20. UKŁADY SAMOCZYNNEGO ZAŁĄCZANIA REZERWY

Wielkość: px
Rozpocząć pokaz od strony:

Download "20. UKŁADY SAMOCZYNNEGO ZAŁĄCZANIA REZERWY"

Transkrypt

1 20. UKŁADY SAMOCZYNNEGO ZAŁĄCZANIA REZERWY 20.. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z problematyką zasilania rezerwowego w przemysłowych i komunalnych sieciach zasilających i w instalacjach odbiorczych. Ćwiczenie obejmuje swym zakresem badanie układu samoczynnego załączania rezerwy (SZR) niskiego napięcia Informacje wstępne Wiadomości podstawowe Niezawodność zasilania stanowi jeden z czynników zapewniających pożądany poziom jakości energii elektrycznej w układach zasilania odbiorców. Projektowanie tych układów, zwłaszcza w przypadku zasilania odbiorców przemysłowych, jest kompromisem pomiędzy określonym poziomem niezawodności zasilania i jakością dostarczanej energii a nakładami na inwestycje i kosztami eksploatacji. Zakłócenia w pracy urządzeń powodowane przerwami w zasilaniu bądź niedostateczną jakością energii są zawsze niepożądane i mogą mieć różne, czasem bardzo poważne konsekwencje. Przykładowo w szpitalach mogą spowodować przerwę w operacji bądź w procesie intensywnej terapii. W budynkach użyteczności publicznej takich jak kina, teatry, hale wystawowe itp. gdzie jest zgromadzona znaczna liczba ludzi, przerwa w zasilaniu może być przyczyną paniki, a tym samym śmierci lub kalectwa wielu osób. W wielu gałęziach przemysłu, zwłaszcza tam, gdzie ma miejsce ciągły proces technologiczny (przemysł papierniczy, hutnictwo), bądź gdzie odbywa się produkcja oparta o zaawansowaną technologię (półprzewodniki), przerwa w zasilaniu jest przyczyną znacznych strat materialnych i długich przestojów związanych z cyklem wznowienia produkcji. Dla większości odbiorców przemysłowych, bądź wydzielonych grup odbiorników u tych odbiorców, określa się indywidualne warunki dotyczące niezawodności zasilania i jakości energii elektrycznej. Zwykle są to wymogi bardziej zaostrzone niż dla odbiorców zasilanych z sieci komunalnej. Dyspozycyjność D układu zasilania określona jest zależnością: n tfi D = i= m n tbi + tfi i= i= (20.)

2 gdzie: t Bi t Fi m n - czas i tego okresu pracy pomiędzy przerwami zasilania, - czas trwania i tej przerwy zasilania, - liczba okresów pracy pomiędzy przerwami zasilania, - liczba przerw zasilania w rozpatrywanym czasie obserwacji. Tab Kategorie odbiorców energii elektrycznej w zależności od stopnia niezawodności zasilania [20.] Kategoria I podstawowa II średnia III wysoka IV - najwyższa Wymagania dotyczące niezawodności Dopuszczalne stosunkowo długie przerwy w zasilaniu, rzędu wielu minut. Przerwy w zasilaniu nie powinny przekraczać kilku dziesiątek sekund Przerwy w zasilaniu nie powinny przekraczać sekundy. Zasilanie bezprzerwowe. Niedopuszczalna jest przerwa w zasilaniu wybranych urządzeń Możliwe rozwiązanie Zasilanie pojedynczą linią promieniową z sieci elektroenergetycznej. Brak wymogu zasilania rezerwowego Agregat prądotwórczy. Oświetlenie awaryjne. Dwie niezależne linie zasilające z systemu elektroenergetycznego i system zasilania rezerwowego z pełną automatyką sterowania zasilania rezerwowego. Zasilanie bezprzerwowe ze źródła rezerwowego. Agregat prądotwórczy przystosowany do długotrwałego zasilania. Przykładowi odbiorcy Domy jednorodzinne na terenach wiejskich i w rzadkiej zabudowie miejskiej, nieduże bloki mieszkalne. Wysokie budynki mieszkalne. Duże hotele, szpitale, stacje radiowe i telewizyjne, dworce kolejowe i porty lotnicze. Wybrane odbiory w obiektach kategorii III, np. sale operacyjne szpitali, systemy komputerowe banków, giełdy. Czas trwania przerwy w zasilaniu powinien uwzględniać czas niezbędny do wznowienia przerwanego procesu produkcyjnego, czyli czas upływający od chwili ponownego załączenia zasilania do chwili osiągnięcia pełnej wydajności produkcyjnej, co zilustrowano na rys. 20., gdzie czas przerwy (t a ) jest powiększony o czas (t s ), odpowiadający scałkowanej, zakreskowanej powierzchni.

3 E E e t t a t s t ae Rys Przebieg wydajności produkcji podczas wystąpienia przerwy w zasilaniu; t a czas przerwy w zasilaniu, t ae zastępczy czas przerwy w zasilaniu określony na podstawie kosztów strat produkcyjnych, t s czas niezbędny do uruchomienia procesu technologicznego, E e standardowa wydajność rozpatrywanego procesu. Koszt przerwy w zasilaniu nie zawsze jest wprost proporcjonalny do czasu jej trwania, co ilustruje kilka przykładowych scenariuszy zmienności kosztów przedstawionych na rys Koszty, oś nieskalowana Czas, oś nieskalowana Rys Wybrane, typowe charakterystyki zależności kosztów przerw w zasilaniu od czasu ich trwania. Pierwszy z nich (przebieg, rys. 20.2) to sytuacja, gdy koszty strat zawierają składnik stały, niezależny od czasu trwania przerwy w zasilaniu. Przykładem może tu być produkcja papieru, w której masa papierowa jest zamieniana w papier w efekcie

4 wielokrotnego walcowania i kolejnych faz suszenia, wymagających stałego sterowania naciągiem uzyskiwanej taśmy papieru. Awaria procesu sterowania powoduje zatrzymanie procesu oraz konieczność usunięcia i likwidacji masy znajdującej się wewnątrz unieruchomionych maszyn czynność wymagająca wielu roboczo-godzin pracy. W takim przypadku koszty strat są wysokie i jedynie w niewielkim stopniu zależne od czasu trwania przestoju. Innym przykładem zależności kosztów strat od czasu przestoju jest przebieg 2 na rys. 20.2, ilustrującej handel detaliczny produktami nie ulegającymi łatwemu zepsuciu. Początkowe koszty strat są w tym przypadku niewielkie i rosną w przybliżeniu proporcjonalnie do czasu trwania przerwy w zasilaniu. Lina 3 na rys reprezentuje koszty strat w przypadku awarii zasilania w systemie przetwarzania danych. Taki obiekt posiada zwykle rezerwowe źródło zasilania bezprzerwowego (UPS), które przejmuje obciążenie w początkowym okresie po wystąpieniu awarii. Stąd początkowe koszty strat są niewielkie. Jeśli jednak czas awarii zasilania podstawowego przekracza maksymalny czas zasilania rezerwowego należy przeprowadzić awaryjne zachowanie posiadanych informacji i przerwać bieżącą obsługę systemu. W takiej sytuacji koszty awarii gwałtownie rosną, co ilustruje skokowa zmiana krzywej 3 na rys Inny przebieg krzywej kosztów braku zasilania, której przykładem może być ferma drobiu, ilustruje krzywa 4 (rys. 20.2). Krótki czas przerwy, zwykle do kilku bądź kilkunastu minut, nie powoduje jeszcze strat. Jeśli natomiast przerwa jest dłuższa, wówczas straty spowodowane brakiem wentylacji i uduszeniem się drobiu gwałtownie rosną, proporcjonalnie do czasu utrzymywania się przerwy w zasilaniu Urządzenia zasilania rezerwowego. Podstawowe urządzenia zasilania rezerwowego zestawiono w tabeli 20.2, gdzie zawarto również ogólne porównanie ich wybranych właściwości. Tab Metody i urządzenia rezerwowego zasilania oraz porównanie ich podstawowych właściwości. Rodzaj metody/urządzenia Zasób mocy Czas przełączenia Koszt instalacji rezerwowa, niezależna linia nieograniczony bardzo krótki bardzo wysoki zasilająca z sieci el.-en. agregat prądotwórczy praktycznie nieograniczony od długiego do bardzo krótkiego od średniego do wysokiego baterie akumulatorów średni bardzo krótki niski układy zasiania bezprzerwowego (UPS) średni bardzo krótki średni do wysokiego

