Ćwiczenie 2a Zawartość wilgoci w paliwach stałych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 2a Zawartość wilgoci w paliwach stałych"

Transkrypt

1 Akademia Górniczo Hutnicza im. St. Staszica w Krakowie Wydział Energetyki i Paliw Katedra Technologii Paliw ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie Ćwiczenie 2a Zawartość wilgoci w paliwach stałych

2 1. Zawartość i rodzaje wilgoci w naturalnych paliwach stałych Wilgoć stanowi w większości przypadków balast paliw stałych, który przy ich pozyskaniu, składowaniu, transporcie, przeróbce i użytkowaniu stwarza szereg problemów. Zawartość wilgoci w pozyskiwanym (wydobywanym) naturalnym paliwie stałym kształtuje się na bardzo różnym poziomie. Dla przykładu: w świeżo wydobytym torfie może stanowić nawet do 90 % jego masy, w świeżo ściętym drzewie około 50 %, w tzw. miękkich węglach brunatnych do 55 % i wreszcie w węglach kamiennych do kilkunastu, a w drobnych frakcjach nawet do dwudziestu paru procent. Zawartość wilgoci jest istotnym wskaźnikiem jakości paliwa i bywa w pewnych przypadkach (np. przy węglach brunatnych) stosowana do celów klasyfikacyjnych, a zawsze stanowi parametr rozliczeniowy kształtujący cenę i kierunek użytkowania paliwa. Z tego względu pomiar zawartości wilgoci ma ważne znaczenie praktyczne i stanowi jeden z ważniejszych wskaźników oceny technologicznej paliw. W węglu - podstawowym paliwie stałym, nadmierna zawartość wilgoci powoduje w naszych warunkach klimatycznych w okresie zimy kłopoty ze składowaniem i transportem, związane z jego zamarzaniem w wagonach. Wzrost zawartości wilgoci z reguły obniża wydajność urządzeń stosowanych w operacjach jednostkowych takich jak rozdrabnianie czy przesiewanie, szczególnie drobnych sortymentów. Jeżeli węgiel służy do wytwarzania energii, zawartość wilgoci obniża jego wartość kaloryczną, gdyż część ciepła jest tracona na ogrzanie i odparowanie wody. Wzrost zawartości wilgoci obniża ponadto temperaturę punktu rosy spalin. W koksownictwie wzrost zawartości wilgoci w mieszance węglowej zmniejsza produktywność baterii koksowniczych, powiększa zużycie ciepła (pogarsza sprawność cieplną) potrzebnego do skoksowania wsadu, generuje zwiększoną ilość ścieków koksowniczych itd. Do szczególnych przypadków, w których wskazana jest pewna ilość wilgoci w węglu, należy zaliczyć wytwarzanie brykietów węglowych oraz formowanie bryły węglowej w ubijanym systemie napełniania komór koksowniczych. W obu tych przypadkach woda jest czynnikiem wiążącym ziarna węglowe, a więc korzystnie oddziałuje na wytrzymałość mechaniczną brykietów czy ubitego placka węglowego. Na zawartość wilgoci w węglu rzutuje szereg czynników, do których można zaliczyć zawodnienie pokładu oraz sposób: urabiania, wzbogacania, transportu i przechowywania 2

3 węgla, a także stopień jego metamorfizmu i rodzaj sortymentu. Woda wypełnia pory, kapilary i szczeliny węgla oraz pokrywa kroplami powierzchnię ziaren. W analityce paliw stałych wyróżnia się szereg rodzajów wilgoci takich jak: - wilgoć przemijająca, - wilgoć higroskopijna (w paliwie powietrzno-suchym), - wilgoć całkowita, - wilgoć analityczna, - woda konstytucyjna (woda krystalizacyjna w substancji mineralnej). Wilgoć całkowitą W t paliw stałych stanowią suma wilgoci przemijającej i higroskopijnej. Jeżeli mokre paliwo poddamy suszeniu w temperaturze otoczenia, to po pewnym czasie zawarta w paliwie wilgoć znajdzie się w równowadze z wilgocią otaczającego to paliwo powietrza. Ta część wilgoci, którą paliwo utraci do momentu osiągnięcia tej równowagi, nazywana jest wilgocią przemijającą (W ex ), a paliwo znajduje się wówczas w stanie powietrzno-suchym. W przypadku węgla ten rodzaj wody utrzymującej się mechanicznie na powierzchni jego ziaren tworzy woda kopalniana oraz pozostająca na ziarnach po operacjach: wzbogacania, transportu czy składowania (opady atmosferyczne). Rys.1. Wpływ stopnia metamorfizmu na zawartość wilgoci higroskopijnej w węglach kamiennych i antracytach. 3

4 Wilgoć higroskopijna (W h ) jest to woda pozostała w węglu po usunięciu wilgoci przemijającej, którą węgiel traci dopiero po wysuszeniu w temperaturze C. Stanowi ona wodę wypełniającą strukturę porowatą paliwa. Higroskopijność jest wspólną cechą paliw stałych, zarówno kopalnych jak i biomasy. Zawartość wilgoci higroskopijnej w przypadku węgla jest zależna od jego stopnia metamorfizmu (rys. 1). Zjawiska zachodzące w procesie naturalnego uwęglenia powodują stopniowe zmniejszanie się ilości hydrofilowych grup funkcyjnych w substancji organicznej węgla (przede wszystkim grup karboksylowych) oraz zmianę jego struktury fizycznej prowadzącą w kierunku zmniejszenia ilości i średnicy por i kapilar. W efekcie ze wzrostem stopnia metamorfizmu węgli maleje zawartość wilgoci higroskopijnej, która w węglach koksowych nie przekracza 3-4 %, a w węglach energetycznych może osiągnąć kilkanaście procent. r Wilgoć całkowitą W t jako sumę wilgoci przemijającej i higroskopijnej (z uwzględnieniem przeliczenia stanu paliwa) przedstawia wzór: W r t r r 100 Wex Wex Wh (1) 100 gdzie: W r t zawartość wilgoci całkowitej w stanie roboczym, % r W ex zawartość wilgoci przemijającej w stanie roboczym, % W h zawartość wilgoci higroskopijnej, % W praktyce jest to najczęściej stosowany parametr kształtujący cenę i wartość użytkową paliwa stałego. W analizie technicznej biopaliw stałych obok parametru zawartości wilgoci całkowitej W t stosuje się również pojęcie wilgotności W s. Różnica pomiędzy tymi pojęciami polega na tym, iż wilgoć określa się jako procentowy udział masy wody w masie mokrego paliwa, natomiast wilgotność jako procentowy stosunek masy wody do masy paliwa suchego. Ilościowy związek między tymi wskaźnikami można wyrazić jako: (2) Próbki analityczne będące paliwem w stanie powietrzno-suchym, na których wykonuje się większość pomiarów właściwości paliw stałych, nie zawsze odpowiadają stanowi (3) 4

