyczna zasilająca podstację trakcyjną, 4 - podstacja trakcyjna z zespołami prostownikowymi, 5 - sieć trakcyjna prądu stałego, 6 - odbiory trakcyjne Przykładem urządzeń zasilanych zbiorowo energią elektryczną w przekształconej formie są odbiorniki pobierające energię z sieci trakcyjnej prądu stałego. Schemat układu pokazano

2 168 Zasady energoelektryki na rysunku Jeśli silniki trakcyjne pracują tu w układzie klasycznym (rozruch oporowy), to można przyjąć, że składowa zmienna prądu w sieci trakcyjnej nie występuje. W prądach, które płyną w przewodach linii elektroenergetycznej zasilającej podstację (i R, i S, i T ), występują - oprócz składowej podstawowej - harmoniczne pochodzące od układu prostownika, o częstotliwościach f n ( n) = f s, = l m ± 1 gdzie: f s - częstotliwość sieciowa, m - pulsowość układu prostownikowego. n, l = 1, 2,..., (5.29) Rola przekształtników w trakcji elektrycznej nie kończy się jednak na zasilaniu sieci trakcyjnej, poprzez prostowniki, z sieci elektroenergetycznej. Na pojazdach montowane są tzw. trakcyjne napędy przekształtnikowe, w skład których wchodzą przekształtniki (z filtrami i dławikami) oraz silniki trakcyjne prądu stałego lub przemiennego. Odnosi się to zarówno do systemów trakcyjnych z siecią prądu stałego, jak i przemiennego. Rys Różne systemy zasilania i sterowania silników trakcyjnych na kolejach elektrycznych: a) sieć trakcyjna prądu stałego, b) sieć trakcyjna prądu przemiennego o częstotliwości przemysłowej 50 Hz, c) sieć trakcyjna prądu przemiennego o częstotliwości obniżonej 16 2 / 3 Hz; SEE - system elektroenergetyczny, EK - elektrownia kolejowa (turbina - generator - transformator), C - zespół przemiennika częstotliwości, P - zespół prostownika niesterowanego, F - falownik, K - przerywacz, inaczej: zespół kluczujący, chopper, PS - zespół prostownika sterowanego, TR - transformator regulacyjny, RR - rezystory rozruchowe, M - zespół silników trakcyjnych

3 5. Zasilanie odbiorników energii elektrycznej 169 W Europie można spotkać na kolejach następujące systemy zasilania i sterowania silników trakcyjnych (rys. 5.16): al) sieć trakcyjna prądu stałego, silniki trakcyjne prądu stałego, rozruch oporowy (rezystorowy), a2) sieć, silniki - jw., rozruch impulsowy, a3) sieć - jw., silniki trakcyjne prądu przemiennego (indukcyjne), bl) sieć trakcyjna prądu przemiennego o częstotliwości przemysłowej 50 Hz, silniki trakcyjne prądu stałego (na prąd tętniący), b2) sieć - jw., silniki trakcyjne prądu przemiennego (indukcyjne), cl) sieć trakcyjna prądu przemiennego o obniżonej częstotliwości 16 2/3 Hz - zasilana z SEE (l -l, 0-0) albo z elektrowni kolejowej (l -1, 0-0), silniki trakcyjne szeregowe (jednofazowe), c2) sieć - jw., silniki trakcyjne prądu przemiennego (indukcyjne). Przekształtniki instalowane na pojazdach (warianty: a2, a3, b1, b2, c2) powodują odkształcenia prądu w sieci trakcyjnej i prądów w sieci elektroenergetycznej. Układ rozruchu impulsowego z chopperem, czyli przerywaczem stałoprądowym K (rys. 5.16a, wersja a2), wprowadza tętnienia prądu obciążenia prostownika z częstotliwością f p. Na skutek nieliniowości obwodu, pojawiają się też składowe okresowe prądu o częstotliwościach będących podwielokrotnościami f p. W sieci trakcyjnej występują więc harmoniczne i podharmoniczne prądu o częstotliwościach 1 1 f ( k ) = k f p, k =...,,, 1, 2,.... (5.30) 3 2 Z analizy harmonicznej przebiegów wynika, że w sieci elektroenergetycznej pojawią się dodatkowe harmoniczne prądu o częstotliwościach f ( k, n) = k f p ± n f, n = l m ± 1, s 1 1 k =...,,, 1, 2,..., 3 2 l = 1, 2,..., (5.31) czyli każda harmoniczna prądu i d (t) rzędu k wytwarza widmo harmonicznych w sieci zasilającej o częstotliwości f s, którego prążki są położone symetrycznie po obu stronach punktu k f p, w odległości ± n f s (n = 1, 2,... ), jak na rysunku Rys Harmoniczne prądu I (k, n) w sieci elektroenergetycznej o częstotliwości f s, pochodzące od harmonicznej prądu I d(k) o częstotliwości k f p w sieci trakcyjnej

4 170 Zasady energoelektryki Odkształcenia napięć sieciowych w układach z bezkomutatorowymi silnikami trakcyjnymi (indukcyjnymi lub synchronicznymi), czerpiącymi energię z sieci trakcyjnej prądu stałego za pośrednictwem falowników, mają podobny charakter jak przy zasilaniu impulsowym silników trakcyjnych prądu stałego. Silniki bezkomutatorowe są w eksploatacji trwalsze od powszechnie stosowanych w trakcji elektrycznej silników szeregowych prądu stałego oraz przemiennego, lecz współpracujące z nimi falowniki są dość kosztowne i trudne do wykonania. Istotne znaczenie mają też: ciężar i koszt urządzeń filtrujących. Wyrażenie (5.3) może służyć za miarę odkształcenia napięcia w sieci elektroenergetycznej zasilającej trakcję elektryczną jedynie w układach z prostownikiem niesterowanym (rys. 5.16, warianty: a1, b1 i c1 ). W układach z dwu- lub trzykrotnym przekształcaniem napięcia (rys. 5.16, warianty: a2, a3, b2 i c2) liczba wyższych harmonicznych jest znacznie większa niż w układach z przekształcaniem jednokrotnym, którym odpowiada wyrażenie (5.3). Zjawiska rezonansowe, powstające przypadkowo przy częstotliwościach odpowiadających składnikom widma prądu, mogą zwiększać odkształcenie napięcia w sieci elektroenergetycznej. Wyjaśniono to na rysunku 5.18, przedstawiającym dwa przypadki obciążeń w węźle sieci: a) bez pojemności, kiedy U 1 = jν X I ( ν ) 1(1) ( ν ), b) z pojemnością, kiedy I 1( ν ) U 1 ( ν ) = jν X 1(1) I 1( ν ) = jν X 1(1) I ( ν ), I przy czym, gdy powstaje rezonans prądów, to I 1 >> I ( ν ) (ν ). ( ν ) Rys Schematy zastępcze sieci elektroenergetycznej dla wyższych harmonicznych prądu obciążenia, gdy w pobliskim węźle zasilającym: a) nie ma odbioru pojemnościowego, b) jest odbiór pojemnościowy Ponieważ wartości prądów pobieranych z sieci trakcyjnej są znaczne, sieć zaś z zasady jest rozległa, więc wartości napięcia w różnych jej punktach mogą zmieniać się w znacznym stopniu. Układy zasilające silniki trakcyjne na pojazdach muszą być zatem odporne również na tego rodzaju zmiany.