5 Niezależna linia zasilająca Rezerwowe zasilanie przy pomocy niezależnej linii elektroenergetycznej stosowane jest w przypadkach odbiorców pobierających znaczne wartości mocy, gdzie ma miejsce ciągły proces technologiczny, a koszty budowy dodatkowej linii są ekonomicznie uzasadnione. Przykładem takich odbiorców mogą być zakłady papiernicze lub stalownie. Przez niezależną linię elektroenergetyczną rozumie się rozwiązanie, w którym awaria, np. zwarcie występujące na jednej z linii nie powoduje równoczesnego wyłączenia drugiej, a wyłączenie obydwu z nich jest sytuacją bardzo mało prawdopodobną. Oceny takiej należy dokonać w oparciu o topologię układu zasilania, a właściwe rozwiązanie wymaga niejednokrotnie budowy długiej, a tym samym kosztownej, linii elektroenergetycznej. Dwie linie elektroenergetyczne należące do tej samej linii dwutorowej nie powinny być traktowane jako linie niezależne Agregaty prądotwórcze. Agregaty prądotwórcze składają się z jednego bądź większej liczby wysokoprężnych silników spalinowych będących źródłem energii mechanicznej, generatora służącego do zamiany energii mechanicznej na elektryczną, regulatorów prędkości kątowej, układu sterowania i rozdzielnicy elektrycznej. Urządzenia te są przystosowane do stosunkowo długiego czasu pracy, zwykle od kilku godzin do kilku dni, a w niektórych przypadkach nawet do pracy ciągłej. Agregaty prądotwórcze są dostępne w szerokim zakresie mocy znamionowych, przeciętnie od kilku kw do kilku MW. Większe jednostki, o mocach kilku MW i większych mogą być napędzane turbinami gazowymi i są stosowane również do pokrywania dobowych szczytów obciążenia w systemie elektroenergetycznym. Wyróżnia się dwa podstawowe rozwiązania agregatów prądotwórczych (rys. 20.3): bez koła zamachowego, z kołem zamachowym. Agregaty bez koła zamachowego są uruchamiane w chwili wystąpienia awarii (rys.20.3a, b). Do rozruchu silnika wysokoprężnego używana jest zwykle bateria akumulatorów. Czas przełączenia ma w tym rozwiązaniu znaczne wartości i jest równy czasowi upływającemu od chwili wystąpienia przerwy w zasilaniu do chwili osiągnięcia przez generator pełnej gotowości do obciążenia. W najprostszych rozwiązaniach agregaty są załączane ręcznie (rys. 20.3a). Obecnie jednak większość agregatów prądotwórczych zainstalowanych jako źródło zasilania rezerwowego jest załączana automatycznie (rys. 20.3b), przy czym typowe czasy przełączania zawierają się w zakresie od 6 do 5 sekund dla małych jednostek, do ok. 80 s dla jednostek o znacznej mocy. W wielu rozwiązaniach silniki spalinowe agregatów są w sposób ciągły podgrzewane podczas postoju do temperatury roboczej, w celu skrócenia czasu trwania rozruchu, a tym samym czasu przełączenia oraz zdolności do przejęcia pełnej mocy znamionowej w bardzo krótkim czasie.

6 a) Zasilanie podstawowe z sieci elektroenergetycznej b) Zasilanie podstawowe z sieci elektroenergetycznej odbiory c) Zasilanie podstawowe z sieci elektroenergetycznej d) odbiory Zasilanie podstawowe z sieci elektroenergetycznej odbiory odbiory Rys Różne układy agregatów prądotwórczych; silnik spalinowy z rozrusznikiem, 2 sprzęgło, 3 generator, 4 rozdzielnica, 5 koło zamachowe, 6 - silnik elektryczny do napędu generatora i koła zamachowego: a) z rozruchem ręcznym, b) z rozruchem automatycznym z czasami przełączenia od kilku sekund do ok. 80 s, c) i d) z kołem zamachowym, przy czasach przełączenia odpowiednio 0,5 2 s i bezprzerwowo. Agregaty z kołem zamachowym cechują się znacznie krótszym czasem przełączania: od ok. 2 s (rys. 20.3c) do przełączenia bezprzerwowego (rys. 20.3d). W normalnych warunkach zasilania generator i koło zamachowe są stale napędzane przez silnik elektryczny z prędkością równą prędkości synchronicznej maszyny. W rozwiązaniu z rys c, a silnik pokrywa jedynie straty biegu jałowego generatora i koła zamachowego. W chwili przerwy w zasilaniu podstawowym następuje automatyczne połączenie koła zamachowego z silnikiem spalinowym poprzez sprzęgło elektromagnetyczne. Dzięki energii mechanicznej zgromadzonej w kole zamachowym następuje szybki rozruch silnika, który zaczyna napędzać generator. Czas upływający od chwili rozruchu silnika spalinowego do gotowości generatora do obciążenia jest krótki i zawiera się w zakresie od 0,5 s do 2 s.

7 W układzie widocznym na rys. 20.3d, w normalnych warunkach pracy odbiory są zasilane nie z sieci lecz z generatora, który jest napędzany przez silnik elektryczny o odpowiednio dużej mocy, zasilany z sieci. W przypadku przerwy w zasilaniu z sieci sprzęgło elektromagnetyczne łączy koło zamachowe z silnikiem spalinowym, który przejmuje napęd generatora. zasilone są praktycznie bezprzerwowo, jedynie z niewielkim możliwym do wystąpienia obniżeniem napięcia w chwili przejmowania obciążenia przez silnik spalinowy Baterie akumulatorów Baterie akumulatorów, to najczęstsze źródło zasilania stosowane w elektronicznych układach UPS jak również w niektórych rozwiązaniach opisanych wyżej agregatów prądotwórczych jako źródło energii do rozruchu silników spalinowych i do sterowania układów automatyki. Są one również szeroko stosowane jako autonomiczne źródła rezerwowego zasilania, zwłaszcza odbiorników prądu stałego bądź odbiorników, które mogą być zasilane zarówno prądem stałym jak i przemiennym, np. oświetlenie awaryjne, układy telekomunikacyjne. Typowe układy baterii akumulatorów jako źródeł zasilania rezerwowego przedstawiono na rys a) Sieć 2 S DC b) Sieć DC Sieć Sieć 2 S DC DC Rys Różne rozwiązania zasilania odbiorników prądu stałego z użyciem układów prostownikowych i baterii akumulatorów jako źródła rezerwowego; a) układ z łącznikiem S, b) układ bezprzerwowego zasilania; zasilanie z sieci w normalnym stanie pracy, 2 zasilanie rezerwowe z baterii akumulatorów. W układzie na rys. 20.4a odbiory prądu stałego w normalnych warunkach pracy są zasilane z sieci poprzez prostownik, podczas gdy bateria akumulatorów jest stale doładowywana poprzez odrębny układ prostownikowy. W chwili zaniku napięcia na źródle zasilania podstawowego, lub gdy to napięcie odbiega od dopuszczalnych tolerancji, odbiory są przełączane na zasilanie z baterii przy pomocy łącznika S z krótkim, lecz większym od zera czasem przełączenia. W układach z rys. 20.4b

8 odbiory prądu stałego są podłączone bezpośrednio do układu prostowniczego równolegle z baterią akumulatorów. Podczas normalnego stanu pracy prostownik zasila odbiory oraz w sposób ciągły doładowuje baterię. W przypadku braku napięcia sieci odbiory zasilane są bezpośrednio z baterii, przy zerowym czasie przełączenia Układy zasilania bezprzerwowego (UPS) Układy UPS są obecnie powszechnie stosowane jako źródła zasilania rezerwowego przede wszystkim tam, gdzie czas przełączania powinien być bardzo krótki bądź zerowy. Statyczne układy UPS są obecnie produkowane w szerokim zakresie mocy znamionowych od 200 VA do 50 kv A (układy jednofazowe) i od 0 kv A do około 4000 kv A (układy trójfazowe). Chociaż podstawowym zadaniem UPS jest rezerwowe zasilanie, niektóre z tych układów są również stosowane do lokalnej poprawy jakości energii elektrycznej. Sprawność układów UPS jest bardzo wysoka: straty mocy zawierają się od 3% do 0 %, zależnie od liczby przekształtników i rodzaju zastosowanej baterii akumulatorów. Podstawowa klasyfikacja układów UPS jest określona w normie IEC opublikowanej w roku 2099, przyjętej przez CENELEC jako norma EN [20.2]. Norma rozróżnia trzy klasy układów UPS, przy czym za podstawę klasyfikacji przyjęto wzajemną zależność wartości napięcia wejściowego i jego częstotliwości od parametrów napięcia na wejściu układu: VFD (output Voltage and Frequency Dependent from mains supply) - wartość i częstotliwość napięcia wyjściowego są zależne od parametrów napięcia zasilającego VI (output Voltage Independent from mains supply) wartość napięcia wyjściowego jest zależna od parametrów napięcia zasilającego VFI (output Voltage and Frequency Independent from mains supply) wartość i częstotliwość napięcia wyjściowego są niezależne od parametrów napięcia zasilającego. W praktyce ta klasyfikacja odpowiada innemu podziałowi układów UPS, uwzględniającego ich strukturę wewnętrzną: układy o biernej gotowości (passive standby) układy liniowo interaktywne (line interactive) układy o podwójnej konwersji (double conversion). Układy o biernej gotowości (passive standby) (rys. 20.5), to najprostsze rozwiązanie UPS, w którym w normalnych warunkach pracy odbiory są zasilane bezpośrednio z sieci (droga, rys. 20.5). Bateria akumulatorów jest stale doładowywane poprzez prostownik (droga 2, rys. 20.5). W trybie zasilania rezerwowego odbiory są zasilane z baterii akumulatorów poprzez falownik (droga 3, rys. 20.5). Przełączenie z trybu pracy normalnej do trybu zasilania rezerwowego