5 higroskopijnemu i dlatego należy wykonać dla nich oddzielny pomiar zawartości wilgoci analitycznej W a. Po usunięciu wilgoci przemijającej i higroskopijnej w węglu pozostaje jeszcze woda konstytucyjna (krystalizacyjna) W M związana w substancji mineralnej (glinokrzemiany, krzemiany). Wydzielenie wody z tych związków zachodzi dopiero w wyższych temperaturach C. W praktyce nie wykonuje się bezpośredniego pomiaru zawartości wody konstytucyjnej, a jej zawartość można w przybliżeniu określić korzystając z zależności: W d M = 0,09 A d (4) gdzie: W d M zawartość wody konstytucyjnej w węglu suchym, % A d zawartość popiołu w węglu w przybliżeniu na stan suchy, %. W drewnie zawartość wilgoci higroskopijnej jest wielkością zmienną, wynikającą z różnicy higroskopijności różnych składników drewna. Za przeciętny stan powietrzno-suchy drewna przyjmuje się umownie wilgotność na poziomie 15%. Porowatość drewna wraz z jego higroskopijnością określa tzw. punkt nasycenia, który odpowiada wilgoci równoważnej drewna w powietrzu o wilgotności względnej równej 100%. Stanowi on górną granicę chłonności drewna, czyli maksymalną ilość wody związanej, wypełniającej strukturę błony komórkowej, ale nie wody, która wypełnia strukturę porowatą drewna. 2. Metody oceny zawartości wilgoci w węglu. Pomiary zawartości wilgoci w węglu polegają na pomiarze masy wody zawartej w badanej próbce węgla lub na pośredniej ocenie tego parametru wykorzystującej wpływ zawartej w węglu wody na pewne wielkości fizyczne tego surowca. Do pierwszej grupy można zaliczyć metody: - suszarkowe, - destylacyjne, - ekstrakcyjne, - gazometryczne, przy czym najczęściej stosowanymi i znormalizowanymi metodami są metody suszarkowe i destylacyjne stanowią one przedmiot Polskiej Normy: PN-80/G Paliwa stałe. Oznaczanie zawartości wilgoci. 5

6 W metodach suszarkowych zawartość wilgoci ocenia się na podstawie ubytku masy wynikającej z odparowania wody z próbki węgla suszonej w znormalizowanych warunkach. Suszenie jest prowadzone w atmosferze powietrza lub przy węglach łatwo utleniających się w atmosferze azotu. Rys. 2. Schemat zestawu do wykonywania oznaczania zawartości wilgoci metodą destylacyjną: 1 kolba destylacyjna o pojemności 500 cm 3 ; 2 chłodnica; 3 odbieralnik pomiarowy o pojemności 16 cm 3 W metodzie destylacyjnej badana próbkę węgla umieszcza się w kolbie (rys. 2) i zalewa określoną ilością cieczy (toluenu) nie mieszającej się z wodą. Ogrzewając kolbę odpędza się wodę zawartą w węglu wraz z parami toluenu. Po ochłodzeniu i skropleniu par kondensat spływa do kalibrowanego odbieralnika. Otrzymuje się w nim wyraźną granicę podziału między wodą a toluenem i z objętości wody oraz masy próbki węgla określa się zawartość wilgoci. Pozostałe dwa rodzaje metod tj. ekstrakcyjne i gazometryczne są stosowane sporadycznie. W metodzie ekstrakcyjnej wodę zawartą w węglu ekstrahuje się za pomocą rozpuszczalników organicznych (np. bezwodnego metanolu), a następnie określa się jej ilość na drodze miareczkowania lub wyznaczania punktu kriohydratycznego. Z kolei w metodach 6

7 gazometrycznych próbkę badanego węgla miesza się z substancjami, które w reakcji z wodą dają składniki gazowe (np. karbid reagując z wodą tworzy acetylen). W najczęściej stosowanych metodach drugiej grupy (metody instrumentalne) do oszacowania zawartości wilgoci w węglu stosuje się: - absorpcję mikrofal, - pomiar stałej dielektrycznej, - pomiar przewodnictwa cieplnego, - pomiar przewodnictwa elektrycznego. Metody te z reguły dają wyniki obarczone większym błędem, ale pozwalają znacznie szybciej, a często w sposób online (na przenośnikach) wyznaczać omawiany parametr. Najczęściej stosowane są metody: mikrofalowa i dielektryczna. W metodzie mikrofalowej wykorzystuje się oddziaływanie wody zawartej w węglu na wielkość adsorpcji mikrofal (fal o długości kilku centymetrów). Ocena zawartości wilgoci na podstawie pomiarów parametrów dielektrycznych węgla wykorzystuje znaczącą różnicę pomiędzy stałą dielektryczną suchego węgla (ε 2,5) i wody (ε 81). Jak już wspomniano Polska Norma PN-80/G przewiduje oznaczanie wilgoci w paliwach stałych metoda suszarkową bądź destylacyjną i w praktyce te dwa sposoby są powszechnie stosowane. 3. Ocena zawartości wilgoci w koksie. Woda zawarta w karbonizatach węglowych (półkoksie i koksie) pochodzi głównie z mokrego gaszenia, a jej ilość zależy od: technologii gaszenia, stopnia gotowości koksu i jego uziarnienia, jakości wody gaśniczej, czasu odparowania koksu na zrzutni itd. Na zawartość wilgoci oddziałują również warunki atmosferyczne w jakich odbywa się transport i magazynowanie koksu. Zawartość wilgoci w niesorcie koksu po jego zgaszeniu może się mieścić w zakresie od około 3 do 7 %, przy czym jest bardzo zróżnicowana w tworzących go klasach ziarnowych (rys. 3). W koksie pochodzącym z suchego chłodzenia zawartość wilgoci nie przekracza 0,5 1,0 % (wilgoć jest sorbowana z powietrza). Zawartość wilgoci w koksie stanowi balast obniżający jego wartość opałową i z reguły stanowi parametr rozliczeniowy. Z kolei koks z suchego chłodzenia o minimalnej zawartości 7

8 wilgoci stwarza problemy przy transporcie, gdyż bardzo pyli i wymaga hermetyzacji urządzeń za- i rozładowczych oraz przenośników. Rys. 3. Zależność pomiędzy średnią zawartością w niesorcie oraz zawartością wilgoci w wydzielonych z niego sortymentach. Oznaczenie zawartości wilgoci w koksie tradycyjnie wykonuje się metodą suszarkową. Normy wyróżniają dwa rodzaje zawartości wilgoci: wilgoć całkowitą i wilgoć w próbce analitycznej. Szczegółowy opis oznaczenia zawierają: - PN-80/G Paliwa stałe. Oznaczanie zawartości wilgoci. - PN-ISO 579:2002 Koks z węgla kamiennego. Oznaczanie zawartości wilgoci całkowitej. - PN-ISO 687:2002 Koks z węgla kamiennego. Oznaczanie zawartości wilgoci w próbce analitycznej. Obok klasycznej metody suszarkowej w przemyśle do pomiaru zawartości wilgoci całkowitej w koksie znalazła zastosowanie metoda neutronowa. Zasada metody polega na ilościowym pomiarze spowolnienia neutronów prędkich. Neutrony prędkie o średniej energii rzędu 5 MeV emitowane ze źródła mieszaniny izotopów ameryk beryl lub pluton beryl, są spowalniane przez jądra atomów otaczającego ośrodka koksu. Strata energii kinetycznej neutronów (spowalnianie) w wyniku ich zderzeń z jądrami atomów będzie tym większa, im bardziej będą do siebie zbliżone masy uczestników zderzeń. W efekcie o wielkości spowolnienia neutronów będą decydowały jądra atomów wodoru, które pochodzą od wodoru 8

9 związanego w substancji organicznej lub w wodzie. Przy ustabilizowanych warunkach technologicznych produkcji koksu, zawartość wodoru w jego substancji organicznej można przyjąć za wielkość stałą, a więc efekt spowalniania, w którym neutrony prędkie zamieniają się w neutrony termiczne o energii rzędu 0,025 ev, będzie w praktyce zależał od zawartości wilgoci w koksie. Gęstość strumienia neutronów termicznych mierzona detektorem, jest po uprzednim wzorcowaniu przyrządu miarą zawartości wilgoci w koksie. 4. Ocena zawartości wilgoci w biomasie. Zawartość wilgoci w biomasie zmienia się w szerokim zakresie i zależy od wielu czynników tj.: rodzaj biomasy, czas zbioru, rodzaj obróbki mechanicznej, sposobu oraz czasu magazynowania. W większości przypadków biomasa charakteryzuje się dużą zawartością wilgoci, co przy jej energetycznym wykorzystaniu, wymusza konieczność jej suszenia. Suszenie biomasy pozwala zwiększyć jej kaloryczność i sprawność termiczna układu, zmniejszyć zagrożenie związane z tworzeniem się pleśni i emisji zarodników, ograniczyć ubytek masy organicznej paliwa. Ponadto utrzymanie w paliwie wilgoci na stałym poziomie pozwala na optymalizację i kontrolę procesów jej konwersji. Jednakże proces suszenia biomasy zwiększa koszt jej pozyskania do celów technologicznych, w związku z czym powinien być prowadzony najprostszymi i najtańszymi metodami. Oznaczenie zawartości wilgoci w paliwach biomsowych prowadzone jest najczęściej metodami suszarkowymi. 5. Wykonanie oznaczenia zawartości wilgoci w próbce analitycznej paliw stałych metodą suszarkową. Cel oznaczenia: Celem oznaczenia jest pomiar zawartości wilgoci w próbce analitycznej paliwa stałego (węgla, koksu, biomasy). Zasada oznaczenia: Zasada metody polega na oznaczeniu ubytku masy odważki pobranej z próbki analitycznej paliwa stałego podczas suszenia w temperaturze 105 ± 3ºC. Do badań stosuje się odpowiednio przygotowane, wysuszone do stanu równowagi z wilgocią powietrza, dobrze 9