5 5. Zasilanie odbiorników energii elektrycznej ZASILANIE REZERWOWE I AUTONOMICZNE UKŁADY ZASILANIA ENERGIĄ ELEKTRYCZNĄ Urządzenia elektryczne - zainstalowane w środkach transportu o trakcji spalinowej (samochody, samoloty, statki napędzane silnikami spalinowymi), spalinowo-elektrycznej (lokomotywy i wagony silnikowe spalinowe), parowej (statki napędzane turbinami parowymi) lub akumulatorowej (wózki i pojazdy akumulatorowe) albo w przyczepach samochodowych i doczepnych wagonach pasażerskich - czerpią energię z własnych (pokładowych) źródeł. Wiele innych urządzeń, normalnie zasilanych z sieci elektroenergetycznych, ze względu na wymaganą ciągłość pracy musi mieć zapewnione zasilanie rezerwowe z miejscowego źródła energii, na wypadek awarii w sieci. W tych przypadkach, źródłami energii w długich okresach czasu są zazwyczaj maszyny elektryczne (prądnice), napędzane silnikami lub turbinami spalinowymi, ewentualnie cieplnymi, a w krótkich okresach - akumulatory (samochodowe, wagonowe, stacyjne). W układach zasilających znajdują się często regulatory napięcia lub przekształtniki energoelektroniczne, nazywane też przetwornicami półprzewodnikowymi. Podstawowym źródłem energii elektrycznej w samochodzie jest prądnica, napędzana, ze zmieniającą się w czasie jazdy prędkością obrotową, przez silnik spalinowy pojazdu. Z prądnicą współpracuje regulator napięcia, który stabilizuje wartość średnią napięcia wyjściowego przez wywoływanie skokowych, cyklicznie powtarzających się zmian rezystancji obwodu wzbudzenia prądnicy. W samochodach stosuje się prądnice prądu stałego lub przemiennego. Te ostatnie, z wmontowanym na stałe prostownikiem, popularnie nazywane są alternatorami. Alternatory, szczególnie przy większych mocach, mają lepsze wskaźniki eksploatacyjne od prądnic prądu stałego, co w głównej mierze jest wynikiem likwidacji komutatora i przyrządu szczotkowego ze szczotkami. Prądnica zasila odbiory i akumulator (rys. 5.19), który powinien pracować jako źródło energii tylko wówczas, gdy prądnica nie jest napędzana lub wytwarza zbyt niskie napięcie (przy małej prędkości obrotowej silnika pojazdu). Głównym zadaniem akumulatora w samochodzie jest zasilanie rozrusznika elektrycznego, który napędza wał korbowy silnika spalinowego w okresie rozruchu. Przepływ prądu z akumulatora do prądnicy jest uniemożliwiony przez tzw. wyłącznik prądu zwrotnego (prądnicy prądu stałego) lub prostownik (alternatora). W chwili, gdy napięcie prądnicy przekracza wartość jałowego napięcia akumulatora U 0 (rys. 5.20), przejmuje ona całe obciążenie i dodatkowo doładowuje akumulator. Jeśli moc włączonych odbiorów jest duża, to zarówno prądnica, jak i akumulator pracują jako źródła (równolegle). Stan ten nie może jednak trwać zbyt długo, by nie doszło do nadmiernego rozładowania akumulatora. Rys Schemat ideowy zasilania elektrycznego w samochodzie: G - źródło podstawowe (prądnica z regulatorem napięcia), Z - układ zaworowy (diodowy lub z wyłącznikiem prądu zwrotnego)

6 172 Zasady energoelektryki Rys Akumulator jako rzeczywiste źródło napięcia w stanie: a) ładowania, b) obciążenia W wagonach pasażerskich stosuje się specjalne prądnice prądu stałego, nazywane prądnicami Rosenberga, które wytwarzają napięcie o stałej wartości i o stałej biegunowości (po przekroczeniu określonej wartości prędkości obrotowej wirnika i niezależnie od jej zwrotu). Prądnice te współpracują z bateriami akumulatorów, podobnie jak prądnice samochodowe - z pojedynczym akumulatorem. Zasilanie odbiorów prądu stałego ze źródła podstawowego, z dołączoną równolegle do niego baterią akumulatorów, nosi miano pracy buforowej, a zasilanie z samej baterii akumulatorów - pracy bateryjnej. Przy przejściu akumulatora ze stanu ładowania (rys. 5.20a) do stanu obciążenia (rys. 5.20b) występuje skokowa zmiana napięcia od wartości U l do wartości U 2. w ( i i ) U = U U = R +, (5.32) gdzie: R w - rezystancja wewnętrzna akumulatora, i ład - prąd ładowania akumulatora, i obc - prąd obciążenia (wyładowania) akumulatora. 1 2 Skok napięcia na zaciskach akumulatora jest więc tym mniejszy, im mniejsze są prądy ładowania i następującego po nim obciążenia. Jałowe napięcie akumulatora jest miarą jego naładowania i wpływa na wartość prądu ładowania. W instalacji elektrycznej samochodu lub wagonu pasażerskiego dopuszcza się duże wahania napięcia. Zmiany napięcia akumulatorów przenoszą się bezpośrednio do obwodu odbiorczego. W przypadku urządzeń telekomunikacyjnych i komputerów wymaga się bezprzerwowego zasilania napięciem o praktycznie stałej wartości (o małych wahaniach). Podstawowym źródłem energii elektrycznej w tzw. siłowni telekomunikacyjnej jest sieć elektroenergetyczna, a rezerwowym - baterie akumulatorów lub agregat prądotwórczy (po dłuższej przerwie w zasilaniu sieciowym). Napięcie wyjściowe siłowni telekomunikacyjnej musi mieć stałą wartość - niezależnie od tego, skąd pobiera ona energię. Ewentualne wahania napięcia w sieci przy zmianach rodzaju pracy (w chwilach zaniku oraz powrotu zasilania sieciowego), nie mogą wywoływać błędnego zadziałania urządzeń telekomunikacyjnych. Stosuje się układy zasilania gwarantowanego (podtrzymujące i stabilizujące napięcie) o dużej niezawodności - zasilacze bezprzerwowe (UPS, z ang. Uninterruptible Power System) z bateriami akumulatorów oraz agregatem prądotwórczym i SZR (samoczynnym załączaniem rezerwy). Przykładowe rozwiązania pokazano na rys i obc ad

7 5. Zasilanie odbiorników energii elektrycznej 173 (po < 5 min) UPS Rys Schemat współczesnej siłowni telekomunikacyjnej prądu przemiennego; AP - agregat prądotwórczy, ZP - zespół prostownikowy, BA - bateria akumulatorowa, FT - falownik tyrystorowy, LO - łącznik obejściowy, UPS - zasilacz bezprzerwowy rozdzielnia główna agregat prądotwórczy G SZR rozdzielnia rezerwowego zasilania UPS i bat. UPS i bat. odbiory kat. II odbiory kat. I Rys Schemat zasilania gwarantowanego w układzie rozproszonym (z indywidualnymi zasilaczami UPS)

