KONCEPCJA ELEKTROWNI TERMOJĄDROWEJ FUSION POWER PLANT CONCEPT
|
|
- Damian Kalinowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 DARIUSZ BRADŁ, SYLWESTER ŻELAZNY, WITLD ŻUKWSKI * KNCEPCJA ELEKTRWNI TERMJĄDRWEJ FUSIN PWER PLANT CNCEPT Streszczenie Abstract Kontrolowana synteza termojądrowa odnosi się do takiej reakcji syntezy jąder atomowych, która zachodzi w temperaturach rzędu milionów K, a energia uzyskana z fuzji wystarcza do podtrzymania dalszej reakcji i można ją wykorzystać do celów energetycznych. W niniejszym artykule zaprezentowano koncepcję przyszłej elektrowni termojądrowej DEM opartej na modelu AB PPCS. Zamieszczono symulację działania systemu zamiany energii cieplnej w elektryczną wykonaną w programie CHEMCAD 6.. Dokonano także porównania różnych typów elektrowni poprzez obliczenie ilości potrzebnego paliwa dla elektrowni o mocy 500 MW w ciągu roku. Słowa kluczowe: fuzja, kontrolowana synteza termojądrowa, elektrownia termojądrowa The controlled nuclear fusion refers to reaction of synthesis of atomic nuclei, which proceed in temperature of millions K and energy released in the process could support further reactions and also might be used as a source of electric energy. The paper comprises concept of future thermonuclear power plant DEM based on model AB PPCS. The system of power conversion of thermal energy into electric energy was accomplished and simulated in program CHEMCAD 6.. A comparison of different type of power plant was made by calculation of amount of fuel needed for 500 MW plant, during one year. Keywords: fusion, controlled nuclear fusion, fusion power plant * Inż. Dariusz Bradło, dr inż. Sylwester Żelazny, dr hab. inż. Witold Żukowski, prof. PK, Instytut Chemii i Technologii Nieorganicznej, Wydział Inżynierii i Technologii Chemicznej, Politechnika Krakowska.
2 3. Wstęp Poważnym problemem dzisiejszych czasów o zasięgu globalnym jest wyczerpywanie się surowców energetycznych przy jednoczesnym ciągłym wzroście zapotrzebowania na energię, przede wszystkim elektryczną. Jednym z alternatywnych źródeł energii elektrycznej może być energia pochodząca z syntezy jądrowej lekkich jąder atomowych. Badania nad kontrolowaną syntezą termojądrową są prowadzone równolegle z badaniami nad reakcjami rozszczepienia od ponad 60 lat, jednak z powodu złożoności kontrolowanej fuzji jądrowej nie udało się do tej pory opanować syntezy w sposób zadowalający. Termin kontrolowana synteza termojądrowa odnosi się do takiej reakcji syntezy jądrowej, która zachodzi w temperaturach rzędu kilkunastu do kilkuset milionów K, a energia uzyskana z fuzji wystarcza do podtrzymania dalszej reakcji i można ją wykorzystać do celów energetycznych. czywiście dotyczy to przebiegu reakcji w ściśle kontrolowanych warunkach, w przeciwieństwie do niekontrolowanej syntezy, jaką jest wybuch bomby wodorowej []. becnie przeprowadzenie kontrolowanej syntezy jest możliwe jedynie w urządzeniach badawczych. Co więcej, dotychczas nie udało się osiągnąć dodatniego bilansu energetycznego w żadnym eksperymencie. Rekordowo udało się uzyskać stosunek energii otrzymanej do dostarczonej równy 0,7 []. Dlatego też nie ma pewności, czy fuzja termojądrowa stanie się źródłem energii przyszłości. Jednak nie oznacza to, że nie powinno się w dalszym ciągu prowadzić badań w tym kierunku. Aktualnie w fazie budowy są trzy duże projekty badawcze ITER [3], Wendelstein 7-X [4] oraz HiPER [5]. Nadrzędnym celem tych projektów jest stworzenie