10 zhomogenizowane próbki paliw stałych: węgli kamiennych i brunatnych oraz koksu o uziarnieniu poniżej 0,2 mm; biomasy o uziarnieniu poniżej 0,425 mm. Próbki te przechowuje się w zamkniętych pojemnikach, dobranych w ten sposób aby nie zmieniły właściwości próbki oraz były wypełnione paliwem w 80 90%. Przyrządy i materiały: a) suszarka zapewniająca utrzymanie temperatury 105 ± 3ºC, b) waga analityczna, c) naczyńka wagowe, szklane z doszlifowanymi pokrywkami o średnicy ok. 50 mm, d) eksykator wypełniony chlorkiem wapnia. Wykonanie oznaczenia: a) Dokładnie wymieszać próbkę i pobrać z niej do wysuszonego uprzednio zważonego z dokładnością 0,0002 g naczyńka wagowego ok. 1 g paliwa stałego. b) Odważkę równą warstwą rozprowadzić na dnie naczyńka i zważyć z dokładnością do 0,0002 g. c) Naczyńko z paliwem umieścić w suszarce nagrzanej do temperatury 105 ± 3ºC, zdjąć pokrywkę z naczyńka i suszyć do stałej masy. Suszenie zakończyć gdy różnica miedzy dwoma kolejnymi ważeniami kontrolnymi, wykonanymi w odstępach co 30 min. nie będzie większa niż 0,001 g. d) Zamknięte naczyńko wyjąć z suszarki i schłodzić w eksykatorze do temperatury pokojowej. e) Zważyć naczyńko z wysuszonym paliwem z taką samą dokładnością jak na początku oznaczenia. f) Dla tej samej próbki analitycznej paliwa stałego należy wykonać minimum dwa oznaczenia zawartości wilgoci. Obliczenia: Zawartość wilgoci w próbce analitycznej paliwa stałego (W a ) należy obliczyć jako wartość procentowa wg wzoru: gdzie: m 1 - masa pustego naczyńka, g, (5) 10

11 m 2 - masa naczyńka z próbką przed suszeniem, g, m 3 - masa naczyńka z próbką po suszeniu, g. Wyniki oznaczenia: Za końcowy wynik oznaczenia należy przyjąć średnią arytmetyczna wyników dwóch oznaczeń zawartości wilgoci w próbce analitycznej paliwa wykonanych w tym samym laboratorium, gdy wyniki tych oznaczeń nie różnią się między sobą więcej niż 0,5 % bezwzględnego. Gdy różnica ta jest większa, wówczas należy wykonać trzecie dodatkowe oznaczenie, a za wynik końcowy przyjąć wartość średnią dwóch najbardziej zbliżonych wyników w zakresie dopuszczalnych różnic. Jeżeli trzeci wynik znajduje się w zakresie dopuszczalnym zarówno w stosunku do pierwszego jak i drugiego oznaczenia za wynik końcowy przyjmuje się średnią arytmetyczną wszystkich trzech wyników. Natomiast gdy trzeci wynik znajduje się poza dopuszczalnym zakresem w stosunku do pierwszego jak i drugiego oznaczenia, wówczas całe oznaczenie należy powtórzyć od początku. Wynik końcowy oznaczenia zawartości wilgoci w próbce analitycznej paliwa należy zaokrąglić do 0,1%. 6. Bibliografia 1) Haarmann A., Brennstoff Chemie, nr 19, s.301, (1956) 2) Karcz A. i wsp., Karbo, Energochemia, Ekologia, nr 11, s. 448, (1996) 3) Knauf G., Brennstoff Chemie, nr 5, s.69, (1966) 4) Leighton L.H., Tomlison R.C., Fuel, nr 2, s.133, (1960) 5) Rybak W., Spalanie i współspalanie paliw stałcyh, Oficyna Wydawnica Politechniki Wrocławskiej, Wrocław

ĆWICZENIA LABORATORYJNE

ĆWICZENIA LABORATORYJNE Akademia Górniczo - Hutnicza im. St. Staszica w Krakowie Wydział Energetyki i Paliw Katedra Technologii Paliw ĆWICZENIA LABORATORYJNE Surowce energetyczne i ich przetwarzanie cz. II - paliwa stałe Oznaczanie

Bardziej szczegółowo

Oznaczanie zawartości wilgoci. 1. Zawartość i rodzaje wilgoci w naturalnych paliwach stałych

Oznaczanie zawartości wilgoci. 1. Zawartość i rodzaje wilgoci w naturalnych paliwach stałych Oznaczanie zawartości wilgoci. 1. Zawartość i rodzaje wilgoci w naturalnych paliwach stałych Wilgoć stanowi w większości przypadków balast paliw stałych, który przy ich pozyskaniu, składowaniu, transporcie,

Bardziej szczegółowo

ĆWICZENIA LABORATORYJNE

ĆWICZENIA LABORATORYJNE Akademia Górniczo - Hutnicza im. St. Staszica w Krakowie Wydział Energetyki i Paliw Katedra Technologii Paliw ĆWICZENIA LABORATORYJNE Surowce energetyczne i ich przetwarzanie cz. II - paliwa stałe Oznaczanie

Bardziej szczegółowo

ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie

ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie Akademia Górniczo Hutnicza im. St. Staszica w Krakowie Wydział Energetyki i Paliw Katedra Technologii Paliw ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie Ćwiczenie 2b Zawartość

Bardziej szczegółowo

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego CIEPŁO, PALIWA, SPALANIE CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego WYMIANA CIEPŁA. Zmiana energii wewnętrznej

Bardziej szczegółowo

ĆWICZENIE NR 4. Zakład Budownictwa Ogólnego. Kruszywa budowlane - oznaczenie gęstości nasypowej - oznaczenie składu ziarnowego

ĆWICZENIE NR 4. Zakład Budownictwa Ogólnego. Kruszywa budowlane - oznaczenie gęstości nasypowej - oznaczenie składu ziarnowego Zakład Budownictwa Ogólnego ĆWICZENIE NR 4 Kruszywa budowlane - oznaczenie gęstości nasypowej - oznaczenie składu ziarnowego Instrukcja z laboratorium: Budownictwo ogólne i materiałoznawstwo Instrukcja

Bardziej szczegółowo

Praktyczne uwarunkowania wykorzystania drewna jako paliwa

Praktyczne uwarunkowania wykorzystania drewna jako paliwa Praktyczne uwarunkowania wykorzystania drewna jako paliwa Wojciech GORYL AGH w Krakowie Wydział Energetyki i Paliw II Konferencja Naukowa Drewno Polskie OZE, 8-9.12.2016r., Kraków www.agh.edu.pl Drewno

Bardziej szczegółowo

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego CIEPŁO, PALIWA, SPALANIE CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego WYMIANA CIEPŁA. Zmiana energii wewnętrznej

Bardziej szczegółowo

Kontrola procesu spalania

Kontrola procesu spalania Kontrola procesu spalania Spalanie paliw polega na gwałtownym utlenieniu składników palnych zawartych w paliwie przebiegającym z wydzieleniem ciepła i zjawiskami świetlnymi. Ostatecznymi produktami utleniania

Bardziej szczegółowo

LABORATORIUM SPALANIA I PALIW

LABORATORIUM SPALANIA I PALIW 1. Wprowadzenie 1.1. Skład węgla LABORATORIUM SPALANIA I PALIW Węgiel składa się z substancji organicznej, substancji mineralnej i wody (wilgoci). Substancja mineralna i wilgoć stanowią bezużyteczny balast.