9 następuje poprzez przełączenie łącznika S (rys. 20.5) gdy parametry napięcia sieci wykraczają poza dopuszczalne tolerancje zmian. Rozwiązanie takie wymaga określonego, zwykle bardzo krótkiego, czasu przełączenia. Sieć S 2 3 B Rys Schemat blokowy ilustrujący budowę i zasadę działania układu UPS o biernej gotowości (VFD); S łącznik, B bateria akumulatorów, tryb pracy w normalnych warunkach zasilania, 2 ładowanie baterii akumulatorów w normalnych warunkach pracy, 3 tryb zasilania rezerwowego. Sieć zasilająca Połączenie obejściowe (by-pass) 2 Tr P B Rys Schemat blokowy układu liniowo interaktywnego UPS; Tr- transformator, P przekształtnik AC/DC i DC/AC, B bateria akumulatorów. Układy liniowo interaktywne (line interactive) (rys. 20.6) pozwalają na bieżącą poprawę jakości napięcia odbiornika. W normalnych warunkach pracy odbiornik jest zasilony bezpośrednio z sieci (droga, rys. 20.6), przy czym równolegle do odbiornika podłączona jest bateria akumulatorów B, doładowywana w sposób ciągły poprzez transformator Tr i przekształtnik P (droga 2, rys. 20.6). Zasadniczą zaletą tego rozwiązania jest ciągła stabilizacja (kondycjonowanie) napięcia wyjściowego

10 w przypadku zaburzeń napięcia sieci (wahania, zapady napięcia). Dotyczy to krótkotrwałych zmian napięcia, podczas których nie następuje jeszcze przełączenie na zasilanie rezerwowe. W takich przypadkach bateria akumulatorów B dostarcza dodatkową energię poprzez przekształtnik P i transformator Tr (droga 3, rys. 20.6). W trybie pracy awaryjnej odbiornik zasilony jest z baterii akumulatorów poprzez przekształtnik i transformator (droga 3, rys. 20.6). Połączenie obejściowe (by-pass) Sieć zasilająca F S Obciążenie B Rys Schemat blokowy układu UPS o podwójnej konwersji z połączeniem obejściowym. Układy o podwójnej konwersji (double conversion) (rys. 20.7) to najbardziej rozbudowane układy zasilania bezprzerwowego. Podczas normalnej pracy energia jest przetwarzana dwukrotnie: raz z prądu przemiennego na prąd stały, a następnie z prądu stałego na prąd przemienny (rys. 20.7). W obwodzie pośredniczącym prądu stałego w sposób ciągły jest ładowana bateria akumulatorów. W przypadku, gdy napięcie sieci wykracza poza granice tolerancji uznane za dopuszczalne w normalnych warunkach pracy, układ w sposób płynny, bez dokonywania czynności łączeniowych przechodzi na zasilanie bateryjne, czyli tryb zasilania awaryjnego. Zaletą układów o podwójnej konwersji jest: całkowicie płynne, praktycznie niemal nieodczuwalne dla odbiornika przejście z zasilania podstawowego na rezerwowe, możliwość pracy układu odbiornika na częstotliwości innej niż częstotliwość układu zasilającego (nie dotyczy to przypadku pracy z wykorzystaniem obwodu obejściowego by-pass).

11 Agregat prądotwórczy Zasilany obiekt Linia elektroenergetyczna Linia elektroenergetyczna 2 Układ samoczynnego załączenia rezerwy G Układ samoczynnego załączenia rezerwy 2 Rozdzielnica główna wymagające dużej niezawodności zasilania UPS wymagające bardzo dużej niezawodności zasilania Rys Przykładowe rozwiązanie układu zasilania o dużej niezawodności zasilania Układy samoczynnego załączenia rezerwy (SZR) niskiego napięcia W praktyce zachodzi często potrzeba zastosowania określonej kombinacji układów zasilania rezerwowego (rys. 20.8) w celu zapewnienia odpowiedniego stopnia niezawodności. Ponadto celowym jest podzielenie odbiorników w danym obiekcie na dwie lub większą liczbę grup, zależnie od priorytetu zasilania. Przykładowo sprzęt informatyczny powinien należeć do grupy o najwyższym priorytecie zasilania (kategoria IV, tabela 20.) i powinien być zasilany przy pomocy układu UPS. dla których dopuszczalna jest krótka, określona przerwa w zasilaniu mogą być ponownie załączone po uruchomieniu agregatu prądotwórczego. Operacje łączeniowe w układach jak na rys są dokonywane przez układy samoczynnego załączenia rezerwy (SZR). Przykład praktycznego rozwiązania układu SZR niskiego napięcia przedstawiono na rys Napięcie wejściowe jest kontrolowane w panelu wejściowym i w zależności od jego wartości przekaźnik główny steruje układem. Zamieszczony diagram ilustruje sekwencję pracy poszczególnych elementów układu SPZ.

12 N R U N U R Układ kontroli napięć wejściowych NCB RCB Przekaźnik samoczynnego załączenia rezerwy (SZR) Gen S S2 grupy I grupy II U N 0 U R 0 NCB RCB Gen t t3 tg t2 t4 t5 t Rys Schemat blokowy układu samoczynnego załączenia rezerwowego zasilania niskiego napięcia wraz z diagramem czasowym jego działania. N źródło zasilania podstawowego, R źródło zasilania rezerwowego, NCB, RCB wyłączniki, odpowiednio podstawowego i rezerwowego źródła zasilania, S, S2 łączniki załączające odpowiednio odbiory o wyższej i niższej kategorii zasilania, Gen agregat prądotwórczy, U N, U R zmierzone wartości napięć, odpowiednio źródła podstawowego i rezerwowego Niezbędne przygotowanie studenta Studentów obowiązuje znajomość podstawowych zagadnień związanych z zasilaniem rezerwowym w sieciach zasilających i instalacjach niskiego napięcia, opisanych w punkcie 20.2 oraz informacje z tego zakresu zawarte w pozycji [20.3].

13 20.4. Opis stanowiska laboratoryjnego Stanowisko laboratoryjne jest wyposażone w układ SZR niskiego napięcia, odpowiadający schematowi przedstawionemu na rys Podstawowym elementem układu jest przekaźnik SZR, który steruje pracą pozostałych urządzeń w oparciu o pomiar napięć zasilających źródła podstawowego N oraz źródła rezerwowego R. Wyłączniki: NCB w torze zasilania podstawowego i RCB w torze zasilania rezerwowego są wyłącznikami samoczynnymi niskiego napięcia z napędem silnikowym. Pozostałe łączniki są łącznikami stycznikowymi. Na przekaźniku SZR istnieje możliwość nastawiania czasów realizacji poszczególnych funkcji układu, zgodnie z diagramem przedstawionym na rys. 20.9: t zwłoka czasowa od chwili zaniku napięcia w torze zasilania podstawowego N, do chwili wyłączenia wyłącznika NCB w tym torze; zakres nastaw: 0, 30 s, t2 zwłoka czasowa od chwili pojawienia się napięcia w podstawowym torze zasilania (po okresie zasilania ze źródła rezerwowego) do chwili otwarcia wyłącznika RCB w torze zasilania rezerwowego; zakres nastaw: 0, 240 s, t3 zwłoka czasowa od chwili otwarcia wyłącznika w torze zasilania podstawowego NCB (po zaniku napięcia w tym torze) do zamknięcia wyłącznika RCB (załączenie zasilania rezerwowego); zakres nastaw: 0,5 30 s, t4 zwłoka czasowa od chwili wyłączenia wyłącznika RCB do chwili załączenia wyłącznika w zasilaniu podstawowym NCB, a tym samym przywrócenia zasilania podstawowego; zakres nastaw: 0,5 30 s, tg czas upływający od chwili zaniku napięcia w podstawowym źródle zasilania do chwili uruchomienia agregatu prądotwórczego i jego gotowości do obciążenia; czas ten nie jest nastawiany, zależy bowiem od parametrów agregatu, t5 zwłoka czasowa niezbędna dla potwierdzenia trwałej obecności napięcia U N przed wyłączeniem agregatu prądotwórczego Gen; zakres nastaw od 60 do 600 s. Przekaźnik SZR posiada cztery możliwe tryby pracy: praca automatyczna, podczas której realizuje podane wyżej sekwencje nastaw czasowych, blokada przełączenia na zasilanie rezerwowe (np. na czas dokonywanych tam napraw), blokada przełączania na zasilanie podstawowe i ciągłe zasilanie ze źródła rezerwowego, sterowanie ręczne.

14 Stanowisko jest wyposażone w dwa źródła zasilania, umożliwiające symulację różnych stanów pracy układu Program ćwiczenia W trakcie ćwiczenia należy zapoznać się szczegółowo z wyposażeniem stanowiska, sposobem obsługi przekaźnika SZR i wyłączników samoczynnych NCB i RCB. Następnie należy przeprowadzić obserwację pracy układu SZR dla kilku zadanych przez prowadzącego sytuacji, różniących się pomiędzy sobą: sekwencjami diagramu przełączeń w trybie pracy automatycznej przekaźnika SZR, zmianą trybu pracy przekaźnika SZR na starowanie ręczne oraz blokadę przełączeń odpowiednio na zasilaniu podstawowym i rezerwowym Opracowanie wyników badań Wyniki obserwacji pracy układu dla wszystkich przebadanych sytuacji należy opisać, odnosząc je do praktycznych sytuacji, w których mogłyby być zastosowane. Wyciągnąć wnioski dotyczące możliwości zastosowania, zalet i wad przebadanego rozwiązania układu SZR Literatura [20.] Markiewicz H., Klajn A.: Układy rezerwowego zasilania odbiorców. Materiały z cyklu Pewność zasilania opracowane w ramach Projektu Leonardo Power Quality Initiative, [20.2] EN-5009, Uninterruptible power systems (Bezprzerwowe systemy zasilania). [20.3] Markiewicz H. Urządzenia elektroenergetyczne, WNT, Warszawa 200.