prototypu elektrowni termojądrowej.. Przedmiot badań becnie najczęściej wykorzystywaną reakcją fuzji jądrowej jest synteza jąder deuteru i trytu prowadząca do powstania jądra helu 4 He i neutronu. Podczas syntezy z izotopów wodoru, wg poniższego schematu: D + T He + n wydziela się 7,59 MeV []. Z kolei najważniejsze i dające najwięcej nadziei prototypy elektrowni oparte są na metodzie magnetycznego utrzymania plazmy z wykorzystaniem tokamaka. TKAMAK to skrót od rosyjskiej nazwy Troidalnaja KAmiera s MAgnitnymi Katuszkami, co oznacza toroidalną komorę z cewkami magnetycznymi. Koncepcję tokamaka opracowali Igor J. Tamm i Andriej D. Sacharow. W 950 roku w Instytucie Energii Atomowej w Moskwie powstało pierwsze takie urządzenie pod kierunkiem profesora Lwa Arcymowicza [6]. Zasadę działania elektrowni termojądrowej opartej na koncepcji tokamaka można przedstawić w uproszczeniu w następujący sposób. Promieniowanie plazmy pada na pierwszą warstwę komory próżniowej, która pochłania promieniowanie elektromagnetyczne oraz naładowane cząstki. Druga warstwa, tzw. płaszcz powielający (ang. breeding blanket), jest wypełniona m.in. ciekłym litem (surowiec) i służy do pochłaniania neutronów, a także do
3 33 wytwarzania trytu w reakcji neutronów z litem. Deuter, drugi z surowców, jest wprowadzany do reaktora w formie gazowej lub zamrożonych kropel. Po reakcji fuzji produkty ulegają separacji, a produkt, czyli He, jest odprowadzany z obiegu. Ciepło reakcji jest oddawane ciekłemu litowi w płaszczu reaktora (ang. blanket) lub jest odbierane ze strumienia plazmy w dolnej części komory próżniowej (ang. divertor). Czynnikiem chłodzącym w obu kluczowych komponentach jest zazwyczaj hel. Hel z kolei wymienia ciepło z wodą, która tak jak w konwencjonalnej elektrowni służy do wytworzenia energii elektrycznej [7]. Rys.. Schemat elektrowni termojądrowej na bazie tokamaka [8] Fig.. Scheme of thermonuclear power plant based on tokamak concept [8] Na tej samej zasadzie działania będzie oparty reaktor wykorzystywany w projekcie badawczym ITER (International Thermonuclear Experimental Reactor). Wyniki uzyskane w ten sposób pomogą w budowie tokamaka czwartej generacji elektrowni termojądrowej, która ma powstać kilka lat po uruchomieniu projektu ITER. Pierwszą demonstracyjną elektrownię termojądrową określa się mianem DEM (Demonstration Power Plant). Kolejną fazą rozwoju idei tokamaków i kontrolowanej syntezy ma być konstrukcja prototypu pierwszej elektrowni PRT, która mogłaby stać się już elektrownią komercyjną. Kolejne etapy tworzą szybką ścieżkę rozwoju (ang. fast track) opracowaną przez organizację EFDA (European Fusion Development Agreement), jedną z najważniejszych organizacji międzynarodowych w dziedzinie kontrolowanej fuzji [9]. W 005 roku EFDA opracowała cztery koncepcje elektrowni termojądrowych nazwanych od PPCS A do PPCS D (Power Plant Conceptual Study). Poszczególne modele różnią się przede wszystkim sposobem przemiany energii, rodzajem czynnika chłodzącego i wielkością, a co za tym idzie także mocą elektrowni i sprawnością przemiany energii termicznej w elektryczną. Nieco później powstał model AB elektrowni, który stanowi połączenie koncepcji A oraz B. Jest to obecnie optymalny model i istnieje duże prawdopodobieństwo, że elektrownia DEM będzie wykorzystywała właśnie tę koncepcję. W badaniach wybrano model PPCS AB w celu sporządzenia uproszczonego bilansu energetycznego i materiałowego przyszłej elektrowni termojądrowej.