Bardziej szczegółowo

Konsekwencje termodynamiczne podsuszania paliwa w siłowni cieplnej.

Konsekwencje termodynamiczne podsuszania paliwa w siłowni cieplnej. Marcin Panowski Politechnika Częstochowska Konsekwencje termodynamiczne podsuszania paliwa w siłowni cieplnej. Wstęp W pracy przedstawiono analizę termodynamicznych konsekwencji wpływu wstępnego podsuszania

Bardziej szczegółowo

Systemy jakości w produkcji i obrocie biopaliwami stałymi. grupa 1, 2, 3

Systemy jakości w produkcji i obrocie biopaliwami stałymi. grupa 1, 2, 3 Systemy jakości w produkcji i obrocie biopaliwami stałymi Zajęcia II - Ocena jakościowa surowców do produkcji biopaliw stałych grupa 1, 2, 3 Pomiar wilgotności materiału badawczego PN-EN 14774-1:2010E

Bardziej szczegółowo

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej Instrukcja do zajęć laboratoryjnych Eksploatacja i obróbka skał Badania geometrycznych właściwości Temat: kruszyw Oznaczanie kształtu

Bardziej szczegółowo

Przemysłowe laboratorium technologii. ropy naftowej i węgla II. TCCO17004l

Przemysłowe laboratorium technologii. ropy naftowej i węgla II. TCCO17004l Technologia chemiczna Przemysłowe laboratorium technologii ropy naftowej i węgla II TCCO17004l Ćwiczenie nr IV Opracowane: dr inż. Ewa Lorenc-Grabowska Wrocław 2012 1 Spis treści I. Wstęp 3 1.1. Metoda

Bardziej szczegółowo

Prowadzący: dr hab. inż. Agnieszka Gubernat (tel. (0 12) 617 36 96; gubernat@agh.edu.pl)

Prowadzący: dr hab. inż. Agnieszka Gubernat (tel. (0 12) 617 36 96; gubernat@agh.edu.pl) TRANSPORT MASY I CIEPŁA Seminarium Transport masy i ciepła Prowadzący: dr hab. inż. Agnieszka Gubernat (tel. (0 12) 617 36 96; gubernat@agh.edu.pl) WARUNKI ZALICZENIA: 1. ZALICZENIE WSZYSTKICH KOLOKWIÓW

Bardziej szczegółowo

dr inż. Paweł Strzałkowski

dr inż. Paweł Strzałkowski Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej Instrukcja do zajęć laboratoryjnych Eksploatacja i obróbka skał Badania mechanicznych i fizycznych Temat: właściwości kruszyw Oznaczanie

Bardziej szczegółowo

PODSTAWY TECHNOLOGII WYTWARZANIA I PRZETWARZANIA

PODSTAWY TECHNOLOGII WYTWARZANIA I PRZETWARZANIA im. Stanisława Staszica w Krakowie WYDZIAŁ INŻYNIERII METALI I INFORMATYKI PRZEMYSŁOWEJ Prof. dr hab. inż. Andrzej Łędzki Dr inż. Krzysztof Zieliński Dr inż. Arkadiusz Klimczyk PODSTAWY TECHNOLOGII WYTWARZANIA

Bardziej szczegółowo

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie

Bardziej szczegółowo

Energetyczne wykorzystanie odpadów z biogazowni

Energetyczne wykorzystanie odpadów z biogazowni Energetyczne wykorzystanie odpadów z biogazowni Odpady z biogazowni - poferment Poferment obecnie nie spełnia kryterium nawozu organicznego. Spełnia natomiast definicję środka polepszającego właściwości

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 1 WYZNACZANIE GĘSTOSCI CIECZY Autorzy:

Bardziej szczegółowo

PROJEKT: Innowacyjna usługa zagospodarowania popiołu powstającego w procesie spalenia odpadów komunalnych w celu wdrożenia produkcji wypełniacza

PROJEKT: Innowacyjna usługa zagospodarowania popiołu powstającego w procesie spalenia odpadów komunalnych w celu wdrożenia produkcji wypełniacza PROJEKT: Innowacyjna usługa zagospodarowania popiołu powstającego w procesie spalenia odpadów komunalnych w celu wdrożenia produkcji wypełniacza Etap II Rozkład ziarnowy, skład chemiczny i części palne

Bardziej szczegółowo

Cel zajęć laboratoryjnych Oznaczanie współczynnika nasiąkliwości kapilarnej wybranych kamieni naturalnych.

Cel zajęć laboratoryjnych Oznaczanie współczynnika nasiąkliwości kapilarnej wybranych kamieni naturalnych. Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej Instrukcja do zajęć laboratoryjnych Eksploatacja i obróbka skał Nr ćwiczenia: Metody badań kamienia naturalnego: Temat: Oznaczanie

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

Rtęć w przemyśle. Technologia usuwania rtęci z węgla przed procesem zgazowania/spalania jako efektywny sposób obniżenia emisji rtęci do atmosfery

Rtęć w przemyśle. Technologia usuwania rtęci z węgla przed procesem zgazowania/spalania jako efektywny sposób obniżenia emisji rtęci do atmosfery Rtęć w przemyśle Konwencja, ograniczanie emisji, technologia 26 listopada 2014, Warszawa Technologia usuwania rtęci z węgla przed procesem zgazowania/spalania jako efektywny sposób obniżenia emisji rtęci

Bardziej szczegółowo

Technologia chemiczna ćwiczenia. Materiały do zajęć dotyczących procesu koksowania i spalania węgla

Technologia chemiczna ćwiczenia. Materiały do zajęć dotyczących procesu koksowania i spalania węgla Technologia chemiczna ćwiczenia Materiały do zajęć dotyczących procesu koksowania i spalania węgla 1 Technologia chemiczna ćwiczenia Materiały do zajęć dotyczących procesu koksowania i spalania węgla I.

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ

INSTYTUT INŻYNIERII MATERIAŁOWEJ Ćwiczenie: Oznaczanie chłonności wody tworzyw sztucznych 1 Cel ćwiczenia Celem ćwiczenia jest oznaczenie chłonności wody przez próbkę tworzywa jedną z metod przedstawionych w niniejszej instrukcji. 2 Określenie

Bardziej szczegółowo

LABORATORIUM ENERGETYCZNE

LABORATORIUM ENERGETYCZNE NA WYKONYWANIE BADAŃ OFERTA WĘGLA KOKSU ODPADÓW PALENISKOWYCH (POPIOŁÓW, POPIOŁÓW LOTNYCH I ŻUŻLI) Osoby do kontaktu: mgr Agnieszka Miśko tel. (091) 317-41-05 tel. kom. 519-501-625 e-mail: agnieszka.misko@grupaazoty.com

Bardziej szczegółowo

BADANIE PARAMETRÓW PROCESU SUSZENIA

BADANIE PARAMETRÓW PROCESU SUSZENIA BADANIE PARAMETRÓW PROCESU SUSZENIA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania suszarki konwekcyjnej z mikrofalowym wspomaganiem oraz wyznaczenie krzywej suszenia dla suszenia

Bardziej szczegółowo

LABORATORIUM ENERGETYCZNE

LABORATORIUM ENERGETYCZNE NA WYKONYWANIE BADAŃ OFERTA WĘGLA KOKSU ODPADÓW PALENISKOWYCH (POPIOŁÓW, POPIOŁÓW LOTNYCH I ŻUŻLI) Osoby do kontaktu: mgr Agnieszka Miśko tel. (091) 317-41-05 tel. kom. 519-501-625 e-mail: agnieszka.misko@grupaazoty.com

Bardziej szczegółowo

Temat: Badanie Proctora wg PN EN

Temat: Badanie Proctora wg PN EN Instrukcja do ćwiczeń laboratoryjnych Technologia robót drogowych Temat: Badanie wg PN EN 13286-2 Celem ćwiczenia jest oznaczenie maksymalnej gęstości objętościowej szkieletu gruntowego i wilgotności optymalnej

Bardziej szczegółowo

Katowicki Węgiel Sp. z o.o. CHARAKTERYSTYKA PALIW KWALIFIKOWANYCH PRODUKOWANYCH PRZEZ KATOWICKI WĘGIEL SP. Z O.O.