8 174 Zasady energoelektryki 5.8. PRZEKAŹNIKOWO-STYCZNIKOWE UKŁADY STEROWANIA ENERGOELEKTRYCZNYCH URZĄDZEŃ ODBIORCZYCH NISKIEGO NAPIĘCIA Układy przekaźnikowo-stycznikowe stosuje się przede wszystkim w obwodach zasilania rozdzielnic niskiego napięcia i w zautomatyzowanym napędzie elektrycznym: w rozdzielnicach - do samoczynnego załączania rezerwy (SZR); w napędzie - do sterowania procesami: rozruchu, hamowania, nawrotu (zmiany kierunku wirowania) lub przechodzenia na inną charakterystykę naturalną (w celu zmiany prędkości pracy ustalonej). Włączanie i wyłączanie styczników może być dokonywane ręcznie (za pomocą przycisków sterujących) lub samoczynnie, tzn. w uzależnieniu od zmian wartości określonych wielkości fizycznych. W układach napędowych zmienne te są związane bezpośrednio (prąd, napięcie, częstotliwość, prędkość) lub pośrednio (czas, położenie mechanizmu napędzającego) ze stanami pracy silników. Sterowanie automatyczne odbywa się zwykle wg funkcji jednej z wielkości zmiennych. Przy przekraczaniu wartości progowych tej zmiennej następują w układzie kolejne przełączenia styczników, wywołujące zmiany struktury obwodu sterowanego (głównego). Zmianom struktury obwodów elektrycznych urządzeń napędowych towarzyszą skokowe zmiany wartości chwilowych prądu i momentu obrotowego silników. Wartości progowe kontrolowanej wielkości mogą być w przekaźnikach nastawiane, stosownie do potrzeb sterowania. W układach sterowania przekaźnikowo-stycznikowego stosuje się powszechnie przekaźniki elektromechaniczne. Są to przyrządy reagujące na określone zmiany wartości wielkości pobudzającej (wejściowej, sterującej) przełączeniem swego układu styków. Zestyki przekaźników wykorzystuje się wyłącznie w obwodach sterowania, cechuje je bowiem mała obciążalność. Działanie przekaźnika charakteryzuje określona zwłoka czasowa. Jeśli jest ona wynikiem celowych zabiegów konstrukcyjnych, przekaźnik nazywa się zwłocznym, a jeśli nie jest - bezzwłocznym. Ze względu na przeznaczenie przekaźniki dzielimy na pomiarowe i pomocnicze. Przekaźniki pomiarowe działają przy pewnej określonej wartości wielkości pobudzającej i mają z reguły podziałkę nastawień tej wielkości. Przekaźniki pomocnicze reagują na pojawienie się lub zanik wielkości pobudzającej i nie mają podziałki nastawień tej wielkości. Przekaźniki pomocnicze dzielą się na pośredniczące, czasowe i sygnałowe. Przekaźniki pośredniczące mają za zadania powtarzać bądź negować i zwielokrotniać sygnał wejściowy, przy czym moc obwodów sterowanych (wyjściowych) jest zwykle większa od mocy obwodu sterującego (wejściowego). Dodatkowa zadanie może polegać na galwanicznym rozdzieleniu torów prądowych: sterujących i sterowanych. Przekaźnik czasowy jest przekaźnikiem zwłocznym o nastawianym czasie działania. Przekaźniki sygnałowe posiadają sygnalizację zadziałania, kasowaną przez obsługę. Większość przekaźników elektromechanicznych pomocniczych, stosowanych w energoelektryce, stanowią przekaźniki elektromagnetyczne oraz czasowe o napędzie elektromagnesowym lub silnikowym. Przekaźniki elektromagnetyczne pośredniczące działają na tej samej zasadzie, co stycznik elektromagnesowy. W obwodach sterowania układów zautomatyzowanego napędu elektrycznego występują

9 5. Zasilanie odbiorników energii elektrycznej 175 cewki i zestyki przekaźników pomocniczych, cewki styczników i ich zestyki pomocnicze, zestyki przekaźników pomiarowych i zabezpieczeniowych, zestyki przycisków sterowniczych, wyłączników drogowych itp. Dla przejrzystości, schematy obwodów sterowania przedstawia się w postaci obwodowej (rozwiniętej), jak na rys. 5.23b. Analizę i syntezę nieskomplikowanych obwodów sterowania prowadzi się w sposób intuicyjny, a bardziej złożonych - przy zastosowaniu metod teorii układów przełączających (teorii automatów). W obwodach głównych układów zautomatyzowanego napędu elektrycznego występują zestyki łączników ręcznych, bezpieczniki, zestyki główne styczników, uzwojenia przekaźników pomiarowych i zabezpieczeniowych, uzwojenia silników oraz ich zwalniaków (luzowników). Zadanie zwalniaków polega na sterowaniu hamulcami mechanicznymi silników (np. wciągarek), są więc równocześnie z nimi włączane i wyłączane. Cewki zwalniaków, w zależności od wykonania, mogą być zasilane prądem stałym lub przemiennym oraz łączone szeregowo lub równolegle z uzwojeniem obwodu podstawowego silników. Dla przejrzystości, w pokazanych tutaj schematach obwodów głównych napędu elektrycznego, pominięto zestyki łączników ręcznych, bezpieczniki, cewki przekaźników oraz zwalniaków. Rys Schematy rozwinięte sterowania silnika indukcyjnego za pomocą stycznika elektromagnesowego: a) obwód główny, b) obwód sterujący Rys Obwody główne wybranych układów stycznikowych do rozruchu rezystorowego (oporowego) silników elektrycznych: a) bocznikowych prądu stałego (A1 i B2 albo C2 - zaciski uzwojenia twornika z dołączonym uzwojeniem komutacyjnym oraz, jeśli występuje, kompensacyjnym; E1 i E2 - zaciski uzwojenia wzbudzającego bocznikowego), b) szeregowych prądu stałego (A1, B2, C2 - jw.; D1 i D2 - zaciski uzwojenia wzbudzającego szeregowego), c) indukcyjnych pierścieniowych (U, V, W - zaciski uzwojenia stojana w układzie gwiazdowym; K, L, M - końcówki uzwojenia wirnika)

10 176 Zasady energoelektryki Układy przekaźnikowo-stycznikowego sterowania napędem elektrycznym należą do układów wielotaktowych (sekwencyjnych). Powtarzanie się niektórych sekwencji łączeniowych w obwodach głównych różnych układów napędu elektrycznego ułatwia projektowanie schematów obwodów sterowania; za przykład mogą służyć układy pokazane na rys. 5.24, w których załączanie styczników przy rozruchu silników powinno następować w kolejności zgodnej z ich numeracją (1S, 2S, 3S). Uzyskanie określonej kolejności przełączania zestyków głównych styczników (pod wpływem zmian kontrolowanej wielkości fizycznej) wiąże się z realizacją uzależnień logicznych i koordynacją czasów działania poszczególnych elementów układu sterowania (wejściowych, wyjściowych i pośredniczących), co unaoczniają schematy na rys i Rys Sterowanie rozruchem silników prądu stałego wg funkcji czasu: a) schemat rozwinięty obwodu sterującego (obwód główny na rys. 5.24a, b); b) wykresy czasowe działania elementów obwodu sterującego, uwzględniające opóźnienia związane z czasami własnymi tych elementów; c) objaśnienie do wykresów czasowych dotyczące sposobu oznaczania stanów pracy elementów; W, Z - przyciski sterujące, S - styczniki elektromagnesowe, PC - przekaźniki pomocnicze czasowe (z nastawianymi opóźnieniami - odpowiednio: T 1 i T 2 - przy wzbudzaniu), PP - przekaźnik pomocniczy pośredniczący; cyfry przed S i PC - numery aparatów; indeksy po S, PC i PP - numery zestyków