4 34 3. Badania własne 3.. Uproszczony bilans energii w elektrowni przyszłości Bilans sporządzono dla modelu AB na podstawie danych opracowanych przez EFDA [0] oraz CEA (Atomic Energy Commission) []. pracowano także schemat technologiczny systemu zamiany energii cieplnej w energię elektryczną w programie CHEMCAD 6. oraz dokonano symulacji tego procesu, uzyskując dobrą zbieżność z danymi EFDA. Schemat technologiczny składa się z trzech zamkniętych obiegów: obieg helu blanket: T = 30, 49 C p = 78, 50 bar m = 4070, 8 kg s o obieg helu divertor: T = 540, 8 C p = 00, 00 bar m = 009, 66 kg s o obieg wody/pary: T = 44, 00 C p = 7, 00 bar m = 068, 0 kg s o biegi helu są podobne. Najpierw ciepło fuzji (i ogrzewania plazmy) jest przekazywane gazowemu helowi (blanket/divertor). Na schemacie to ciepło jest reprezentowane przez podgrzewacze o ustalonym cieple dostarczonym. W dalszej kolejności znajdują się wymienniki ciepła, które służą wytworzeniu i przegrzaniu pary wodnej. statni etap to sprężanie helu w kompresorach pracujących z podaną sprawnością n. bieg wody zaczyna się od wytwornicy i przegrzewacza pary. Dalej następuje trójstopniowe rozprężanie powstałej pary w turbinach (ekspandery): WT wysokociśnieniowej, ST średniociśnieniowej oraz NT niskociśnieniowej. Turbiny napędzają następnie generator prądu. Część strumienia pary po pierwszym i drugim stopniu rozprężania ulega rozdzieleniu. Po ostatnim stopniu para kierowana jest do skraplacza (kondensator). Następnie woda jest pompowana do miksera i dalej do wymiennika ciepła wody, gdzie wymienia ciepło z rozdzielonym strumieniem po pierwszej turbinie. W ten sposób woda, kończąc obieg, ma parametry niemal identyczne jak na początku. Jedyna różnica to temperatura wyższa o ok.,7 C, co powodowało kłopoty z symulacją działania całego schematu. Aby pokonać ten problem, zastosowano dodatkowe urządzenie pomocnicze Stream Reference, które przekazało strumieniowi początkowemu jedynie wartości przepływu i ciśnienia, zaniedbując temperaturę. W praktyce dla rzeczywistego obiegu tak niewielka różnica temperatur nie będzie stanowiła problemu, gdyż należy się liczyć ze spadkami zarówno temperatury, jak i ciśnienia. trzymana w turbinach energia jest zamieniana w generatorze prądu ze sprawnością 98,7% na energię elektryczną ( 384,98 MWe), która dzieli się na: założoną moc elektrowni: 500,00 MWe, moc pomp i kompresorów: 399,56 MWe, podgrzewanie plazmy: 338,3 MWe, inne urządzenia pomocnicze elektrowni: 47, MWe (można tę wartość traktować częściowo także jako straty ciepła i masy, np. w komorze próżniowej). Wyjaśnienia wymaga występujący na schemacie termin multiplikacja. znacza on powielanie neutronów związane z koniecznością zachowania bilansu neutronów. Wykorzystuje się do tego celu związki berylu (BeTi, BeV) lub sam Be oraz Pb, podobnie będzie w reaktorze DEM. Blanket w DEM ma być wypełniony ciekłym eutektykiem o wzorze Li 7 PB 83, przez co może zachodzić reakcja opisana w skrócie jako: Pb(n, n), w której zostaje podwojona liczba neutronów oraz wydzielona dodatkowa energia energia multiplikacji.