Katowicki Węgiel Sp. z o.o. CHARAKTERYSTYKA PALIW KWALIFIKOWANYCH PRODUKOWANYCH PRZEZ KATOWICKI WĘGIEL SP. Z O.O. CHARAKTERYSTYKA PALIW KWALIFIKOWANYCH PRODUKOWANYCH PRZEZ KATOWICKI WĘGIEL SP. Z O.O. W 2000r. Katowicki Holding Węglowy i Katowicki Węgiel Sp. z o.o. rozpoczęli akcję informacyjną na temat nowoczesnych

Bardziej szczegółowo

PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: WAŻENIE, SUSZENIE, STRĄCANIE OSADÓW, SĄCZENIE

PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: WAŻENIE, SUSZENIE, STRĄCANIE OSADÓW, SĄCZENIE PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: WAŻENIE, SUSZENIE, STRĄCANIE OSADÓW, SĄCZENIE CEL ĆWICZENIA Zapoznanie studenta z podstawowymi technikami pracy laboratoryjnej: ważeniem, strącaniem osadu, sączeniem

Bardziej szczegółowo

ANALIZA TECHNICZNA WĘGLA I BIOMASY

ANALIZA TECHNICZNA WĘGLA I BIOMASY TECHNOLOGIA CHEMICZNA SUROWCE I NOŚNIKI ENERGII Laboratorium ANALIZA TECHNICZNA WĘGLA I BIOMASY ĆWICZENIE W1 SPIS TREŚCI: 1. WSTĘP... 2 2. BIOMASA...2 3. WĘGIEL BRUNATNY I KAMIENNY...3 4. CHARAKTERYSTYKA

Bardziej szczegółowo

Kinetyka suszenia. Cel ćwiczenia C D C D. Xkr

Kinetyka suszenia. Cel ćwiczenia C D C D. Xkr Kinetyka suszenia Cel ćwiczenia 1. Wyznaczenie przebiegu krzywej suszenia i krzywej szybkości suszenia badanego materiału 2. Określenie wartości szybkości suszenia w I okresie i charakteru zmian szybkości

Bardziej szczegółowo

Nazwisko...Imię...Nr albumu... ZGAZOWANIE PALIW V ME/E, Test 11 (dn )

Nazwisko...Imię...Nr albumu... ZGAZOWANIE PALIW V ME/E, Test 11 (dn ) Nazwisko...Imię...Nr albumu... ZGAZOWANIE PALIW V ME/E, Test 11 (dn. 2008.01.25) 1. Co jest pozostałością stałą z węgla po procesie: a) odgazowania:... b) zgazowania... 2. Który w wymienionych rodzajów

Bardziej szczegółowo

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ Ćwiczenie nr 3 1. CHARAKTERYSTYKA PROCESU Wirowanie jest procesem sedymentacji uwarunkowanej działaniem siły odśrodkowej przy przyspieszeniu 1500

Bardziej szczegółowo

pętla nastrzykowa gaz nośny

pętla nastrzykowa gaz nośny METODA POPRAWY PRECYZJI ANALIZ CHROMATOGRAFICZNYCH GAZÓW ZIEMNYCH POPRZEZ KONTROLOWANY SPOSÓB WPROWADZANIA PRÓBKI NA ANALIZATOR W WARUNKACH BAROSTATYCZNYCH Pracownia Pomiarów Fizykochemicznych (PFC), Centralne

Bardziej szczegółowo

POBIERANIE PRÓBEK PALIW STAŁYCH

POBIERANIE PRÓBEK PALIW STAŁYCH Warsztaty szkoleniowe Kontrolowanie przepisów obowiązujących na terenie województwa wielkopolskiego tzw. uchwał antysmogowych Poznań 16.10.2018r. POBIERANIE PRÓBEK PALIW STAŁYCH mgr inż. Mariusz Mastalerz

Bardziej szczegółowo

Grupa Azoty Zakłady Chemiczne Police S.A. Centrum Analiz Laboratoryjnych Dział Analiz Środowiskowych i Energetycznych LABORATORIUM ENERGETYCZNE

Grupa Azoty Zakłady Chemiczne Police S.A. Centrum Analiz Laboratoryjnych Dział Analiz Środowiskowych i Energetycznych LABORATORIUM ENERGETYCZNE NA WYKONYWANIE BADAŃ OFERTA WĘGLA KOKSU ODPADÓW PALENISKOWYCH (POPIOŁÓW, POPIOŁÓW LOTNYCH I ŻUŻLI) Osoby do kontaktu mgr Agnieszka Miśko tel.+48 91 317 41 05 tel. kom.519 501 625 e-mail: agnieszka.misko@grupaazoty.com

Bardziej szczegółowo

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW GRAWITACYJNE ZAGĘSZCZANIE OSADÓW Ćwiczenie nr 4 1. CHARAKTERYSTYKA PROCESU Ze względu na wysokie uwodnienie oraz niewielką ilość suchej masy, osady powstające w oczyszczalni ścieków należy poddawać procesowi

Bardziej szczegółowo

Oferta badawcza. XVI Forum Klastra Bioenergia dla Regionu 20 maja 2015r. dr inż. Anna Zamojska-Jaroszewicz

Oferta badawcza. XVI Forum Klastra Bioenergia dla Regionu 20 maja 2015r. dr inż. Anna Zamojska-Jaroszewicz Oferta badawcza XVI Forum Klastra Bioenergia dla Regionu 20 maja 2015r. dr inż. Anna Zamojska-Jaroszewicz Struktura organizacyjna PIMOT Przemysłowy Instytut Motoryzacji Pion Paliw i Energii Odnawialnej

Bardziej szczegółowo

Wpływ współspalania biomasy na stan techniczny powierzchni ogrzewalnych kotłów - doświadczenia Jednostki Inspekcyjnej UDT

Wpływ współspalania biomasy na stan techniczny powierzchni ogrzewalnych kotłów - doświadczenia Jednostki Inspekcyjnej UDT Urząd Dozoru Technicznego Wpływ współspalania biomasy na stan techniczny powierzchni ogrzewalnych kotłów - doświadczenia Jednostki Inspekcyjnej UDT Bełchatów, październik 2011 1 Technologie procesu współspalania

Bardziej szczegółowo

Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa

Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa Podkomitet ds. Przesyłu Paliw Gazowych 1. 334+A1:2011 Reduktory ciśnienia gazu dla ciśnień wejściowych do 100 bar 2. 1594:2014-02

Bardziej szczegółowo

Badania nad zastosowaniem kondycjonowania spalin do obniżenia emisji pyłu z Huty Katowice S.A w Dąbrowie Górniczej

Badania nad zastosowaniem kondycjonowania spalin do obniżenia emisji pyłu z Huty Katowice S.A w Dąbrowie Górniczej Dr inż. Marian Mazur Akademia Górniczo Hutnicza mgr inż. Bogdan Żurek Huta Katowice S.A w Dąbrowie Górniczej Badania nad zastosowaniem kondycjonowania spalin do obniżenia emisji pyłu z Huty Katowice S.A