11 5. Zasilanie odbiorników energii elektrycznej 177 Rys Sterowanie rozruchem silników prądu stałego wg funkcji prądu: a) schemat rozwinięty obwodu sterującego (obwód główny - jak na rys. 5.24a, b - z cewką przekaźnika pomiarowego prądowego PI, połączoną szeregowo z uzwojeniem twornika); b) wykresy czasowe działania elementów obwodu sterującego, uwzględniające opóźnienia związane z czasami własnymi tych elementów. Symbole elementów - jak na rys. 5.25

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Maszyny elektryczne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Podział maszyn elektrycznych Transformatory - energia prądu przemiennego jest zamieniana w

Bardziej szczegółowo

Maszyny i urządzenia elektryczne. Tematyka zajęć

Maszyny i urządzenia elektryczne. Tematyka zajęć Nazwa przedmiotu Maszyny i urządzenia elektryczne Wprowadzenie do maszyn elektrycznych Transformatory Maszyny prądu zmiennego i napęd elektryczny Maszyny prądu stałego i napęd elektryczny Urządzenia elektryczne

Bardziej szczegółowo

Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny.

Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny. Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny. 1. Silnik komutatorowy jednofazowy szeregowy (silniki uniwersalne). silniki komutatorowe jednofazowe szeregowe maja budowę

Bardziej szczegółowo

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Maszyny elektryczne Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział maszyn elektrycznych Transformatory - energia prądu przemiennego jest zamieniana w energię

Bardziej szczegółowo

Układ samoczynnego załączania rezerwy

Układ samoczynnego załączania rezerwy Układ samoczynnego załączania rezerwy Układy samoczynnego załączenia rezerwy służą, do automatycznego przełączenia źródła zasilania prądem elektrycznym z podstawowego na rezerwowe. Stosowane są bardzo

Bardziej szczegółowo

SILNIKI PRĄDU STAŁEGO

SILNIKI PRĄDU STAŁEGO SILNIKI PRĄDU STAŁEGO SILNIK ELEKTRYCZNY JEST MASZYNĄ, KTÓRA ZAMIENIA ENERGIĘ ELEKTRYCZNĄ NA ENERGIĘ MECHANICZNĄ BUDOWA I DZIAŁANIE SILNIKA PRĄDU STAŁEGO Moment obrotowy silnika powstaje na skutek oddziaływania

Bardziej szczegółowo

str. 1 Temat: Sterowanie stycznikami za pomocą przycisków.

str. 1 Temat: Sterowanie stycznikami za pomocą przycisków. Temat: Sterowanie stycznikami za pomocą przycisków. Na rys. 7.17 przedstawiono układ sterowania silnika o rozruchu bezpośrednim za pomocą stycznika. Naciśnięcie przycisku Z powoduje podanie napięcia na

Bardziej szczegółowo

Maszyny, urządzenia elektryczne i automatyczne w przemyśle / Czesław Grzbiela, Andrzej Machowski. -wyd. 2. Katowice, 2010.

Maszyny, urządzenia elektryczne i automatyczne w przemyśle / Czesław Grzbiela, Andrzej Machowski. -wyd. 2. Katowice, 2010. Maszyny, urządzenia elektryczne i automatyczne w przemyśle / Czesław Grzbiela, Andrzej Machowski. -wyd. 2. Katowice, 2010 Spis treści 1. Maszyny elektryczne wirujące 11 1.1. Prądnice prądu stałego 12 1.1.1.

Bardziej szczegółowo

Silniki prądu stałego

Silniki prądu stałego Silniki prądu stałego Maszyny prądu stałego Silniki zamiana energii elektrycznej na mechaniczną Prądnice zamiana energii mechanicznej na elektryczną Często dane urządzenie może pracować zamiennie. Zenobie

Bardziej szczegółowo

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna)

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna) EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej

Bardziej szczegółowo

Rozwój sterowania prędkością silnika indukcyjnego trójfazowego

Rozwój sterowania prędkością silnika indukcyjnego trójfazowego Rozwój sterowania prędkością silnika indukcyjnego trójfazowego 50Hz Maszyna robocza Rotor 1. Prawie stała prędkość automatyka Załącz- Wyłącz metod a prymitywna w pierwszym etapie -mechanizacja AC silnik

Bardziej szczegółowo

Ćwiczenie 3 Falownik

Ćwiczenie 3 Falownik Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Automatyzacja i Nadzorowanie Maszyn Zajęcia laboratoryjne Ćwiczenie 3 Falownik Poznań 2012 Opracował: mgr inż. Bartosz Minorowicz Zakład Urządzeń

Bardziej szczegółowo

13. STEROWANIE SILNIKÓW INDUKCYJNYCH STYCZNIKAMI

13. STEROWANIE SILNIKÓW INDUKCYJNYCH STYCZNIKAMI 13. STEROWANIE SILNIKÓW INDUKCYJNYCH STYCZNIKAMI 13.1. Cel i zakres ćwiczenia Celem ćwiczenia jest poznanie budowy i działania styczników, prostych układów sterowania pojedynczych silników lub dwóch silników

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Instytut Elektrotechniki i Automatyki Okrętowej Część 8 Maszyny asynchroniczne indukcyjne prądu zmiennego Maszyny asynchroniczne

Bardziej szczegółowo

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRĄDNICE I SILNIKI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prądnice i silniki (tzw. maszyny wirujące) W każdej maszynie można wyróżnić: - magneśnicę

Bardziej szczegółowo

Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne

Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne Opracowała: mgr inż. Katarzyna Łabno Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne Dla klasy 2 technik mechatronik Klasa 2 38 tyg. x 4 godz. = 152 godz. Szczegółowy rozkład materiału:

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

Układ kaskadowy silnika indukcyjnego pierścieniowego na stały moment

Układ kaskadowy silnika indukcyjnego pierścieniowego na stały moment Ćwiczenie 15 Układ kaskadowy silnika indukcyjnego pierścieniowego na stały moment 15.1. Program ćwiczenia 1. Zapoznanie się z budową i działaniem układu napędowego kaskady zaworowej stałego momentu. 2.