Symulacja komputerowa układów SZR

Symulacja komputerowa układów SZR Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Instrukcja

Bardziej szczegółowo

Pewność zasilania. Układy rezerwowego zasilania odbiorców 4.3.1

Pewność zasilania. Układy rezerwowego zasilania odbiorców 4.3.1 Pewność zasilania Układy rezerwowego zasilania odbiorców 4.3.1 Pewność zasilania Pewność zasilania Układy rezerwowego zasilania odbiorców Prof. Henryk Markiewicz i Dr Antoni Klajn Politechnika Wrocławska

Bardziej szczegółowo

Układ samoczynnego załączania rezerwy

Układ samoczynnego załączania rezerwy Układ samoczynnego załączania rezerwy Układy samoczynnego załączenia rezerwy służą, do automatycznego przełączenia źródła zasilania prądem elektrycznym z podstawowego na rezerwowe. Stosowane są bardzo

Bardziej szczegółowo

NAJWIĘKSZY POLSKI PRODUCENT PRZEKAŹNIKÓW ELEKTROMAGNETYCZNYCH

NAJWIĘKSZY POLSKI PRODUCENT PRZEKAŹNIKÓW ELEKTROMAGNETYCZNYCH NAJWIĘKSZY POLSKI PRODUCENT PRZEKAŹNIKÓW ELEKTROMAGNETYCZNYCH MODUŁY AUTOMATYKI Samoczynnego Załączania Rezerwy Co to jest SZR? Zadaniem automatyki samoczynnego załączenia rezerwy (SZR) jest przełączenie

Bardziej szczegółowo

Dokumentacja układu automatyki SZR PA1001-KM

Dokumentacja układu automatyki SZR PA1001-KM Dokumentacja układu automatyki SZR PA1001-KM Żary 07.2009 Wprowadzenie Zadaniem automatyki Samoczynnego Załączenia Rezerwy (SZR) jest przełączenie zasilania podstawowego na rezerwowe w przypadku zaniku

Bardziej szczegółowo

EPPL 1-1. KOMUNIKACJA - Interfejs komunikacyjny RS 232 - Sieciowa Karta Zarządzająca SNMP/HTTP

EPPL 1-1. KOMUNIKACJA - Interfejs komunikacyjny RS 232 - Sieciowa Karta Zarządzająca SNMP/HTTP EPPL 1-1 Najnowsza seria zaawansowanych technologicznie zasilaczy klasy On-Line (VFI), przeznaczonych do współpracy z urządzeniami zasilanymi z jednofazowej sieci energetycznej ~230V: serwery, sieci komputerowe

Bardziej szczegółowo

Badanie układu samoczynnego załączania rezerwy

Badanie układu samoczynnego załączania rezerwy Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Instrukcja

Bardziej szczegółowo

Kryteria wymiarowania

Kryteria wymiarowania Prof.dr hab.inż. Henryk Markiewicz KRYTERIA WYMIAROWANIA INSTALACJI ELEKTRYCZNYCH 1. WSTĘP Instalacje elektryczne, tak jak każdy obiekt inżynierski,powinny być zaprojektowane i zrealizowane zgodnie z wymogami

Bardziej szczegółowo

B O O K E R I N F O 1

B O O K E R I N F O 1 B O O K E R I N FO 1 O FIRMIE APS ENERGIA 100% polskiego kapitału Technologia opracowana i produkowana w Polsce 23 lata doświadczenia 370 pracowników w kraju i za granicą SEKTOR OBRONNY ENERGETYKA PRZEMYSŁ

Bardziej szczegółowo

JAKOŚĆ ENERGII ELEKTRYCZNEJ ZAPADY NAPIĘCIA

JAKOŚĆ ENERGII ELEKTRYCZNEJ ZAPADY NAPIĘCIA JAKOŚĆ ENERGII ELEKTRYCZNEJ ZAPADY NAPIĘCIA Zbigniew HANZELKA Wykład nr 10 Podwyższenie odporności regulowanego napędu na zapady napięcia INVERTOR Sieć zasilająca Prostownik U dc Schemat ideowy regulowanego

Bardziej szczegółowo

Obecnie na rynku przeważają dwa rodzaje zasilaczy awaryjnych. Noszą one nazwy według układu połączeń swoich elementów składowych.

Obecnie na rynku przeważają dwa rodzaje zasilaczy awaryjnych. Noszą one nazwy według układu połączeń swoich elementów składowych. chesia@paset te 74 873 54 63 ZASILACZE AWARYJNE Zasilacze awaryjne (UPS) są urządzeniami gwarantującymi pracę podłączonego do nich sprzętu w momentach zaniku prądu. Urządzenia podtrzymujące mają dosłownie

Bardziej szczegółowo

Laboratorium Podstaw Energoelektroniki. Krzysztof Iwan Piotr Musznicki Jarosław Guziński Jarosław Łuszcz

Laboratorium Podstaw Energoelektroniki. Krzysztof Iwan Piotr Musznicki Jarosław Guziński Jarosław Łuszcz Laboratorium Podstaw Energoelektroniki Krzysztof Iwan Piotr Musznicki Jarosław Guziński Jarosław Łuszcz Gdańsk 2011 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Romuald Szymkiewicz

Bardziej szczegółowo

UKŁAD SAMOCZYNNEGO ZAŁĄCZANIA REZERWY ZASILANIA (SZR) z MODUŁEM AUTOMATYKI typu MA-0B DOKUMENTACJA TECHNICZNO-RUCHOWA

UKŁAD SAMOCZYNNEGO ZAŁĄCZANIA REZERWY ZASILANIA (SZR) z MODUŁEM AUTOMATYKI typu MA-0B DOKUMENTACJA TECHNICZNO-RUCHOWA 1 UKŁAD SAMOCZYNNEGO ZAŁĄCZANIA REZERWY ZASILANIA (SZR) z MODUŁEM AUTOMATYKI typu MA-0B DOKUMENTACJA TECHNICZNO-RUCHOWA 2 Spis treści 1. Ogólna charakterystyka układu SZR zbudowanego z użyciem modułu automatyki...

Bardziej szczegółowo

Sterownik SZR-V2 system automatycznego załączania rezerwy w układzie siec-siec / siec-agregat

Sterownik SZR-V2 system automatycznego załączania rezerwy w układzie siec-siec / siec-agregat Sterownik SZR-V2 system automatycznego załączania rezerwy w układzie siec-siec / siec-agregat Opis Moduł sterownika elektronicznego - mikroprocesor ATMEGA128 Dwa wejścia do pomiaru napięcia trójfazowego

Bardziej szczegółowo

Poprawa jakości energii i niezawodności. zasilania

Poprawa jakości energii i niezawodności. zasilania Poprawa jakości energii i niezawodności zasilania Technologia Technologia Technologia Technologia Technologia Technologia Technologia Technologia Poziom zniekształceń napięcia w sieciach energetycznych,

Bardziej szczegółowo

ZASILACZE BEZPRZERWOWE

ZASILACZE BEZPRZERWOWE ZASILACZE BEZPRZERWOWE seria falowników FM, FPM, FPTM FALOWNIKI PRZEZNACZENIE Nowoczesne przemysłowo-energetyczne zasilacze bezprzerwowe przystosowane do współpracy z zewnętrzną baterią 220 V (340 V) zapewniają

Bardziej szczegółowo

TOPOLOGIE ZASILACZY UPS

TOPOLOGIE ZASILACZY UPS mgr inż. Piotr Strzelecki TOPOLOGIE ZASILACZY UPS Zasilacze awaryjne UPS są najpopularniejszym i najskuteczniejszym środkiem do przeciwdziałania zakłóceniom zasilania oraz kondycjonowania energii (polepszania

Bardziej szczegółowo

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH 15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych

Bardziej szczegółowo

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Andrzej Purczyński PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Materiały szkolenia technicznego, Jakość energii elektrycznej i jej rozliczanie, Poznań Tarnowo Podgórne II/2008, ENERGO-EKO-TECH

Bardziej szczegółowo

str. 1 Temat: Sterowanie stycznikami za pomocą przycisków.

str. 1 Temat: Sterowanie stycznikami za pomocą przycisków. Temat: Sterowanie stycznikami za pomocą przycisków. Na rys. 7.17 przedstawiono układ sterowania silnika o rozruchu bezpośrednim za pomocą stycznika. Naciśnięcie przycisku Z powoduje podanie napięcia na

Bardziej szczegółowo

Badanie wyspowej instalacji fotowoltaicznej

Badanie wyspowej instalacji fotowoltaicznej LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 6 Badanie wyspowej instalacji fotowoltaicznej Cel ćwiczenia: Zapoznanie studentów z działaniem wyspowej instalacji fotowoltaicznej. Badane elementy: Laboratoryjna

Bardziej szczegółowo

MAŁA PRZYDOMOWA ELEKTROWNIA WIATROWA SWIND 3200

MAŁA PRZYDOMOWA ELEKTROWNIA WIATROWA SWIND 3200 www.swind.pl MAŁA PRZYDOMOWA ELEKTROWNIA WIATROWA SWIND 3200 Producent: SWIND Elektrownie Wiatrowe 26-652 Milejowice k. Radomia ul. Radomska 101/103 tel. 0601 351 375, fax: 048 330 83 75. e-mail: biuro@swind.pl

Bardziej szczegółowo

Elektronika przemysłowa

Elektronika przemysłowa Elektronika przemysłowa Kondycjonery energii elektrycznej Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 2 PAN WYKŁADU Definicja kondycjonera energii elektrycznej

Bardziej szczegółowo

MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1. Zbigniew Krzemiński, MMB Drives sp. z o.o.

MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1. Zbigniew Krzemiński, MMB Drives sp. z o.o. Zakres modernizacji MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1 Zbigniew Krzemiński, MMB Drives sp. z o.o. Wirówka DSC/1 produkcji NRD zainstalowana w Spółdzielni Mleczarskiej Maćkowy

Bardziej szczegółowo

Ćwiczenie nr 3. Badanie instalacji fotowoltaicznej DC z akumulatorem

Ćwiczenie nr 3. Badanie instalacji fotowoltaicznej DC z akumulatorem Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie nr 3 Badanie instalacji fotowoltaicznej DC z akumulatorem OPIS STANOWISKA ORAZ INSTALACJI OGNIW SŁONECZNYCH.

Bardziej szczegółowo

Zasilacze awaryjne UPS

Zasilacze awaryjne UPS Zasilacze awaryjne UPS czyli pracujemy chociaż w gniazdku nie ma prądu Głównym zadaniem zasilacza awaryjnego jest podtrzymanie pracy zestawu komputerowego podczas zaniku napięcia w sieci zasilającej. Realizuje

Bardziej szczegółowo

Zasilanie obiektów telekomunikacyjnych, wymagania

Zasilanie obiektów telekomunikacyjnych, wymagania Zasilanie obiektów telekomunikacyjnych, wymagania Ryszard Witczyński 2011-11-13 1 OCZEKIWANIE INFORMATYKA Rozdzielnica zasilająca Prosty przykład zasilania komputera rezerwowanego UPS-em, czas podtrzymania

Bardziej szczegółowo

f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy

f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy PORTFOLIO: Opracowanie koncepcji wdrożenia energooszczędnego układu obciążenia maszyny indukcyjnej dla przedsiębiorstwa diagnostyczno produkcyjnego. (Odpowiedź na zapotrzebowanie zgłoszone przez przedsiębiorstwo

Bardziej szczegółowo

Zalety rozdzielnic SN typu MILE wyposażonych w wyłączniki o napędzie magnetycznym

Zalety rozdzielnic SN typu MILE wyposażonych w wyłączniki o napędzie magnetycznym Zalety rozdzielnic SN typu MILE wyposażonych w wyłączniki o napędzie magnetycznym Styczeń 2017 Opracowano na podstawie ogólnodostępnych materiałów reklamowych firm produkujących wyłączniki i rozdzielnice

Bardziej szczegółowo

EPPL , 15-31, 20-31

EPPL , 15-31, 20-31 Najnowsza seria zaawansowanych technologicznie zasilaczy klasy On-Line (VFI), przeznaczonych do współpracy z urządzeniami zasilanymi z jednofazowej sieci energetycznej ~230V: serwery, sieci komputerowe

Bardziej szczegółowo

Double Conversion On-Line UPS Zasilacze pracujące w trybie on-line (true) Delta Conversion On-Line UPS

Double Conversion On-Line UPS Zasilacze pracujące w trybie on-line (true) Delta Conversion On-Line UPS JAKOŚĆ ENERGII ELEKTRYCZNEJ Analiza pracy bezprzerwowych układów zasilania UPS z wykorzystaniem rejestratora TOPAS 1000 dr inż. Andrzej Firlit 11.06.2014 1 Rodzaje UPS-ów Standby UPS Zasilacze pracujące

Bardziej szczegółowo

STUDIA I STOPNIA STACJONARNE ELEKTROTECHNIKA

STUDIA I STOPNIA STACJONARNE ELEKTROTECHNIKA STUDIA I STOPNIA STACJONARNE ELEKTROTECHNIKA PRZEDMIOT: ROK: 3 SEMESTR: 5 (zimowy) RODZAJ ZAJĘĆ I LICZBA GODZIN: LICZBA PUNKTÓW ECTS: RODZAJ PRZEDMIOTU: URZĄDZENIA ELEKTRYCZNE 5 Wykład 30 Ćwiczenia Laboratorium

Bardziej szczegółowo

PSPower.pl MULTIFAL. Najbardziej wszechstronne urządzenie do zasilania. Parametry Sposób pracy. www.pspower.pl. v1.0 2014-05-21 PSPower

PSPower.pl MULTIFAL. Najbardziej wszechstronne urządzenie do zasilania. Parametry Sposób pracy. www.pspower.pl. v1.0 2014-05-21 PSPower Najbardziej wszechstronne urządzenie do zasilania MULTIFAL Parametry Sposób pracy v1.0 2014-05-21 PSPower Główne cechy: MUTIFAL Basic: Funkcja zasilacza UPS (automatyczne przełączanie źródeł zasilania).

Bardziej szczegółowo

Ministerstwa Spraw Wewnętrznych w Szczecinie

Ministerstwa Spraw Wewnętrznych w Szczecinie S A M O D Z I E L N Y P U B L I C Z N Y Z A K Ł A D O P I E K I Z D R O W O T N E J Ministerstwa Spraw Wewnętrznych w Szczecinie ul. Jagiellońska 44, 70-382 Szczecin, sekretariat: (0-91) 43-29-500, fax

Bardziej szczegółowo

UKŁADY I SYSTEMY ZAPEWNIENIA CIĄGŁOŚCI ZASILANIA OBIEKTÓW PRZEMYSŁOWYCH I UŻYTECZNOŚCI PUBLICZNEJ. Gdańsk 2011

UKŁADY I SYSTEMY ZAPEWNIENIA CIĄGŁOŚCI ZASILANIA OBIEKTÓW PRZEMYSŁOWYCH I UŻYTECZNOŚCI PUBLICZNEJ. Gdańsk 2011 UKŁADY I SYSTEMY ZAPEWNIENIA CIĄGŁOŚCI ZASILANIA OBIEKTÓW PRZEMYSŁOWYCH I UŻYTECZNOŚCI PUBLICZNEJ Gdańsk 2011 Plan wykładu 1. Ograniczona niezawodności zasilania 2. Urządzenia zasilania rezerwowego 3.

Bardziej szczegółowo

Telekomunikacyjny system zasilania gwarantowanego, zintegrowany na napięciu przemiennym 230V AC

Telekomunikacyjny system zasilania gwarantowanego, zintegrowany na napięciu przemiennym 230V AC Zakład Systemów Zasilania (Z-5) Telekomunikacyjny system zasilania gwarantowanego, zintegrowany na napięciu przemiennym 23V AC Praca nr 5327 Warszawa grudzień 27 1 Telekomunikacyjny system zasilania gwarantowanego,

Bardziej szczegółowo

A B S O L U T N A P E W N O Ś Ć Z A S I L A N I A

A B S O L U T N A P E W N O Ś Ć Z A S I L A N I A VA1209-0 ZASILACZE AWARYJNE UPS COMEX S.A. ul. Azymutalna 5, 80-382 GDAŃSK http://www.comex.com.pl email: info@comex.com.pl Niezawodne elementy gwarantowanego zasilania elektrycznego 1.Klasyfikacja systemów

Bardziej szczegółowo

Maszyny i urządzenia elektryczne. Tematyka zajęć

Maszyny i urządzenia elektryczne. Tematyka zajęć Nazwa przedmiotu Maszyny i urządzenia elektryczne Wprowadzenie do maszyn elektrycznych Transformatory Maszyny prądu zmiennego i napęd elektryczny Maszyny prądu stałego i napęd elektryczny Urządzenia elektryczne

Bardziej szczegółowo

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH Badanie siłowników INSTRUKCJA DO ĆWICZENIA LABORATORYJNEGO ŁÓDŹ 2011

Bardziej szczegółowo

Badanie silnika indukcyjnego jednofazowego i transformatora

Badanie silnika indukcyjnego jednofazowego i transformatora Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M3 - protokół Badanie silnika indukcyjnego jednofazowego i transformatora Data

Bardziej szczegółowo

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ Jerzy Niebrzydowski, Grzegorz Hołdyński Politechnika Białostocka Streszczenie W referacie przedstawiono

Bardziej szczegółowo

Od autora... 13. Spis wybranych oznaczeñ i symboli... 15

Od autora... 13. Spis wybranych oznaczeñ i symboli... 15 Tytu³ rozdzia³u Spis treœci Od autora... 13 Spis wybranych oznaczeñ i symboli... 15 1. Wprowadzenie... 21 1.1. Kompatybilnoœæ elektromagnetyczna... 21 1.1.1. Dyrektywa europejska... 24 1.2. Jakoœæ dostawy