Bardziej szczegółowo

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 017 Nazwa kwalifikacji: Eksploatacja instalacji i urządzeń do wytwarzania i przesyłania energii cieplnej

Bardziej szczegółowo

Biomasa alternatywą dla węgla kamiennego

Biomasa alternatywą dla węgla kamiennego Nie truj powietrza miej wpływ na to czym oddychasz Biomasa alternatywą dla węgla kamiennego Państwowa Wyższa Szkoła Zawodowa im. Szymona Szymonowica w Zamościu dr Bożena Niemczuk Lublin, 27 października

Bardziej szczegółowo

Wytrzymałość mechaniczna i reakcyjność koksu

Wytrzymałość mechaniczna i reakcyjność koksu POLITECHNIKA WROCŁAWSKA WYDZIAŁ CHEMICZNY PRODUKTY CHEMICZNE Wytrzymałość mechaniczna i reakcyjność koksu Przygotowali: Piotr Rutkowski Katarzyna Labus 2010 WSTĘP Przed zapoznaniem się z treścią poniższej

Bardziej szczegółowo

Układ zgazowania RDF

Układ zgazowania RDF Układ zgazowania RDF Referencje Od 2017, wraz z firmą Modern Technologies and Filtration Sp. z o.o, wykonaliśmy 6 instalacji zgazowania, takich jak: System zgazowania odpadów drzewnych dla Klose Czerska

Bardziej szczegółowo

Laboratorium z Konwersji Energii SILNIK SPALINOWY

Laboratorium z Konwersji Energii SILNIK SPALINOWY Laboratorium z Konwersji Energii SILNIK SPALINOWY 1. Wstęp teoretyczny Silnik spalinowy to maszyna, w której praca jest wykonywana przez gazy spalinowe, powstające w wyniku spalania paliwa w przestrzeni

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYWNÓW ZAKŁAD SPALANIA I DETONACJI Raport wewnętrzny

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYWNÓW ZAKŁAD SPALANIA I DETONACJI Raport wewnętrzny POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYWNÓW ZAKŁAD SPALANIA I DETONACJI Raport wewnętrzny Raport z badań toryfikacji biomasy Charakterystyka paliwa Analizy termograwimetryczne

Bardziej szczegółowo

Ćwiczenie 3. Woda w substancjach stałych

Ćwiczenie 3. Woda w substancjach stałych Ćwiczenie 3 Oznaczenie zawartości wody krystalizacyjnej w CuSO 4 5H 2 O z wykorzystaniem analizatora wilgoci (częściowe odwodnienie) oraz suszarki laboratoryjnej (częściowe i całkowite odwodnienie) Literatura

Bardziej szczegółowo

TECHNIKI ORAZ TECHNOLOGIE SPALANIA I WSPÓŁSPALANIA SŁOMY

TECHNIKI ORAZ TECHNOLOGIE SPALANIA I WSPÓŁSPALANIA SŁOMY Międzynarodowe Targi Poznańskie POLAGRA AGRO Premiery Polska Słoma Energetyczna TECHNIKI ORAZ TECHNOLOGIE SPALANIA I WSPÓŁSPALANIA SŁOMY Politechnika Poznańska Katedra Techniki Cieplnej LAUREAT XI EDYCJI

Bardziej szczegółowo

Rada Unii Europejskiej Bruksela, 14 października 2015 r. (OR. en)

Rada Unii Europejskiej Bruksela, 14 października 2015 r. (OR. en) Rada Unii Europejskiej Bruksela, 14 października 2015 r. (OR. en) 13021/15 ADD 1 ENER 354 ENV 627 DELACT 136 PISMO PRZEWODNIE Od: Sekretarz Generalny Komisji Europejskiej, podpisał dyrektor Jordi AYET

Bardziej szczegółowo

Wykaz zawierający informacje o ilości i rodzajach gazów lub pyłów wprowadzanych do powietrza oraz dane, na podstawie których określono te ilości.

Wykaz zawierający informacje o ilości i rodzajach gazów lub pyłów wprowadzanych do powietrza oraz dane, na podstawie których określono te ilości. Załącznik nr 2 WZÓR Wykaz zawierający informacje o ilości i rodzajach gazów lub pyłów wprowadzanych do powietrza oraz dane, na podstawie których określono te ilości. Nazwa: REGON: WPROWADZANIE GAZÓW LUB

Bardziej szczegółowo

2011-05-19. Tablica 1. Wymiary otworów sit do określania wymiarów ziarn kruszywa. Sita dodatkowe: 0,125 mm; 0,25 mm; 0,5 mm.

2011-05-19. Tablica 1. Wymiary otworów sit do określania wymiarów ziarn kruszywa. Sita dodatkowe: 0,125 mm; 0,25 mm; 0,5 mm. Kruszywa do mieszanek mineralno-asfaltowych powinny odpowiadad wymaganiom przedstawionym w normie PN-EN 13043 Kruszywa do mieszanek bitumicznych i powierzchniowych utrwaleo stosowanych na drogach, lotniskach

Bardziej szczegółowo

NOWOCZESNE KOMORY SPALANIA BIOMASY - DREWNA DREWNO POLSKIE OZE 2016

NOWOCZESNE KOMORY SPALANIA BIOMASY - DREWNA DREWNO POLSKIE OZE 2016 NOWOCZESNE KOMORY SPALANIA BIOMASY - DREWNA 2016 OPAŁ STAŁY 2 08-09.12.2017 OPAŁ STAŁY 3 08-09.12.2017 Palenisko to przestrzeń, w której spalane jest paliwo. Jego kształt, konstrukcja i sposób przeprowadzania

Bardziej szczegółowo

POLSKA IZBA EKOLOGII. Propozycja wymagań jakościowych dla węgla jako paliwa dla sektora komunalno-bytowego

POLSKA IZBA EKOLOGII. Propozycja wymagań jakościowych dla węgla jako paliwa dla sektora komunalno-bytowego POLSKA IZBA EKOLOGII 40-009 Katowice, ul. Warszawska 3 tel/fax (48 32) 253 51 55; 253 72 81; 0501 052 979 www.pie.pl e-mail : pie@pie.pl BOŚ S.A. O/Katowice 53 1540 1128 2001 7045 2043 0001 Katowice, 15.01.2013r.

Bardziej szczegółowo

Materiały Drogowe Laboratorium 1

Materiały Drogowe Laboratorium 1 ateriały Drogowe Laboratorium Klasyfikacja kruszyw Literatura: Normy klasyfikacyjne: PN-EN 3043 Kruszywa do mieszanek bitumicznych i powierzchniowych utrwaleń stosowanych na drogach, lotniskach i innych

Bardziej szczegółowo

Paliwa stałe rozpoznawanie i zakup paliw dopuszczonych do stosowania

Paliwa stałe rozpoznawanie i zakup paliw dopuszczonych do stosowania Szkolenie dla pracowników merytorycznych jednostek samorządu terytorialnego, Policji i Straży miejskich/gminnych z terenu województwa małopolskiego dotyczących metodyki wykrywania nielegalnego spalania

Bardziej szczegółowo

Biomasa i wykorzystanie odpadów do celów energetycznych - klimatycznie neutralne źródła

Biomasa i wykorzystanie odpadów do celów energetycznych - klimatycznie neutralne źródła Biomasa i wykorzystanie odpadów do celów energetycznych - klimatycznie neutralne źródła energii dla Polski Konferencja Demos Europa Centrum Strategii Europejskiej Warszawa 10 lutego 2009 roku Skraplanie

Bardziej szczegółowo

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ PRZERÓBKA I UNIESZKODLIWIANIE OSADÓW ŚCIEKOWYCH Ćwiczenie nr 3 ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ 1. CHARAKTERYSTYKA PROCESU Odwadnianie osadów za pomocą odwirowania polega na wytworzeniu