5 Rys.. Schemat technologiczny systemu zamiany energii cieplnej w elektryczną w elektrowni termojądrowej Fig.. Technological schema of the power conversion system of thermal energy into electric energy in fusion power plant 35
6 Uproszczony bilans materiałowy elektrowni Na podstawie danych początkowych zawartych w bilansie energii sporządzono uproszczony bilans materiałowy paliwa termojądrowego. Porównano również ilości paliwa dostarczonego do elektrowni termojądrowej z elektrowniami konwencjonalnymi o tej samej mocy. Dla elektrowni jądrowej można obliczyć konieczną ilość rudy uranu, natomiast dla powszechnej w kraju elektrowni węglowej ilość miału węglowego. Założenia do bilansu: Reakcja zachodząca w reaktorze: 3... Elektrownia termojądrowa D + T He + n () Moc elektrowni: 500,00 MWe Całkowita energia uzyskana z fuzji: 490, MW Energia uzyskana z fuzji dla reakcji (): 7,59 MeV Czas pracy elektrowni: 365 dni Deuter można uzyskać z wody morskiej, przy czym założono, że m D= n H, czyli 6760 tak jak wynika to z naturalnej zawartości deuteru w przyrodzie. Dodatkowo do obliczenia objętości wody morskiej, założono jej gęstość 030 kg m 3. Tryt nie jest surowcem dostarczanym do elektrowni termojądrowej. Powstaje on w zewnętrznym płaszczu reaktora w reakcji: Li + n T + He+ 478, MeV () Jak widać z reakcji (), stosunek molowy litu do trytu wynosi :, stąd łatwo wyznaczyć masę 6 Li konieczną do otrzymania żądanej ilości trytu. 6 Li stanowi tylko 7,5% masy naturalnego litu, dlatego musi być poddany wzbogacaniu. Założono zawartość 6 Li w koncentracie równą 90,0% oraz zawartość 6 Li w frakcji zubożonej,0%. Tabela Bilans ilości surowca i produktu w elektrowni termojądrowej Przychód Rozchód Surowiec Masa [g] Produkt Masa [g] D He 39 4 T n Suma Suma Deficyt masy 505 0,38% Lit otrzymuje się w wyniku termoelektrolizy stopionych soli LiCl-KCl. LiCl można uzyskać z minerału litu spodumenu, w którym zawartość Li wynosi 8%. Stąd można obliczyć ilość minerału potrzebną do otrzymania żądanej ilości litu, przy założeniu wydajności prądowej elektrolizy 60%.
7 Elektrownia jądrowa Założenia do bilansu: Moc elektrowni: 500,00 MWe Sprawność przemiany energii: 35% Czas pracy elektrowni: 365 dni Wartość wypalenia : 55 MWd kgu 99, 3% U 38 Zawartość uranu w rudzie: % 07, % U 35 Zawartość U-35 w koncentracie: 3,3% Zawartość U-35 w frakcji zubożonej: 0,5% Uran jest dostarczany w postaci tlenku U, co nie ma wpływu na bilans materiałowy paliwa. Po zajściu reakcji rozszczepienia masa wypalonego paliwa ulega nieznacznej zmianie, a jego skład przedstawiono w tabeli. Zestawienie składu wypalonego paliwa Tabela Produkt [%] 3 [kg] U U-35 0,8 8 Pu-39 0,9 56 Produkty rozszczepienia 3, 88 Ciężkie aktynowce 0, 8 Masa zamieniana na energię 0, 8 Suma Elektrownia węglowa Założenia do bilansu: Moc elektrowni: 500,00 MWe Sprawność przemiany energii: 39% 4 Czas pracy elektrowni: 365 dni Wartość opałowa miału węglowego: 3 MJ kg Skład elementarny miału węglowego 5 Tabela 3 Skład elementarny c h s o n w p Suma [kg/kg paliwa ] 0,67 0,0 0,0 0,0 0,0 0, 0,7 Dla elektrowni PWR według []. Ilość uzyskanej energii z jednostki paliwa, liczona w megawatodniach na kg paliwa dla elektrowni PWR według []. 3 Procentowy udział w wypalonym paliwie na podstawie []. 4 Dla elektrowni skojarzonej z wytwarzaniem ciepła według danych elektrowni Kozienice [3]. 5 Według danych kopalni Lubelski Węgiel Bogdanka [4].