Bardziej szczegółowo

Falownik FP 400. IT - Informacja Techniczna

Falownik FP 400. IT - Informacja Techniczna Falownik FP 400 IT - Informacja Techniczna IT - Informacja Techniczna: Falownik FP 400 Strona 2 z 6 A - PRZEZNACZENIE WYROBU Falownik FP 400 przeznaczony jest do wytwarzania przemiennego napięcia 230V

Bardziej szczegółowo

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna 1. Przed zamknięciem wyłącznika prąd I = 9A. Po zamknięciu wyłącznika będzie a) I = 27A b) I = 18A c) I = 13,5A d) I = 6A 2. Prąd I jest równy a) 0,5A b) 0 c) 1A d) 1A 3. Woltomierz wskazuje 10V. W takim

Bardziej szczegółowo

PL B1. Sposób i układ sterowania przemiennika częstotliwości z falownikiem prądu zasilającego silnik indukcyjny

PL B1. Sposób i układ sterowania przemiennika częstotliwości z falownikiem prądu zasilającego silnik indukcyjny RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 199628 (13) B1 (21) Numer zgłoszenia: 367654 (51) Int.Cl. H02P 27/04 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 04.05.2004

Bardziej szczegółowo

42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM

42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM 42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM Falownikami nazywamy urządzenia energoelektroniczne, których zadaniem jest przetwarzanie prądów i

Bardziej szczegółowo

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1 Źródła energii elektrycznej prądu przemiennego: 1. prądnice synchroniczne 2. prądnice asynchroniczne Surowce energetyczne: węgiel kamienny i brunatny

Bardziej szczegółowo

W4. UKŁADY ZŁOŻONE I SPECJALNE PRZEKSZTAŁTNIKÓW SIECIOWYCH (AC/DC, AC/AC)

W4. UKŁADY ZŁOŻONE I SPECJALNE PRZEKSZTAŁTNIKÓW SIECIOWYCH (AC/DC, AC/AC) W4. UKŁADY ZŁOŻONE I SPECJALNE PRZEKSZTAŁTNIKÓW SIECIOWYCH (AC/DC, AC/AC) W W2 i W3 przedstawiono układy jednokierunkowe 2 i 3-pulsowe (o jednokierunkowym prądzie w źródle napięcia przemiennego). Ich poznanie

Bardziej szczegółowo

Dokumentacja układu automatyki SZR PA1001-KM

Dokumentacja układu automatyki SZR PA1001-KM Dokumentacja układu automatyki SZR PA1001-KM Żary 07.2009 Wprowadzenie Zadaniem automatyki Samoczynnego Załączenia Rezerwy (SZR) jest przełączenie zasilania podstawowego na rezerwowe w przypadku zaniku

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Wiadomości do tej pory Podstawowe pojęcia Elementy bierne Podstawowe prawa obwodów elektrycznych Moc w układach 1-fazowych Pomiary

Bardziej szczegółowo

Wykład 2 Silniki indukcyjne asynchroniczne

Wykład 2 Silniki indukcyjne asynchroniczne Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa

Bardziej szczegółowo

Charakterystyka rozruchowa silnika repulsyjnego

Charakterystyka rozruchowa silnika repulsyjnego Silnik repulsyjny Schemat połączeń silnika repulsyjnego Silnik tego typu budowany jest na małe moce i używany niekiedy tam, gdzie zachodzi potrzeba regulacji prędkości. Układ połączeń silnika repulsyjnego

Bardziej szczegółowo

Silnik indukcyjny - historia

Silnik indukcyjny - historia Silnik indukcyjny - historia Galileo Ferraris (1847-1897) - w roku 1885 przedstawił konstrukcję silnika indukcyjnego. Nicola Tesla (1856-1943) - podobną konstrukcję silnika przedstawił w roku 1886. Oba

Bardziej szczegółowo

PL B1. Sposób i układ tłumienia oscylacji filtra wejściowego w napędach z przekształtnikami impulsowymi lub falownikami napięcia

PL B1. Sposób i układ tłumienia oscylacji filtra wejściowego w napędach z przekształtnikami impulsowymi lub falownikami napięcia PL 215269 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215269 (13) B1 (21) Numer zgłoszenia: 385759 (51) Int.Cl. H02M 1/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Przekształtniki napięcia stałego na stałe

Przekształtniki napięcia stałego na stałe Przekształtniki napięcia stałego na stałe Buck converter S 1 łącznik w pełni sterowalny, przewodzi prąd ze źródła zasilania do odbiornika S 2 łącznik diodowy zwiera prąd odbiornika przy otwartym S 1 U

Bardziej szczegółowo

(54) Filtr aperiodyczny

(54) Filtr aperiodyczny RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (21 ) Numer zgłoszenia. 327022 (22) Data zgłoszenia: 25.06.1998 (19) PL (11) 186399 (13) B1 (51 ) IntCl7 B60M 1/06 G07F

Bardziej szczegółowo

ZASILACZE BEZPRZERWOWE

ZASILACZE BEZPRZERWOWE ZASILACZE BEZPRZERWOWE seria falowników FM, FPM, FPTM FALOWNIKI PRZEZNACZENIE Nowoczesne przemysłowo-energetyczne zasilacze bezprzerwowe przystosowane do współpracy z zewnętrzną baterią 220 V (340 V) zapewniają

Bardziej szczegółowo

BADANIE STYCZNIKOWO- PRZEKAŹNIKOWYCH UKŁADÓW STEROWANIA

BADANIE STYCZNIKOWO- PRZEKAŹNIKOWYCH UKŁADÓW STEROWANIA BADANIE STYCZNIKOWO- PRZEKAŹNIKOWYCH UKŁADÓW STEROWANIA Strona 1/7 BADANIE STYCZNIKOWO- PRZEKAŹNIKOWYCH UKŁADÓW STEROWANIA 1. Wiadomości wstępne Stycznikowo-przekaźnikowe uklady sterowania znajdują zastosowanie

Bardziej szczegółowo

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL PL 226485 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 226485 (13) B1 (21) Numer zgłoszenia: 409952 (51) Int.Cl. H02J 3/01 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Poprawa jakości energii i niezawodności. zasilania

Poprawa jakości energii i niezawodności. zasilania Poprawa jakości energii i niezawodności zasilania Technologia Technologia Technologia Technologia Technologia Technologia Technologia Technologia Poziom zniekształceń napięcia w sieciach energetycznych,

Bardziej szczegółowo

(57) 1. Układ samowzbudnej przetwornicy transformatorowej (12) OPIS PATENTOWY (19) PL (11) (13) B2 PL B2 H02M 3/315. fig.

(57) 1. Układ samowzbudnej przetwornicy transformatorowej (12) OPIS PATENTOWY (19) PL (11) (13) B2 PL B2 H02M 3/315. fig. RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 161056 (13) B2 (21) Numer zgłoszenia: 283989 (51) IntCl5: H02M 3/315 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 23.02.1990 (54)Układ

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

mgr inŝ. TADEUSZ MAŁECKI MASZYNY ELEKTRYCZNE Kurs ELEKTROMECHANIK stopień pierwszy Zespół Szkół Ogólnokształcących i Zawodowych

mgr inŝ. TADEUSZ MAŁECKI MASZYNY ELEKTRYCZNE Kurs ELEKTROMECHANIK stopień pierwszy Zespół Szkół Ogólnokształcących i Zawodowych mgr inŝ. TADEUSZ MAŁECKI MASZYNY ELEKTRYCZNE Kurs ELEKTROMECHANIK stopień pierwszy Zespół Szkół Ogólnokształcących i Zawodowych Mosina 2001 Od autora Niniejszy skrypt został opracowany na podstawie rozkładu