Bardziej szczegółowo

WYZNACZANIE ZAWARTOŚCI POTASU

WYZNACZANIE ZAWARTOŚCI POTASU POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW obowiązuje w r. akad. 2017 / 2018 WYZNACZANIE ZAWARTOŚCI POTASU W STAŁEJ PRÓBCE SOLI Opiekun ćwiczenia: Miejsce ćwiczenia:

Bardziej szczegółowo

pellet Stelmet LAVA - 24 palety - worki po 15kg LAVA Pellet Opis produktu

pellet Stelmet LAVA - 24 palety - worki po 15kg LAVA Pellet Opis produktu Dane aktualne na dzień: 09-09-2019 15:31 Link do produktu: https://piec.com.pl/pellet-stelmet-lava-24-palety-worki-po-15kg-p-265.html pellet Stelmet LAVA - 24 palety - worki po 15kg Numer katalogowy stelmet_lava_paleta

Bardziej szczegółowo

Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania. poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści

Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania. poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści Przedmowa Wykaz waŝniejszych oznaczeń i symboli IX XI 1. Emisja zanieczyszczeń

Bardziej szczegółowo

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH WYMIANA JONOWA

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH WYMIANA JONOWA KIiChŚ PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH Ćwiczenie nr 2 WYMIANA JONOWA Cel ćwiczenia Celem ćwiczenia jest określenie roboczej zdolności wymiennej jonitu na podstawie eksperymentalnie wyznaczonej

Bardziej szczegółowo

Energia słoneczna i cieplna biosfery Pojęcia podstawowe

Energia słoneczna i cieplna biosfery Pojęcia podstawowe Dr inż. Mariusz Szewczyk Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki 35-959 Rzeszów, ul. W. Pola 2 Energia słoneczna i cieplna biosfery Pojęcia podstawowe

Bardziej szczegółowo

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych Wersja z dnia: 2008-02-25 Wyznaczanie gęstości metodą piknometryczną Gęstości ciała (ρ) jest definiowana jako masa (m) jednostkowej objętości tego ciała (V). Jeśli ciało jest jednorodne, to jego gęstość

Bardziej szczegółowo

Grawitacyjne zagęszczanie osadu

Grawitacyjne zagęszczanie osadu Grawitacyjne zagęszczanie osadu Wprowadzenie Zagęszczanie grawitacyjne (samoistne) przebiega samorzutnie w np. osadnikach (wstępnych, wtórnych, pośrednich) lub może być prowadzone w oddzielnych urządzeniach

Bardziej szczegółowo

Bogna Burzała Centralne Laboratorium ENERGOPOMIAR Sp. z o.o. Kierunek Wod-Kan 3/2014 ODPADOWY DUET

Bogna Burzała Centralne Laboratorium ENERGOPOMIAR Sp. z o.o. Kierunek Wod-Kan 3/2014 ODPADOWY DUET Bogna Burzała Centralne Laboratorium ENERGOPOMIAR Sp. z o.o. Kierunek Wod-Kan 3/2014 ODPADOWY DUET 1. Wprowadzenie Według prognoz Krajowego Planu Gospodarki Odpadami 2014 (KPGO 2014) ilość wytwarzanych

Bardziej szczegółowo

NISKOEMISYJNE PALIWO WĘGLOWE

NISKOEMISYJNE PALIWO WĘGLOWE NISKOEMISYJNE PALIWO WĘGLOWE możliwości technologiczne i oferta rynkowa OPRACOWAŁ: Zespół twórców wynalazku zgłoszonego do opatentowania za nr P.400894 Za zespól twórców Krystian Penkała Katowice 15 październik

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 2 WYZNACZANIE GĘSTOSCI CIAŁ STAŁYCH Autorzy:

Bardziej szczegółowo

Paliwa z odpadów możliwości i uwarunkowania wdrożenia systemu w Polsce

Paliwa z odpadów możliwości i uwarunkowania wdrożenia systemu w Polsce Paliwa z odpadów możliwości i uwarunkowania wdrożenia systemu w Polsce Dr inż. Ryszard Wasielewski Centrum Badań Technologicznych Instytutu Chemicznej Przeróbki Węgla w Zabrzu 2/15 Walory energetyczne

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy

Bardziej szczegółowo

1.1. Dobór rodzaju kruszywa wchodzącego w skład mieszanki mineralnej

1.1. Dobór rodzaju kruszywa wchodzącego w skład mieszanki mineralnej Przykład: Przeznaczenie: beton asfaltowy warstwa wiążąca, AC 16 W Rodzaj MMA: beton asfaltowy do warstwy wiążącej i wyrównawczej, AC 16 W, KR 3-4 Rodzaj asfaltu: asfalt 35/50 Norma: PN-EN 13108-1 Dokument

Bardziej szczegółowo

Występowanie węgla Węgiel, jako pierwiastek, występuje

Występowanie węgla Węgiel, jako pierwiastek, występuje WĘGIEL Występowanie węgla Węgiel, jako pierwiastek, występuje: a) w małych ilościach w stanie wolnym (grafit, diament) b) głównie w stanie związanym: - węglany (CaCO 3, MgCO 3, i innych), - dwutlenek węgla

Bardziej szczegółowo

dr inż. Paweł Strzałkowski

dr inż. Paweł Strzałkowski Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej Instrukcja do zajęć laboratoryjnych Eksploatacja i obróbka skał Badania mechanicznych i fizycznych właściwości kruszyw Część 1: Temat:

Bardziej szczegółowo

ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie

ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie Akademia Górniczo Hutnicza im. St. Staszica w Krakowie Wydział Energetyki i Paliw Katedra Technologii Paliw ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie Ćwiczenie 3 Zawartość

Bardziej szczegółowo

APARATURA W OCHRONIE ŚRODOWISKA - 1. WPROWADZENIE

APARATURA W OCHRONIE ŚRODOWISKA - 1. WPROWADZENIE APARATURA W OCHRONIE ŚRODOWISKA - 1. WPROWADZENIE Wykład dla kierunku Ochrona Środowiska Wrocław, 2016 r. Ochrona środowiska - definicje Ochrona środowiska szereg podejmowanych przez człowieka działań

Bardziej szczegółowo

Oznaczanie składu ziarnowego kruszyw z wykorzystaniem próbek zredukowanych

Oznaczanie składu ziarnowego kruszyw z wykorzystaniem próbek zredukowanych dr inż. Zdzisław Naziemiec ISCOiB, OB Kraków Oznaczanie składu ziarnowego kruszyw z wykorzystaniem próbek zredukowanych Przesiewanie kruszyw i oznaczenie ich składu ziarnowego to podstawowe badanie, jakie

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy techniki i technologii Kod przedmiotu: IS01123; IN01123 Ćwiczenie 3 WYZNACZANIE GĘSTOSCI

Bardziej szczegółowo

Ćwiczenie 1: Podstawowe parametry stanu.

Ćwiczenie 1: Podstawowe parametry stanu. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: m V kg Gęstość wyrażana jest w jednostkach układu SI Gęstość

Bardziej szczegółowo

Uniwersytet Warmińsko-Mazurski dr inż. Dariusz Wiśniewski

Uniwersytet Warmińsko-Mazurski dr inż. Dariusz Wiśniewski Uniwersytet Warmińsko-Mazurski dr inż. Dariusz Wiśniewski Celem prowadzonych badań jest możliwość wykorzystania energetycznego pofermentu Poferment obecnie nie spełnia kryterium nawozu organicznego. Spełnia

Bardziej szczegółowo

(Tekst mający znaczenie dla EOG) (2017/C 076/02) (1) (2) (3) (4) Miejscowe ogrzewacze pomieszczeń na paliwo stałe

(Tekst mający znaczenie dla EOG) (2017/C 076/02) (1) (2) (3) (4) Miejscowe ogrzewacze pomieszczeń na paliwo stałe C 76/4 PL Dziennik Urzędowy Unii Europejskiej 10.3.2017 Komunikat Komisji w ramach wykonania rozporządzenia Komisji (UE) 2015/1188 w sprawie wykonania dyrektywy Parlamentu Europejskiego i Rady 2009/125/WE

Bardziej szczegółowo

Część I. Obliczenie emisji sezonowego ogrzewania pomieszczeń (E S ) :

Część I. Obliczenie emisji sezonowego ogrzewania pomieszczeń (E S ) : Potwierdzenie wartości emisji zgodnych z rozporządzeniem UE 2015/1189 z dnia 28 kwietnia 2015r. w sprawie wykonania dyrektywy Parlamentu Europejskiego i Rady 2009/125/WE w odniesieniu do wymogów dotyczących

Bardziej szczegółowo

Jak efektywnie spalać węgiel?