8 38 Współczynnik nadmiaru powietrza: λ =,5 Skład powietrza: % obj = % N = 79 obj Tabela 4 Zestawienie bilansu materiałowego spalania miału węglowego Przychód Rozchód związek masa [t] związek masa [t] C S H C S H N N H popiół Popiół z powietrza N z powietrza Suma suma Zestawienie otrzymanych wyników Tabela 5 Roczne zużycie paliwa w elektrowni o mocy 500 MW Typ Surowce Koncentrat Produkty woda morska 4 7 m 3 D g He 39 4 g ruda litu kg T g n g suma g suma g deficyt masy 505 g 0,38% ruda uranu 9 83 t 35 U 996 kg 35 U 8 kg 38 U kg 38 U 7 00 kg pozostałe 66 kg suma 8 44 kg suma 8 44 kg deficyt masy 8 kg 0,% Termojądrowa Jądrowa Węglowa miał węglowy t miał pęglowy t gazy t powietrze 60 km 3 powietrze t popiół t suma t suma t
9 Wnioski Z powyższego zestawienia wynika, że jest ogromna różnica w ilości paliwa dostarczonego dla różnych typów elektrowni w ciągu roku. Elektrownia węglowa zużywa ok. 5 mln t miału węglowego i 60 km 3 powietrza (ok. 5 mln t, produkując ok. 3 mln t C ). Elektrownia jądrowa potrzebuje już tylko ok. 8 t koncentratu w przeliczeniu na uran, czyli prawie 90 tys. razy mniej paliwa stałego. Najmniej paliwa wymaga elektrownia termojądrowa, bo nieco ponad 400 kg, czyli ponad 70 razy mniej niż elektrownia jądrowa i aż 3 mln razy mniej niż elektrownia węglowa. Ilość paliwa to tylko jeden z wielu elementów, które decydują o opłacalności budowy danego typu elektrowni. Jednak w dobie zmniejszającej się ilości naturalnych surowców energetycznych ten czynnik może stać się kluczowy. 4. Podsumowanie Nigdy dotychczas nie istniała potrzeba budowania elektrowni termojądrowej, ponieważ ludzie uważali, że paliwa kopalne są i będą dostępne także w perspektywie następnych pokoleń, a ewentualny kryzys energetyczny będzie dotyczył odległej przyszłości. becnie zmienia się społeczna świadomość i rośnie poczucie bliskości kryzysu energetycznego. Fuzja nie może być przeprowadzana w małej skali, aby stała się wydajna energetycznie. Jeżeli dodatkowo weźmie się pod uwagę bardzo zaawansowaną technologię budowy i eksploatacji reaktorów syntezy, okaże się, że koszty inwestycyjne są zbyt duże. Nikt nie podejmie się finansowania kosztownych projektów badawczych, których szanse na powodzenie nie są wystarczająco udokumentowane. Dlatego poziom finansowania badań nad fuzją jest dziś największym problemem, z którym muszą się borykać badacze kontrolowanej syntezy. Mimo tych przeciwności badania nad fuzją stanowią dziś prawdziwe wyzwanie. W ciągu ostatnich lat nastąpił gwałtowny postęp i prognozy na przyszłość są obiecujące. Kontrolowana synteza termojądrowa ma szanse stać się najważniejszym źródłem energii w przyszłości, jednak wymaga jeszcze prowadzenia wielu kosztownych badań. Literatura [] Kamys B., Reakcje termojądrowe wykład fakultatywny, reakcje_tj.pdf (dostęp: września 0). [] Woźnicka U., Synteza termojądrowa źródło energii dla elektrowni przyszłości, ifj.edu.pl/publ/reports/rep_pop/4.pdf?lang=pl (dostęp: września 0). [3] Gałkowski A., d JET-a do ITER-a. Ważny krok na drodze do energii taniej, bezpiecznej i przyjaznej środowisku, Postępy Fizyki, 59, 3, 0, file/link/postepy_fizyki_d_jet-a_do_iter-a.pdf (dostęp: września 0). [4] (dostęp: września 0). [5] (dostęp: września 0). [6] (dostęp: września 0). [7] European Fusion Development Agreement, A conceptual study of commercial fusion power plants, PPCS_overall_report_final.pdf (dostęp: września 0).
10 40 [8] Maisonnier D., Fusion Power Plant Studies in Europe, htm/pdf/003.pdf (dostęp: września 0). [9] Dobrzyński L., Energia jądrowa i jej wykorzystanie, energia_jadrowa/_en_termojadr.pdf (dostęp: września 0). [0] Sardain P., Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU, pdf (dostęp: września 0). [] Farabolini W., Giancarli L., PPCS Model AB. Power distribution assumptions and design status, (dostęp: września 0). [] Jezierski G., Energia jądrowa wczoraj i dziś, Wydawnictwa Naukowo-Techniczne, Warszawa 005. [3] Wyniki techniczno-ekonomiczne elektrowni Kozienice S.A. za 004 rok, com.pl/elkoweb/upload/file_7_bfe04ebad44c3ec70644e3e57.pdf (dostęp: września 0). [4] Taras M., Perspektywy podaży oraz prognozowania jakości węgla dla celów energetycznych w planach rozwoju Lubelskiego Węgla Bogdanka S.A., pelne_teksty/czii/k_taras_z.pdf (dostęp: września 0).