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH

Bardziej szczegółowo

f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy

f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy PORTFOLIO: Opracowanie koncepcji wdrożenia energooszczędnego układu obciążenia maszyny indukcyjnej dla przedsiębiorstwa diagnostyczno produkcyjnego. (Odpowiedź na zapotrzebowanie zgłoszone przez przedsiębiorstwo

Bardziej szczegółowo

Badanie prądnicy synchronicznej

Badanie prądnicy synchronicznej POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie prądnicy synchronicznej (E 18) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

bieguny główne z uzwojeniem wzbudzającym (3), bieguny pomocnicze (komutacyjne) (5), tarcze łożyskowe, trzymadła szczotkowe.

bieguny główne z uzwojeniem wzbudzającym (3), bieguny pomocnicze (komutacyjne) (5), tarcze łożyskowe, trzymadła szczotkowe. Silnik prądu stałego - budowa Stojan - najczęściej jest magneśnicą wytwarza pole magnetyczne jarzmo (2), bieguny główne z uzwojeniem wzbudzającym (3), bieguny pomocnicze (komutacyjne) (5), tarcze łożyskowe,

Bardziej szczegółowo

Stabilizatory impulsowe

Stabilizatory impulsowe POITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ EEKTRYCZNY Jakub Dawidziuk Stabilizatory impulsowe 1. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Przekształtnik obniżający 4. Przekształtnik

Bardziej szczegółowo

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13 Spis treści 3 Wykaz ważniejszych oznaczeń...9 Przedmowa... 12 1. Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13 1.1.. Zasada działania i klasyfikacja silników bezszczotkowych...14 1.2..

Bardziej szczegółowo

Laboratorium Elektromechaniczne Systemy Napędowe BADANIE AUTONOMICZNEGO GENERATORA INDUKCYJNEGO

Laboratorium Elektromechaniczne Systemy Napędowe BADANIE AUTONOMICZNEGO GENERATORA INDUKCYJNEGO Laboratorium Elektromechaniczne Systemy Napędowe Ćwiczenie BADANIE AUTONOMICZNEGO GENERATORA INDUKCYJNEGO Instrukcja Opracował: Dr hab. inż. Krzysztof Pieńkowski, prof. PWr Wrocław, listopad 2014 r. Ćwiczenie

Bardziej szczegółowo

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i klasyfikacja silników bezszczotkowych 1.2. Moment elektromagnetyczny

Bardziej szczegółowo

Dobór współczynnika modulacji częstotliwości

Dobór współczynnika modulacji częstotliwości Dobór współczynnika modulacji częstotliwości Im większe mf, tym wyżej położone harmoniczne wyższe częstotliwości mniejsze elementy bierne filtru większy odstęp od f1 łatwiejsza realizacja filtru dp. o

Bardziej szczegółowo

PL B1. Układ samochodowego prądnico-rozrusznika ze wzbudzeniem elektromagnetycznym i sposób jego sterowania

PL B1. Układ samochodowego prądnico-rozrusznika ze wzbudzeniem elektromagnetycznym i sposób jego sterowania PL 214761 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214761 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 387309 (22) Data zgłoszenia: 19.02.2009 (51) Int.Cl.

Bardziej szczegółowo

Telekomunikacyjny system zasilania gwarantowanego, zintegrowany na napięciu przemiennym 230V AC

Telekomunikacyjny system zasilania gwarantowanego, zintegrowany na napięciu przemiennym 230V AC Zakład Systemów Zasilania (Z-5) Telekomunikacyjny system zasilania gwarantowanego, zintegrowany na napięciu przemiennym 23V AC Praca nr 5327 Warszawa grudzień 27 1 Telekomunikacyjny system zasilania gwarantowanego,

Bardziej szczegółowo

Na podstawie uproszczonego schematu zastępczego silnika w stanie zwarcia (s = 1) określamy:

Na podstawie uproszczonego schematu zastępczego silnika w stanie zwarcia (s = 1) określamy: Temat: Urządzenia rozruchowe i regulacyjne. I. Rozruch silników indukcyjnych. Rozruchem nazywamy taki stan pracy od chwili załączenia napięcia do osiągnięcia przez maszynę ustalonej prędkości określonej

Bardziej szczegółowo

PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe

PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe 1. UWAGA: W podanych poniżej zadaniach w każdym przypadku odniesionym do określonego obwodu przekształtnikowego należy narysować kompletny schemat wraz z zastrzałkowanymi

Bardziej szczegółowo

Prostowniki. 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników. Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY

Prostowniki. 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników. Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY POLITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY Prostowniki 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników ELEKTRONIKA Jakub Dawidziuk sobota, 16

Bardziej szczegółowo

Spis treści 3. Spis treści

Spis treści 3. Spis treści Spis treści 3 Spis treści Przedmowa 11 1. Pomiary wielkości elektrycznych 13 1.1. Przyrządy pomiarowe 16 1.2. Woltomierze elektromagnetyczne 18 1.3. Amperomierze elektromagnetyczne 19 1.4. Watomierze prądu

Bardziej szczegółowo

UKŁAD SAMOCZYNNEGO ZAŁĄCZANIA REZERWY ZASILANIA (SZR) z MODUŁEM AUTOMATYKI typu MA-0B DOKUMENTACJA TECHNICZNO-RUCHOWA

UKŁAD SAMOCZYNNEGO ZAŁĄCZANIA REZERWY ZASILANIA (SZR) z MODUŁEM AUTOMATYKI typu MA-0B DOKUMENTACJA TECHNICZNO-RUCHOWA 1 UKŁAD SAMOCZYNNEGO ZAŁĄCZANIA REZERWY ZASILANIA (SZR) z MODUŁEM AUTOMATYKI typu MA-0B DOKUMENTACJA TECHNICZNO-RUCHOWA 2 Spis treści 1. Ogólna charakterystyka układu SZR zbudowanego z użyciem modułu automatyki...

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Elektroenergetyki Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: STEROWANIE SILNIKÓW INDUKCYJNYCH STYCZNIKAMI Ćwiczenie nr: 6 Laboratorium z przedmiotu:

Bardziej szczegółowo

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych . Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich

Bardziej szczegółowo

PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe

PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe 1. UWAGA: W podanych poniżej zadaniach w każdym przypadku odniesionym do określonego obwodu przekształtnikowego należy narysować kompletny schemat wraz zastrzałkowanymi

Bardziej szczegółowo

1. Wiadomości ogólne 1

1. Wiadomości ogólne 1 Od Wydawcy xi 1. Wiadomości ogólne 1 dr inż. Stefan Niestępski 1.1. Jednostki miar 2 1.2. Rysunek techniczny 8 1.2.1. Formaty arkuszy, linie rysunkowe i pismo techniczne 8 1.2.2. Symbole graficzne 10 1.3.

Bardziej szczegółowo

EA3. Silnik uniwersalny

EA3. Silnik uniwersalny EA3 Silnik uniwersalny Program ćwiczenia 1. Oględziny zewnętrzne 2. Pomiar charakterystyk mechanicznych przy zasilaniu: a - napięciem sinusoidalnie zmiennym (z sieci), b - napięciem dwupołówkowo-wyprostowanym.