Bardziej szczegółowo

1. Logika połączeń energetycznych.

1. Logika połączeń energetycznych. 1. Logika połączeń energetycznych. Zasilanie oczyszczalni sterowane jest przez sterownik S5 Siemens. Podczas normalnej pracy łączniki Q1 Q3 Q4 Q5 Q6 Q10 są włączone, a Q9 wyłączony. Taki stan daje zezwolenie

Bardziej szczegółowo

Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne

Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne Opracowała: mgr inż. Katarzyna Łabno Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne Dla klasy 2 technik mechatronik Klasa 2 38 tyg. x 4 godz. = 152 godz. Szczegółowy rozkład materiału:

Bardziej szczegółowo

Zasilanie rezerwowe - UPS

Zasilanie rezerwowe - UPS power solutions 2011 Zasilanie rezerwowe - UPS Urządzenia tego typu stosowane są najczęściej do zasilania komputerów, a zwłaszcza serwerów. Dzięki ich zastosowaniu, w przypadku awarii zasilania zmniejsza

Bardziej szczegółowo

13. STEROWANIE SILNIKÓW INDUKCYJNYCH STYCZNIKAMI

13. STEROWANIE SILNIKÓW INDUKCYJNYCH STYCZNIKAMI 13. STEROWANIE SILNIKÓW INDUKCYJNYCH STYCZNIKAMI 13.1. Cel i zakres ćwiczenia Celem ćwiczenia jest poznanie budowy i działania styczników, prostych układów sterowania pojedynczych silników lub dwóch silników

Bardziej szczegółowo

Eaton 5115 Modele: VA

Eaton 5115 Modele: VA SPECYFIKACJA TECHNICZNA Eaton 5115 Modele: 500-750 - 1000-1400 VA DANE OGÓLNE Topologia (klasyfikacja IEC 62040-3) Line Interactive (VI) Model wolnostojący Moc wyjściowa VA 500 750 1000 1400 Moc rzeczywista

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny

Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny Sterowanie układem hydraulicznym z proporcjonalnym zaworem przelewowym Opracowanie: Z. Kudźma, P. Osiński, M. Stosiak 1 Proporcjonalne elementy

Bardziej szczegółowo

Automatyka SZR. Korzyści dla klienta: [ Zabezpieczenia ] Seria Sepam. Sepam B83 ZASTOSOWANIE UKŁADY PRACY SZR

Automatyka SZR. Korzyści dla klienta: [ Zabezpieczenia ] Seria Sepam. Sepam B83 ZASTOSOWANIE UKŁADY PRACY SZR 1 Automatyka SZR Sepam B83 ZASTOSOWANIE Sepam B83 standard / UMI Konieczność zachowania ciągłości dostaw energii elektrycznej do odbiorców wymusza na jej dostawcy stosowania specjalizowanych automatów

Bardziej szczegółowo

RTS11-ON-BC192 VFI-SS-111. Charakterystyka urządzenia. Zastosowanie: System telekomunikacji średniej i dużej mocy, ZASILACZ model

RTS11-ON-BC192 VFI-SS-111. Charakterystyka urządzenia. Zastosowanie: System telekomunikacji średniej i dużej mocy, ZASILACZ model ZASILACZ model RTS11-ON-BC192 Charakterystyka urządzenia Obudowa Rack19 /Tower Wysoka częstotliwość i podwójna konwersja Zaawansowanie sterowanie cyfrowe Filtr PFC Szeroki zakres napięcia wejściowego (110V-300V)

Bardziej szczegółowo

I. Wykonywanie przeglądów okresowych i konserwacji oraz dokonanie prób ruchowych agregatu prądotwórczego:

I. Wykonywanie przeglądów okresowych i konserwacji oraz dokonanie prób ruchowych agregatu prądotwórczego: Wykonywanie usług utrzymania i obsługi, tj. okresowych przeglądów i konserwacji systemu gwarantowanego zasilania i klimatyzacji, w tym z UPS i systemem wizualizacji i sterowania (BMS) I. Wykonywanie przeglądów

Bardziej szczegółowo

ROZWIĄZANIA INSTALACJI OŚWIETLENIOWYCH W ZAKŁADACH PRZEMYSŁOWYCH

ROZWIĄZANIA INSTALACJI OŚWIETLENIOWYCH W ZAKŁADACH PRZEMYSŁOWYCH Przedmiot: SIECI I INSTALACJE OŚWIETLENIOWE ROZWIĄZANIA INSTALACJI OŚWIETLENIOWYCH W ZAKŁADACH PRZEMYSŁOWYCH Przemysław Tabaka Wprowadzenie Instalacje oświetleniowe w zakładach przemysłowych podzielić

Bardziej szczegółowo

ELMAST F6-3000 S F6-4000 S F16-3000 S F16-4000 S F40-3000 S F40-4000 S F63-3000 S F63-4000 S F90-3000 S F90-4000 S

ELMAST F6-3000 S F6-4000 S F16-3000 S F16-4000 S F40-3000 S F40-4000 S F63-3000 S F63-4000 S F90-3000 S F90-4000 S ELMAST BIAŁYSTOK F6-3000 S F6-4000 S F16-3000 S F16-4000 S F40-3000 S F40-4000 S F63-3000 S F63-4000 S F90-3000 S F90-4000 S ZESTAWY ROZRUCHOWO-ZABEZPIECZAJĄCE DO AGREGATÓW POMPOWYCH T R Ó J F A Z O W

Bardziej szczegółowo

KRYTERIA WYMIAROWANIA INSTALACJI ELEKTRYCZNYCH

KRYTERIA WYMIAROWANIA INSTALACJI ELEKTRYCZNYCH Prof. dr hab. inż. Henryk MARKIEWICZ Instytut Energoelektryki Politechniki Wrocławskiej Instalacje elektryczne KRYTERIA WYMIAROWANIA INSTALACJI ELEKTRYCZNYCH. Wstęp Instalacje elektryczne, tak jak każdy

Bardziej szczegółowo

Zabezpieczenia podczęstotliwościowe i podnapięciowe 2 1 PF1.1 - wyłącz potrzeby własne - 47.5 Hz - 5 sek. PF1.2 - wyłącz na potrzeby własne 47,0 HZ - 2 sek. PU na wyłącz na potrzeby własne 0.8 Un - 5 sek.

Bardziej szczegółowo

ZASILACZE AWARYJNEUPS. Dbamy o stabilną pracę.

ZASILACZE AWARYJNEUPS. Dbamy o stabilną pracę. AWARYJNE ZASILACZE Uninterruptible Power Supply Dbamy o stabilną pracę ZASILACZE AWARYJNE TECHNOLOGIA Zasilacze awaryjne marki EAST wyposażone zostały w zaawansowane technologie zapewniające niewrażliwość

Bardziej szczegółowo

PSPower.pl. PSPower MULTIFAL (Basic ; PV)

PSPower.pl. PSPower MULTIFAL (Basic ; PV) PSPower.pl PSPower (Basic ; PV) Seria zasilaczy to innowacyjne urządzenia zasilające przeznaczone do wielu aplikacji. Typowe aplikacje to: Zasilanie bezprzerwowe typowa aplikacja UPS; Zasilanie bezprzerwowe

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA TECHNICZNE DLA JEDNOSTEK WYTWÓRCZYCH PRZYŁĄCZANYCH DO SIECI ROZDZIELCZEJ

SZCZEGÓŁOWE WYMAGANIA TECHNICZNE DLA JEDNOSTEK WYTWÓRCZYCH PRZYŁĄCZANYCH DO SIECI ROZDZIELCZEJ Załącznik nr 5 do Instrukcji ruchu i eksploatacji sieci rozdzielczej ZCZEGÓŁOWE WYMAGANIA TECHNICZNE DLA JEDNOTEK WYTWÓRCZYCH PRZYŁĄCZANYCH DO IECI ROZDZIELCZEJ - 1 - 1. POTANOWIENIA OGÓLNE 1.1. Wymagania

Bardziej szczegółowo

Mała przydomowa ELEKTROWNIA WIATROWA SWIND 6000

Mała przydomowa ELEKTROWNIA WIATROWA SWIND 6000 www.swind.pl Mała przydomowa ELEKTROWNIA WIATROWA SWIND 6000 Producent: SWIND Elektrownie Wiatrowe 26-652 Milejowice k. Radomia ul. Radomska 101/103 tel. 0601 351 375, fax: 048 330 83 75. e-mail: biuro@swind.pl

Bardziej szczegółowo

PLAN PREZENTACJI. 2 z 30

PLAN PREZENTACJI. 2 z 30 P O L I T E C H N I K A Ś L Ą S K A WYDZIAŁ ELEKTRYCZNY KATEDRA ENERGOELEKTRONIKI, NAPĘDU ELEKTRYCZNEGO I ROBOTYKI Energoelektroniczne przekształtniki wielopoziomowe właściwości i zastosowanie dr inż.