Jak efektywnie spalać węgiel? Jak efektywnie spalać węgiel? Procesy spalania paliw stałych są dużo bardziej złożone od spalania paliw gazowych czy ciekłych. Komplikuje je różnorodność zjawisk fizyko-chemicznych zachodzących w fazie

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ ZLEŻNOŚĆ PRĘŻNOŚCI PRY OD TEMPERTURY - DESTYLCJ WSTĘP Zgodnie z regułą faz w miarę wzrostu liczby składników w układzie, zwiększa się również liczba stopni swobody. Układ utworzony z mieszaniny dwóch cieczy

Bardziej szczegółowo

Zawartość i sposoby usuwania rtęci z polskich węgli energetycznych. mgr inż. Michał Wichliński

Zawartość i sposoby usuwania rtęci z polskich węgli energetycznych. mgr inż. Michał Wichliński Zawartość i sposoby usuwania rtęci z polskich węgli energetycznych mgr inż. Michał Wichliński Rtęć Rtęć występuje w skorupie ziemskiej w ilości 0,05 ppm, w małych ilościach można ją wykryć we wszystkich

Bardziej szczegółowo

kwartał/rok: Podmiot korzystający ze środowiska Lp. Adres Gmina Powiat Adres: korzystania ze Miejsce/ miejsca Nr kierunkowy/telefon/fax: środowiska

kwartał/rok: Podmiot korzystający ze środowiska Lp. Adres Gmina Powiat Adres: korzystania ze Miejsce/ miejsca Nr kierunkowy/telefon/fax: środowiska Nazwa: WZÓR Załącznik Nr 2 WYKAZ ZAWIERAJĄCY INFORMACJE O ILOŚCI I RODZAJACH GAZÓW LUB PYŁÓW WPROWADZANYCH DO POWIETRZA ORAZ DANE, NA PODSTAWIE KTÓRYCH OKREŚLONO TE ILOŚCI. REGON: WPROWADZANIE GAZÓW LUB

Bardziej szczegółowo

Magazynowanie cieczy

Magazynowanie cieczy Magazynowanie cieczy Do magazynowania cieczy służą zbiorniki. Sposób jej magazynowania zależy od jej objętości i właściwości takich jak: prężność par, korozyjność, palność i wybuchowość. Zbiorniki mogą

Bardziej szczegółowo

- 5 - Załącznik nr 2. Miejsce/

- 5 - Załącznik nr 2. Miejsce/ Załącznik nr 2 Załącznik nr 2-5 - WZÓR WYKAZU ZAWIERAJĄCEGO INFORMACJE O ILOŚCI I RODZAJACH GAZÓW LUB PYŁÓW WPROWADZANYCH DO POWIETRZA, DANE, NA PODSTAWIE KTÓRYCH OKREŚLONO TE ILOŚCI, ORAZ INFORMACJE O

Bardziej szczegółowo

Viessmann. Efekt ekologiczny. Dom jednorodzinny Kosmonałty 3a 52-300 Wołów. Janina Nowicka Kosmonałty 3a 52-300 Wołów

Viessmann. Efekt ekologiczny. Dom jednorodzinny Kosmonałty 3a 52-300 Wołów. Janina Nowicka Kosmonałty 3a 52-300 Wołów Viessmann Biuro: Karkonowska 1, 50-100 Wrocław, tel./fa.:13o41o4[p1o3, e-mail:a,'a,wd[l,qw[dq][wd, www.cieplej.pl Efekt ekologiczny Obiekt: Inwestor: Wykonawca: Dom jednorodzinny Kosmonałty 3a 5-300 Wołów

Bardziej szczegółowo

Ćwiczenie 1. Technika ważenia oraz wyznaczanie błędów pomiarowych. Ćwiczenie 2. Sprawdzanie pojemności pipety

Ćwiczenie 1. Technika ważenia oraz wyznaczanie błędów pomiarowych. Ćwiczenie 2. Sprawdzanie pojemności pipety II. Wagi i ważenie. Roztwory. Emulsje i koloidy Zagadnienia Rodzaje wag laboratoryjnych i technika ważenia Niepewność pomiarowa. Błąd względny i bezwzględny Roztwory właściwe Stężenie procentowe i molowe.

Bardziej szczegółowo

Data wykonania ćwiczenia Data oddania sprawozdania Ilość pkt/ocena... Nazwisko Imię:

Data wykonania ćwiczenia Data oddania sprawozdania Ilość pkt/ocena... Nazwisko Imię: Zakład Współdziałania Budowli z PodłoŜem, WIL, Politechnika Krakowska, Ćwiczenie 3 1/5 Data wykonania ćwiczenia Data oddania sprawozdania Ilość pkt/ocena.... Nazwisko Imię: Rok akad.: 2006/2007 Grupa:

Bardziej szczegółowo

Załącznik Nr 5 do Zarz. Nr 33/11/12

Załącznik Nr 5 do Zarz. Nr 33/11/12 Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: CHEMIA I FIZYKOCHEMIA PALIW STAŁYCH 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Michał REJDAK, Andrzej STRUGAŁA, Ryszard WASIELEWSKI, Martyna TOMASZEWICZ, Małgorzata PIECHACZEK. Koksownictwo

Michał REJDAK, Andrzej STRUGAŁA, Ryszard WASIELEWSKI, Martyna TOMASZEWICZ, Małgorzata PIECHACZEK. Koksownictwo Michał REJDAK, Andrzej STRUGAŁA, Ryszard WASIELEWSKI, Martyna TOMASZEWICZ, Małgorzata PIECHACZEK Koksownictwo 2015 01.10.2015 Karpacz System zasypowy vs. System ubijany PORÓWNANIE ZAŁADUNEK KOMÓR KOKSOWNICZYCH

Bardziej szczegółowo

REDUXCO. Katalizator spalania. Leszek Borkowski DAGAS sp z.o.o. D/LB/6/13 GreenEvo

REDUXCO. Katalizator spalania. Leszek Borkowski DAGAS sp z.o.o. D/LB/6/13 GreenEvo Katalizator spalania DAGAS sp z.o.o Katalizator REDUXCO - wpływa na poprawę efektywności procesu spalania paliw stałych, ciekłych i gazowych w różnego rodzaju kotłach instalacji wytwarzających energie

Bardziej szczegółowo

PL B1. ECOFUEL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Jelenia Góra, PL BUP 09/14

PL B1. ECOFUEL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Jelenia Góra, PL BUP 09/14 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 230654 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 401275 (22) Data zgłoszenia: 18.10.2012 (51) Int.Cl. C10L 5/04 (2006.01)

Bardziej szczegółowo

PARAMETRY FIZYKOCHEMICZNE BADANYCH PALIW Z ODPADÓW

PARAMETRY FIZYKOCHEMICZNE BADANYCH PALIW Z ODPADÓW VII Konferencja Paliwa z odpadów Chorzów, 14-16 marca 2017 PARAMETRY FIZYKOCHEMICZNE BADANYCH PALIW Z ODPADÓW dr Łukasz Smędowski mgr Agnieszka Skawińska Badania właściwości paliw Zgodnie z obowiązującym

Bardziej szczegółowo