Bardziej szczegółowo

Badanie układu samoczynnego załączania rezerwy

Badanie układu samoczynnego załączania rezerwy Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Instrukcja

Bardziej szczegółowo

Oddziaływanie energoelektronicznych przekształtników mocy zasilających duże odbiory na górnicze sieci elektroenergetyczne Część I

Oddziaływanie energoelektronicznych przekształtników mocy zasilających duże odbiory na górnicze sieci elektroenergetyczne Część I mgr inż. JULIAN WOSIK mgr inż. MAREK HEFCZYC Centrum Elektryfikacji i Automatyzacji Górnictwa EMAG prof. dr hab. inż. BOGDAN MIEDZIŃSKI Instytut Energoelektryki, Politechnika Wrocławska Oddziaływanie energoelektronicznych

Bardziej szczegółowo

20. UKŁADY SAMOCZYNNEGO ZAŁĄCZANIA REZERWY

20. UKŁADY SAMOCZYNNEGO ZAŁĄCZANIA REZERWY 20. UKŁADY SAMOCZYNNEGO ZAŁĄCZANIA REZERWY 20.. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z problematyką zasilania rezerwowego w przemysłowych i komunalnych sieciach zasilających i w instalacjach

Bardziej szczegółowo

MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1. Zbigniew Krzemiński, MMB Drives sp. z o.o.

MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1. Zbigniew Krzemiński, MMB Drives sp. z o.o. Zakres modernizacji MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1 Zbigniew Krzemiński, MMB Drives sp. z o.o. Wirówka DSC/1 produkcji NRD zainstalowana w Spółdzielni Mleczarskiej Maćkowy

Bardziej szczegółowo

Silniki prądu stałego. Wiadomości ogólne

Silniki prądu stałego. Wiadomości ogólne Silniki prądu stałego. Wiadomości ogólne Silniki prądu stałego charakteryzują się dobrymi właściwościami ruchowymi przy czym szczególnie korzystne są: duży zakres regulacji prędkości obrotowej i duży moment

Bardziej szczegółowo

12.7 Sprawdzenie wiadomości 225

12.7 Sprawdzenie wiadomości 225 Od autora 8 1. Prąd elektryczny 9 1.1 Budowa materii 9 1.2 Przewodnictwo elektryczne materii 12 1.3 Prąd elektryczny i jego parametry 13 1.3.1 Pojęcie prądu elektrycznego 13 1.3.2 Parametry prądu 15 1.4

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Układ LEONARDA.

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Układ LEONARDA. POLITECHNIK ŚLĄK YDZIŁ INŻYNIERII ŚRODOIK I ENERETYKI INTYTUT ZYN I URZĄDZEŃ ENERETYCZNYCH LBORTORIU ELEKTRYCZNE Układ LEONRD. (E 20) Opracował: Dr inż. łodzimierz OULEICZ Cel ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Pracę każdej prądnicy w sposób jednoznaczny określają następujące wielkości:

Pracę każdej prądnicy w sposób jednoznaczny określają następujące wielkości: Temat: Prądnice prądu stałego obcowzbudne i samowzbudne. Pracę każdej prądnicy w sposób jednoznaczny określają następujące wielkości: U I(P) I t n napięcie twornika - prąd (moc) obciążenia - prąd wzbudzenia

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Pracownia Automatyki i Robotyki (s.48) Instrukcja Laboratoryjna: 7. UKŁADY STEROWANIA PRZEKAŹNIKOWO-STYCZNIKOWEGO

Bardziej szczegółowo

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki indukcyjne Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki pierścieniowe to takie silniki indukcyjne, w których

Bardziej szczegółowo

Alternator. Elektrotechnika w środkach transportu 125

Alternator. Elektrotechnika w środkach transportu 125 y Elektrotechnika w środkach transportu 125 Elektrotechnika w środkach transportu 126 Zadania alternatora: Dostarczanie energii elektrycznej o określonej wartości napięcia (ogranicznik napięcia) Zapewnienie

Bardziej szczegółowo

1. Wiadomości wstępne 9

1. Wiadomości wstępne 9 1. Wiadomości wstępne 9 2. Magnetyzm i elektromagnetyzm...15 2.1. Pole magnetyczne......15 2.2. Indukcja magnetyczna.........17 2.3. Strumień magnetyczny......18 2.4. Właściwości magnetyczne materiałów......19

Bardziej szczegółowo

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 18/11. JANUSZ URBAŃSKI, Lublin, PL WUP 10/14. rzecz. pat.

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 18/11. JANUSZ URBAŃSKI, Lublin, PL WUP 10/14. rzecz. pat. PL 218053 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218053 (13) B1 (21) Numer zgłoszenia: 390487 (51) Int.Cl. H02P 3/14 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Zasilanie silnika indukcyjnego poprzez układ antyrównoległy

Zasilanie silnika indukcyjnego poprzez układ antyrównoległy XL SESJA STUDENCKICH KÓŁ NAUKOWYCH Zasilanie silnika indukcyjnego poprzez układ antyrównoległy Wykonał: Paweł Pernal IV r. Elektrotechnika Opiekun naukowy: prof. Witold Rams 1 Wstęp. Celem pracy było przeanalizowanie

Bardziej szczegółowo

ROZRUCH I REGULACJA PRĘDKOŚCI OBROTOWEJ SILNIKA INDUKCYJNEGO PIERŚCIENIOWEGO

ROZRUCH I REGULACJA PRĘDKOŚCI OBROTOWEJ SILNIKA INDUKCYJNEGO PIERŚCIENIOWEGO Rozruch i regulacja obrotów silnika pierścieniowego 1 z 8 PRACOWNIA ENERGOELEKTRONICZNA w ZST Radom 2006/2007 ROZRUCH I REGULACJA PRĘDKOŚCI OBROTOWEJ SILNIKA INDUKCYJNEGO PIERŚCIENIOWEGO Przed wykonaniem

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego Ćwiczenie 3 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Urządzenia

Bardziej szczegółowo

PL 217306 B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL 27.09.2010 BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL 31.07.

PL 217306 B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL 27.09.2010 BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL 31.07. PL 217306 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217306 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 387605 (22) Data zgłoszenia: 25.03.2009 (51) Int.Cl.

Bardziej szczegółowo

AC/DC. Jedno połówkowy, jednofazowy prostownik

AC/DC. Jedno połówkowy, jednofazowy prostownik AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej

Bardziej szczegółowo

Ćwiczenie nr 3. Badanie instalacji fotowoltaicznej DC z akumulatorem

Ćwiczenie nr 3. Badanie instalacji fotowoltaicznej DC z akumulatorem Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie nr 3 Badanie instalacji fotowoltaicznej DC z akumulatorem OPIS STANOWISKA ORAZ INSTALACJI OGNIW SŁONECZNYCH.