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI ZASILACZ PWS-100RB

INSTRUKCJA OBSŁUGI ZASILACZ PWS-100RB INSTRUKCJA OBSŁUGI ZASILACZ PWS-100RB Spis treści 1. WSTĘP 2. OPIS TECHNICZNY 3. INSTALOWANIE, OBSŁUGA, EKSPLOATACJA Strona 2 z 6 POLWAT IO-PWS-100RB 1. WSTĘP Zasilacz PWS-100RB jest podzespołem wg normy

Bardziej szczegółowo

Automatyka SZR Numer referencyjny APZ-2T2S1G-W6

Automatyka SZR Numer referencyjny APZ-2T2S1G-W6 POWRÓT KATALOG Automatyka SZR Numer referencyjny APZ-2T2S1G-W6-1 Opis automatyki SZR typu APZ-2T2S1G W6 produkcji Schneider Electric. Automatyka SZR typu APZ-2T2S1G-W6 jest przeznaczona do sterowania układem

Bardziej szczegółowo

UKŁAD SAMOCZYNNEGO ZAŁĄCZENIA REZERWY ZASILANIA SZR APC

UKŁAD SAMOCZYNNEGO ZAŁĄCZENIA REZERWY ZASILANIA SZR APC ENERIA BEZPIECZNIE POŁĄCZONA ROZDZIAŁ ENERII UKŁAD SAMOCZYNNEO ZAŁĄCZENIA REZERWY ZASILANIA KATALO PRODUKTÓW ROZDZIAŁ ENERII ENERIA bezpiecznie połączona Misja i Polityka Spółki Nasza misja to: Być wiodącą

Bardziej szczegółowo

MGE Galaxy /30/40/60/80/100/120 kva. Połączenie niezawodności i elastyczności

MGE Galaxy /30/40/60/80/100/120 kva. Połączenie niezawodności i elastyczności MGE Galaxy 5500 0/30/40/60/80/00/0 kva Połączenie niezawodności i elastyczności Nowoczesny system ochrony zasilania trójfazowego o mocy 0-0 kva zaprojektowany z myślą o różnorodnych zastosowaniach od średnich

Bardziej szczegółowo

Rozdzielnice potrzeb własnych standard Evolution

Rozdzielnice potrzeb własnych standard Evolution Rozdzielnice potrzeb własnych standard Evolution ROZDZIELNICA GŁÓWNA POTRZEB WŁASNYCH 400/230 VAC Rozdzielnica główna potrzeb własnych 400/230 VAC zapewnia podstawowe zasilanie kluczowych odbiorów systemu

Bardziej szczegółowo

Opis wyników projektu

Opis wyników projektu Opis wyników projektu Nowa generacja wysokosprawnych agregatów spalinowoelektrycznych Nr projektu: WND-POIG.01.03.01-24-015/09 Nr umowy: UDA-POIG.01.03.01-24-015/09-01 PROJEKT WSPÓŁFINANSOWANY PRZEZ UNIĘ

Bardziej szczegółowo

POWERLINE DARK GWARANTUJEMY CIĄGŁOŚĆ ZASILANIA KARTA PRODUKTOWA kva CHARAKTERYSTYKA KOMUNIKACJA

POWERLINE DARK GWARANTUJEMY CIĄGŁOŚĆ ZASILANIA KARTA PRODUKTOWA kva CHARAKTERYSTYKA KOMUNIKACJA GWARANTUJEMY CIĄGŁOŚĆ ZASILANIA EPO (EMERGENCY POWER OFF) ODŁĄCZENIE ZASILANIA W RAZIE POŻARU KARTA PRODUKTOWA PRACA RÓWNOLEGŁA WYSOKA SPRAWNOŚĆ ZIMNY START to nowoczesne zasilacze UPS w topologii ON-LINE

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI ZASILACZ PWS-100RB-2

INSTRUKCJA OBSŁUGI ZASILACZ PWS-100RB-2 INSTRUKCJA OBSŁUGI ZASILACZ PWS-100RB-2 Spis treści 1. WSTĘP 2. OPIS TECHNICZNY 3. INSTALOWANIE, OBSŁUGA, EKSPLOATACJA Strona 2 z 6 POLWAT IO-PWS-120B-2 1. WSTĘP Zasilacz PWS-100RB-2 jest podzespołem wg

Bardziej szczegółowo

SPIS TREŚCI. Wstęp. 4. Linie elektroenergetyczne niskich i średnich napięć

SPIS TREŚCI. Wstęp. 4. Linie elektroenergetyczne niskich i średnich napięć SPIS TREŚCI Wstęp 1. Projekt budowlany i zasady jego uzgadniania 1.1 Przepisy ogólne i wymagania podstawowe 1.2 Postępowanie poprzedzające rozpoczęcie robót budowlanych. Zakres i forma projektu budowlanego

Bardziej szczegółowo

ul. Zbąszyńska Łódź Tel. 042/ Fax. 042/

ul. Zbąszyńska Łódź Tel. 042/ Fax. 042/ ul. Zbąszyńska 5 91-342 Łódź Tel. 042/ 611 06 13 Fax. 042/ 611 06 83 e-mail: biuro@pekra.pl Lupus 500 500VA (300W) Zastosowanie Zasilanie rozbudowanego komputera domowego. Charakterystyka Lupus 500 to

Bardziej szczegółowo

ZASILACZE AWARYJNEUPS

ZASILACZE AWARYJNEUPS AWARYJNE ZASILACZE Uninterruptible Power Supply Dbamy o stabilną pracę www.east.pl ZASILACZE AWARYJNE TECHNOLOGIA Zasilacze awaryjne marki EAST wyposażone zostały w zaawansowane technologie zapewniające

Bardziej szczegółowo

Bezpieczeństwo energetyczne nie tylko w makroskali

Bezpieczeństwo energetyczne nie tylko w makroskali Bezpieczeństwo energetyczne nie tylko w makroskali Autor: Karol Bednarek ("Energia Gigawat" - 6/2014) Współczesne społeczeństwa funkcjonalnie w pełni uzależniły się od dostaw energii elektrycznej. Wszelkie

Bardziej szczegółowo

Protect 4.33 o mocy 160 kva kva

Protect 4.33 o mocy 160 kva kva Trójfazowe system zasilania gwarantowanego UPS produkcji AEG serii Protect 4.33 o mocy 160 kva - 1000 kva Technologia VFI SS 111 (IEC / EN 62040-3), Unikalna jednostka o mocy 1000kVA, Potrójny system kontroli

Bardziej szczegółowo

STRACIŁEŚ ZAWODNIKA DZIAŁASZ DALEJ!

STRACIŁEŚ ZAWODNIKA DZIAŁASZ DALEJ! PROSTOWNIKI MODULARNE HAWKER STRACIŁEŚ ZAWODNIKA DZIAŁASZ DALEJ! KONSTRUKCJA MODUŁOWA - NOWY STANDARD KONSTRUKCJA MODUŁOWA - NOWY STANDARD MAKSYMALNA WYDAJNOŚĆ I NIEZAWODNOŚĆ Moduły prostowników, funkcjonujące

Bardziej szczegółowo

PRACA RÓWNOLEGŁA PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI

PRACA RÓWNOLEGŁA PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 2012 Zdzisław KRZEMIEŃ* prądnice synchroniczne, magnesy trwałe PRACA RÓWNOLEGŁA

Bardziej szczegółowo

Ćwiczenie 2 Przekaźniki Czasowe

Ćwiczenie 2 Przekaźniki Czasowe Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Automatyzacja Zajęcia laboratoryjne Ćwiczenie 2 Przekaźniki Czasowe Poznań 27 OGÓLNE ZASADY BEZPIECZEŃSTWA PODCZAS WYKONYWANIA ĆWICZEŃ LABORATORYJNYCH

Bardziej szczegółowo

Wyłącznik próżniowy z posobnym układem biegunów

Wyłącznik próżniowy z posobnym układem biegunów Wyłącznik próżniowy z posobnym układem biegunów TE-1 K A R T A K A T A L O G O W A 0905 Charakterystyka ogólna Wyłącznik próżniowy TE-1 z posobnym układem biegunów przeznaczony jest do pracy w rozdzielnicach

Bardziej szczegółowo

Przemienniki częstotliwości i ich wpływ na jakość energii elektrycznej w przedsiębiorstwie wod.-kan.

Przemienniki częstotliwości i ich wpływ na jakość energii elektrycznej w przedsiębiorstwie wod.-kan. Przemienniki częstotliwości i ich wpływ na jakość energii elektrycznej w przedsiębiorstwie wod.-kan. Wrzesień 2017 / Alle Rechte vorbehalten. Jakość energii elektrycznej Prawo, gdzie określona jest JEE

Bardziej szczegółowo

SYSTEMY ZASILANIA AWARYJNEGO UPS

SYSTEMY ZASILANIA AWARYJNEGO UPS SYSTEMY ZASILANIA AWARYJNEGO UPS SERIA Z MODYFIKOWANĄ SINUSOIDĄ AKTYWOWANE SIECIĄ (LINE-INTERACTIVE) obudowa wolnostojąca (Tower), obudowa leżąca (Desktop) jednofazowe wejście / wyjście, 230 V AC, 50 Hz,

Bardziej szczegółowo

W3 Identyfikacja parametrów maszyny synchronicznej. Program ćwiczenia:

W3 Identyfikacja parametrów maszyny synchronicznej. Program ćwiczenia: W3 Identyfikacja parametrów maszyny synchronicznej Program ćwiczenia: I. Część pomiarowa 1. Rejestracja przebiegów prądów i napięć generatora synchronicznego przy jego trójfazowym, symetrycznym zwarciu

Bardziej szczegółowo

NJB1-Y Przekaźnik napięcia jednofazowego Instrukcja obsługi

NJB1-Y Przekaźnik napięcia jednofazowego Instrukcja obsługi 0 Przed rozpoczęciem montażu i eksploatacji uważnie przeczytać instrukcję. Norma: IEC 60947-5-1 NJB1-Y Przekaźnik napięcia jednofazowego Instrukcja obsługi 1. Przeznaczenie Przekaźniki utraty i kolejności

Bardziej szczegółowo

Opis Produktu. UPS-y w technologii line Interactive Seria ML / VA. System Bezprzerwowego Zasilania Digital Energy

Opis Produktu. UPS-y w technologii line Interactive Seria ML / VA. System Bezprzerwowego Zasilania Digital Energy GE Consumer & Industrial Power Protection Opis Produktu System Bezprzerwowego Zasilania Digital Energy UPS-y w technologii line Interactive Seria ML / 350-500 - 700-1000 VA Spis treści: 1. Wstęp... 2 2.