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

Badanie silnika indukcyjnego jednofazowego i transformatora

Badanie silnika indukcyjnego jednofazowego i transformatora Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M3 - protokół Badanie silnika indukcyjnego jednofazowego i transformatora Data

Bardziej szczegółowo

Układy elektrycznego hamowania silników indukcyjnych

Układy elektrycznego hamowania silników indukcyjnych Ćwiczenie 9 Układy elektrycznego hamowania silników indukcyjnych 9.1. Program ćwiczenia 1. Poznanie metod i układów elektrycznego hamowania silników indukcyjnych.. Badanie właściwości i wyznaczenie charakterystyk

Bardziej szczegółowo

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH Badanie siłowników INSTRUKCJA DO ĆWICZENIA LABORATORYJNEGO ŁÓDŹ 2011

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu napięcia na prąd. Wyznaczanie charakterystyk prądowo-napięciowych elementów pasywnych... 68

Ćwiczenie 4 Badanie wpływu napięcia na prąd. Wyznaczanie charakterystyk prądowo-napięciowych elementów pasywnych... 68 Spis treêci Wstęp................................................................. 9 1. Informacje ogólne.................................................... 9 2. Zasady postępowania w pracowni elektrycznej

Bardziej szczegółowo

ANALIZA MOŻLIWOŚCI WYKORZYSTANIA PRĄDNIC SYNCHRONICZNYCH W ZESPOŁACH PRĄDOTWÓRCZYCH (SPALINOWO-ELEKTRYCZNYCH)

ANALIZA MOŻLIWOŚCI WYKORZYSTANIA PRĄDNIC SYNCHRONICZNYCH W ZESPOŁACH PRĄDOTWÓRCZYCH (SPALINOWO-ELEKTRYCZNYCH) POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 015 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA MOŻLIWOŚCI WYKORZYSTANIA PRĄDNIC SYNCHRONICZNYCH W ZESPOŁACH

Bardziej szczegółowo

PL B1. GRZENIK ROMUALD, Rybnik, PL MOŁOŃ ZYGMUNT, Gliwice, PL BUP 17/14. ROMUALD GRZENIK, Rybnik, PL ZYGMUNT MOŁOŃ, Gliwice, PL

PL B1. GRZENIK ROMUALD, Rybnik, PL MOŁOŃ ZYGMUNT, Gliwice, PL BUP 17/14. ROMUALD GRZENIK, Rybnik, PL ZYGMUNT MOŁOŃ, Gliwice, PL PL 223654 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223654 (13) B1 (21) Numer zgłoszenia: 402767 (51) Int.Cl. G05F 1/10 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora

2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora E Rys. 2.11. Uproszczony schemat zastępczy turbogeneratora 2.3. Praca samotna Maszyny synchroniczne może pracować jako pojedynczy generator zasilający grupę odbiorników o wypadkowej impedancji Z. Uproszczony

Bardziej szczegółowo

Falownik PWM LFP32 TYP1204

Falownik PWM LFP32 TYP1204 Falownik PWM LFP32 TYP1204 IT - Informacja Techniczna Aktualizacja 050421 www.lep.pl biuro@lep.pl 32-300 Olkusz, ul. Powstańców śląskich 5, tel/fax (32) 754 54 54, 754 54 55, 643 18 64 IT - Informacja

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA TECHNICZNE DLA JEDNOSTEK WYTWÓRCZYCH PRZYŁĄCZANYCH DO SIECI ROZDZIELCZEJ

SZCZEGÓŁOWE WYMAGANIA TECHNICZNE DLA JEDNOSTEK WYTWÓRCZYCH PRZYŁĄCZANYCH DO SIECI ROZDZIELCZEJ Załącznik nr 5 do Instrukcji ruchu i eksploatacji sieci rozdzielczej ZCZEGÓŁOWE WYMAGANIA TECHNICZNE DLA JEDNOTEK WYTWÓRCZYCH PRZYŁĄCZANYCH DO IECI ROZDZIELCZEJ - 1 - 1. POTANOWIENIA OGÓLNE 1.1. Wymagania

Bardziej szczegółowo

IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM

IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego

Bardziej szczegółowo

I. Podstawowe wiadomości dotyczące maszyn elektrycznych

I. Podstawowe wiadomości dotyczące maszyn elektrycznych 3 I. Podstawowe wiadomości dotyczące maszyn elektrycznych 1.1 Rodzaje i klasyfikacja maszyn elektrycznych... 10 1.2 Rodzaje pracy... 12 1.3 Temperatura otoczenia i przyrost temperatury... 15 1.4 Zabezpieczenia

Bardziej szczegółowo

Zasilacze: Prostowniki niesterowane, prostowniki sterowane

Zasilacze: Prostowniki niesterowane, prostowniki sterowane Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich Politechnika Warszawska Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E1 - instrukcja Zasilacze: Prostowniki niesterowane, prostowniki

Bardziej szczegółowo

Silnik obcowzbudny zasilany z nawrotnego prostownika sterowanego

Silnik obcowzbudny zasilany z nawrotnego prostownika sterowanego Ćwiczenie 5 Silnik obcowzbudny zasilany z nawrotnego prostownika sterowanego 5.1. Program ćwiczenia 1. Zapoznanie się ze strukturą układu pomiarowego i budową prostownika mostkowego.. Pomiary charakterystyk

Bardziej szczegółowo

Przekształtniki energoelektroniczne o komutacji zewnętrznej (sieciowej) - podstawy

Przekształtniki energoelektroniczne o komutacji zewnętrznej (sieciowej) - podstawy Przekształtniki energoelektroniczne o komutacji zewnętrznej (sieciowej) - podstawy Klasyfikacja, podstawowe pojęcia Nierozgałęziony obwód z diodą lub tyrystorem Schemat(y), zasady działania, przebiegi

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

Ćwiczenie 8. BADANIE MASZYN PRĄDU STAŁEGO STANOWISKO I. Badanie silnika bocznikowego

Ćwiczenie 8. BADANIE MASZYN PRĄDU STAŁEGO STANOWISKO I. Badanie silnika bocznikowego Laboratorium elektrotechniki Ćwiczenie 8. BADANIE MASZYN PRĄDU STAŁEGO STANOWISKO I. Badanie silnika bocznikowego 0 V L L+ + Łącznik tablicowy V A A m R r R md Autotransformator E 0 V~ E A M B 0 0 V Bezdotykowy

Bardziej szczegółowo

41 Przekształtniki napięcia przemiennego na napięcie stałe - typy, praca prostownika sterowanego

41 Przekształtniki napięcia przemiennego na napięcie stałe - typy, praca prostownika sterowanego 41 Przekształtniki napięcia przemiennego na napięcie stałe - typy, praca prostownika sterowanego Prostownikami są nazywane układy energoelektroniczne, służące do przekształcania napięć przemiennych w napięcia

Bardziej szczegółowo

Przekształtniki DC/DC

Przekształtniki DC/DC UWAGA! Teoria Przekształtników zadania zaliczeniowe cz. II ( Przekształtniki impulsowe - PI) 1.Przy rozwiązywaniu każdego zdania należy podać kompletny schemat przekształtnika wraz z zastrzałkowanymi i

Bardziej szczegółowo

Układ napędowy z silnikiem indukcyjnym pierścieniowym i modulatorem rezystancji w obwodzie wirnika

Układ napędowy z silnikiem indukcyjnym pierścieniowym i modulatorem rezystancji w obwodzie wirnika Ćwiczenie 17 Układ napędowy z silnikiem indukcyjnym pierścieniowym i modulatorem rezystancji w obwodzie wirnika 17.1. Program ćwiczenia 1. Wyznaczenie charakterystyk mechanicznych silnika w otwartym układzie

Bardziej szczegółowo