Bardziej szczegółowo

DOKUMENTACJA TECHNICZNO ROZRUCHOWA AUTOMATU MPZ-2-SZR

DOKUMENTACJA TECHNICZNO ROZRUCHOWA AUTOMATU MPZ-2-SZR DOKUMENTACJA TECHNICZNO ROZRUCHOWA AUTOMATU MPZ-2-SZR 1. Spis treści 1. Spis treści...1 2. Zastosowanie...2 3. Dane o kompletności...2 4. Dane techniczne...2 5. Budowa...2 6. Opis techniczny...3 6.1. Uwagi

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11)

(12) OPIS PATENTOWY (19) PL (11) RZECZPO SPO LITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 172018 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21)Numer zgłoszenia 298251 (22) Data zgłoszenia: 23.03.1993 (51) Int.Cl.6 G01R 31/36 H02J

Bardziej szczegółowo

UKŁAD AUTOMATYCZNEGO PRZEŁĄCZANIA ZASILANIA APZ-2T1S-W1

UKŁAD AUTOMATYCZNEGO PRZEŁĄCZANIA ZASILANIA APZ-2T1S-W1 POWRÓT s UKŁAD AUTOMATYCZNEGO PRZEŁĄCZANIA ZASILANIA APZ-2T1S-W1 Dokumentacja Techniczna 1 2 SPIS TREŚCI 1. Układ SZR 1.1. opis techniczny 1.2. instrukcja obsługi 2. Spis rysunków 3. Zestawienie aparatów

Bardziej szczegółowo

ZAE Sp. z o. o. Data wydania: r strona: 1. Wydanie: 01 stron: 8 DOKUMENTACJA TECHNICZNO-RUCHOWA PRZEŁĄCZNIK ZASILAŃ TYPU PNZ-3.

ZAE Sp. z o. o. Data wydania: r strona: 1. Wydanie: 01 stron: 8 DOKUMENTACJA TECHNICZNO-RUCHOWA PRZEŁĄCZNIK ZASILAŃ TYPU PNZ-3. ZAE Sp. z o. o. Numer dokumentacji: --0 Data wydania:.07.0r strona: Wydanie: 0 stron: 8 DOKUMENTACJA TECHNICZNO-RUCHOWA PRZEŁĄCZNIK ZASILAŃ TYPU PNZ- Wersja 0 ZAE Sp. z o.o. zastrzega wszelkie prawa do

Bardziej szczegółowo

5.6. UKŁADY ZASILANIA Z PRZEKSZTAŁTNIKAMI

5.6. UKŁADY ZASILANIA Z PRZEKSZTAŁTNIKAMI 5. Zasilanie odbiorników energii elektrycznej 167 5.6. UKŁADY ZASILANIA Z PRZEKSZTAŁTNIKAMI Wiele urządzeń elektrycznych - czerpiąc energię z sieci elektroenergetycznej prądu przemiennego - nie jest zasilanych

Bardziej szczegółowo

T 1000 PLUS Tester zabezpieczeń obwodów wtórnych

T 1000 PLUS Tester zabezpieczeń obwodów wtórnych T 1000 PLUS Tester zabezpieczeń obwodów wtórnych Przeznaczony do testowania przekaźników i przetworników Sterowany mikroprocesorem Wyposażony w przesuwnik fazowy Generator częstotliwości Wyniki badań i

Bardziej szczegółowo

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna)

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna) EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej

Bardziej szczegółowo

AC/DC. Jedno połówkowy, jednofazowy prostownik

AC/DC. Jedno połówkowy, jednofazowy prostownik AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej

Bardziej szczegółowo

Interfejs komunikacyjny RS232 Niezależna ładowarka akumulatorów

Interfejs komunikacyjny RS232 Niezależna ładowarka akumulatorów GWARANTUJEMY CIĄGŁOŚĆ ZASILANIA EPO (EMERGENCY POWER OFF) ODŁĄCZENIE ZASILANIA W RAZIE POŻARU KARTA PRODUKTOWA 0//0 kva BYPASS ZEWNĘTRZNY ZIMNY START Najnowsza seria zaawansowanych technologicznie zasilaczy

Bardziej szczegółowo

Różne typy zasilaczy UPS

Różne typy zasilaczy UPS Różne typy zasilaczy UPS Neil Rasmussen White Paper 1 Wersja 5 Streszczenie Na rynku funkcjonuje wiele nieporozumień dotyczących różnych typów zasilaczy UPS i ich cech. W tym dokumencie zdefiniowano poszczególne

Bardziej szczegółowo

SZR HAZ3W. wieloletnie doświadczenie i pełen profesjonalizm

SZR HAZ3W. wieloletnie doświadczenie i pełen profesjonalizm SZR HAZ3W wieloletnie doświadczenie i pełen profesjonalizm I. Wstęp. Nasza firma jest w stanie wykonać automatykę układu samoczynnego załączenia rezerwy pracującego w kaŝdej konfiguracji. Układ SZR tworzymy

Bardziej szczegółowo

Styczniki CI 110 do CI 420 EI

Styczniki CI 110 do CI 420 EI Styczniki CI 110 do CI 420 EI Typoszereg styczników sterowanych napięciem przemiennym, w zakresie od 55 do 220 kw. Dla modeli oznaczonych symbolem EI możliwe jest również sterowanie bezpośrednio ze sterownika

Bardziej szczegółowo

Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi

Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi dr inż. ANDRZEJ DZIKOWSKI Instytut Technik Innowacyjnych EMAG Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi zasilanymi z przekształtników

Bardziej szczegółowo

UKŁADY NAPĘDOWE POMP I WENTYLATORÓW - OSZCZĘDNOŚĆ ENERGII. Mgr inż. Adam Tarłowski TAKOM Sp. z o.o.

UKŁADY NAPĘDOWE POMP I WENTYLATORÓW - OSZCZĘDNOŚĆ ENERGII. Mgr inż. Adam Tarłowski TAKOM Sp. z o.o. - 1 UKŁADY NAPĘDOWE POMP I WENTYLATORÓW - OSZCZĘDNOŚĆ ENERGII Mgr inż. Adam Tarłowski TAKOM Sp. z o.o. Firma TAKOM założona w 1991r jest firmą inżynierską specjalizującą się w technice automatyki napędu

Bardziej szczegółowo

Maszyna indukcyjna jest prądnicą, jeżeli prędkość wirnika jest większa od prędkości synchronicznej, czyli n > n 1 (s < 0).

Maszyna indukcyjna jest prądnicą, jeżeli prędkość wirnika jest większa od prędkości synchronicznej, czyli n > n 1 (s < 0). Temat: Wielkości charakteryzujące pracę silnika indukcyjnego. 1. Praca silnikowa. Maszyna indukcyjna jest silnikiem przy prędkościach 0 < n < n 1, co odpowiada zakresowi poślizgów 1 > s > 0. Moc pobierana

Bardziej szczegółowo

Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia.

Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia. Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia. Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą wykonuje

Bardziej szczegółowo

Interfejs komunikacyjny RS232 Niezależna ładowarka akumulatorów

Interfejs komunikacyjny RS232 Niezależna ładowarka akumulatorów GWARANTUJEMY CIĄGŁOŚĆ ZASILANIA EPO (EMERGENCY POWER OFF) ODŁĄCZENIE ZASILANIA W RAZIE POŻARU KARTA PRODUKTOWA 6/0 kva BYPASS ZEWNĘTRZNY ZIMNY START Najnowsza seria zaawansowanych technologicznie zasilaczy

Bardziej szczegółowo

Eaton Ellipse MAX. Ellipse MAX 1k5. Modele: 600; 850; 1100; 1500 VA. Seria Pulsar SPECYFIKACJA TECHNICZNA DANE OGÓLNE

Eaton Ellipse MAX. Ellipse MAX 1k5. Modele: 600; 850; 1100; 1500 VA. Seria Pulsar SPECYFIKACJA TECHNICZNA DANE OGÓLNE SPECYFIKACJA TECHNICZNA Seria Pulsar Eaton Ellipse MAX Modele: 600; 850; 1100; 1500 VA DANE OGÓLNE Topologia (klasyfikacja IEC 62040-3) Line-interactive (VI) z AVR i HF Model UPS wieżowy/stelażowy Ellipse

Bardziej szczegółowo