Energetyka jądrowa. Energetyka jądrowa
Energetyka jądrowa Zasada zachowania energii i E=mc 2 Budowa jąder atomowych i ich energia wiązania Synteza: z gwiazd na Ziemię... Neutrony i rozszczepienie jąder atomowych Reaktory: klasyczne i akceleratorowe
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 10 Energetyka jądrowa Rozszczepienie 235 92 236 A1 A2 U n 92U Z F1 Z F2 2,5n 1 2 Q liczba neutronów 0 8, średnio 2,5 najbardziej prawdopodobne
Reakcje syntezy lekkich jąder
Reakcje syntezy lekkich jąder 1. Synteza jąder lekkich w gwiazdach 2. Warunki wystąpienia procesu syntezy 3. Charakterystyka procesu syntezy 4. Kontrolowana reakcja syntezy termojądrowej 5. Zasada konstrukcji
Posiedzenie Naukowe Komisji Nauk Geologicznych O/PAN w Krakowie r, AGH
Urszula Woźnicka Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego, PAN w Krakowie Posiedzenie Naukowe Komisji Nauk Geologicznych O/PAN w Krakowie 30.11.2016 r, AGH 1/25 Potrzeby energetyczne rosnącej
Reakcja rozszczepienia
Reakcje jądrowe Reakcja rozszczepienia W reakcji rozszczepienia neutron powoduje rozszczepienie cięższego jądra na dwa lub więcej mniejsze jadra lżejszych pierwiastków oraz kilka neutronów. Podczas tej
Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa
MECHANIK 7/2014 Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa WYZNACZENIE CHARAKTERYSTYK EKSPLOATACYJNYCH SIŁOWNI TURBINOWEJ Z REAKTOREM WYSOKOTEMPERATUROWYM W ZMIENNYCH
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja
Reakcje syntezy lekkich jąder
Reakcje syntezy lekkich jąder 1. Synteza jąder lekkich w gwiazdach 2. Warunki wystąpienia procesu syntezy 3. Charakterystyka procesu syntezy 4. Kontrolowana reakcja syntezy termojądrowej 5. Zasada konstrukcji
Skonstruowanie litowo-deuterowego konwertera neutronów termicznych na neutrony prędkie o energii 14 MeV w reaktorze MARIA (Etap 14, 5.1.
Skonstruowanie litowo-deuterowego konwertera neutronów termicznych na neutrony prędkie o energii 14 MeV w reaktorze MARIA (Etap 14, 5.1.) Krzysztof Pytel, Rafał Prokopowicz Badanie wytrzymałości radiacyjnej
Energia przyszłości. dr Paweł Sobczak
Energia przyszłości dr Paweł Sobczak Dlaczego należy rozmawiać o energii? Oszczędzanie energii, OZE, EKO Wykładniczy wzrost zapotrzebowania na energię Zobowiązania w zakresie ograniczenia emisji CO 2 Dlaczego
Słońce na... Ziemi. Autor: prof. zw. dr hab. inŝ. Włodzimierz Kotowski. ( Energia Gigawat lipiec 2007)
Słońce na... Ziemi Autor: prof. zw. dr hab. inŝ. Włodzimierz Kotowski ( Energia Gigawat lipiec 2007) Źródłem wytwarzania gigantycznych ilości ciepła z kaŝdej gwiazdy wszechświata są przebiegające w niej
VIII-Energia fuzji termojądrowej nadzieją świata
VIII-Energia fuzji termojądrowej nadzieją świata Jan Królikowski Instytut Fizyki Doświadczalnej Uniwersytetu Warszawskiego Jan Królikowski, Energia fuzji termojadrowej.., 1 Skąd pochodzą informacje? Nie
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU UWAGA: Tekst poniżej,
Reakcje rozszczepienia i energetyka jądrowa
J. Pluta, Metody i technologie jądrowe Reakcje rozszczepienia i energetyka jądrowa Energia wiązania nukleonu w jądrze w funkcji liczby masowej jadra A: E w Warunek energetyczny deficyt masy: Reakcja rozszczepienia
pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura
14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20
Fizyka jądrowa cz. 2. Reakcje jądrowe. Teraz stałem się Śmiercią, niszczycielem światów. Robert Oppenheimer
Barcelona, Espania, May 204 W-29 (Jaroszewicz) 24 slajdy Na podstawie prezentacji prof. J. Rutkowskiego Reakcje jądrowe Fizyka jądrowa cz. 2 Teraz stałem się Śmiercią, niszczycielem światów Robert Oppenheimer
PIROLIZA. GENERALNY DYSTRYBUTOR REDUXCO www.dagas.pl :: email: info@dagas.pl :: www.reduxco.com
PIROLIZA Instalacja do pirolizy odpadów gumowych przeznaczona do przetwarzania zużytych opon i odpadów tworzyw sztucznych (polietylen, polipropylen, polistyrol), w której produktem końcowym może być energia
Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce
Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce Stefan Chwaszczewski Program energetyki jądrowej w Polsce: Zainstalowana moc: 6 000 MWe; Współczynnik wykorzystania
Model elektrowni jądrowej
Model elektrowni jądrowej Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i działaniem elektrowni jądrowej. Wstęp Rozszczepienie jądra atomowego to proces polegający na rozpadzie wzbudzonego
KONKURS Z FIZYKI I ASTRONOMII. Fuzja jądrowa. dla uczniów gimnazjum i uczniów klas I i II szkół ponadgimnazjalnych
KONKURS Z FIZYKI I ASTRONOMII Fuzja jądrowa dla uczniów gimnazjum i uczniów klas I i II szkół ponadgimnazjalnych I. Organizatorem konkursu jest Krajowy Punkt Kontaktowy Euratom przy Instytucie Fizyki Plazmy
PIROLIZA BEZEMISYJNA UTYLIZACJA ODPADÓW
PIROLIZA BEZEMISYJNA UTYLIZACJA ODPADÓW Utylizacja odpadów komunalnych, gumowych oraz przerób biomasy w procesie pirolizy nisko i wysokotemperaturowej. Przygotował: Leszek Borkowski Marzec 2012 Piroliza
Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu
Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na
CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY?
CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY? Stefan Chwaszczewski Instytut Energii Atomowej POLATOM W obecnie eksploatowanych reaktorach energetycznych, w procesach rozszczepienia jądrowego wykorzystywane
Wyznaczanie sprawności diabatycznych instalacji CAES
Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Wyznaczanie sprawności diabatycznych instalacji CAES Janusz KOTOWICZ Michał JURCZYK Rynek Gazu 2015 22-24 Czerwca 2015, Nałęczów
WPŁYW ZASTOSOWANIA RASTROWEJ MAPY CORINE LAND COVER NA ŚREDNIĄ WARTOŚĆ PARAMETRU CN MODELU SCS
WŁODZIMIERZ BANACH * WPŁYW ZASTOSOWANIA RASTROWEJ MAPY CORINE LAND COVER NA ŚREDNIĄ WARTOŚĆ PARAMETRU CN MODELU SCS INFLUENCE OF RASTER CORINE LAND COVER MAP USE ON AVERAGE CN VALUE IN SCS MODEL Streszczenie
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
Zagospodarowanie energii odpadowej w energetyce na przykładzie współpracy bloku gazowo-parowego z obiegiem ORC.
Zagospodarowanie energii odpadowej w energetyce na przykładzie współpracy bloku gazowo-parowego z obiegiem ORC. Dariusz Mikielewicz, Jan Wajs, Michał Bajor Politechnika Gdańska Wydział Mechaniczny Polska
Ryszard Biernikowicz (PTMA Szczecin) 5 stycznia 2017r. Elektrownie termojądrowe, czyli jak rozpalić energię gwiazd na Ziemi?
Ryszard Biernikowicz (PTMA Szczecin) 5 stycznia 2017r., czyli jak rozpalić energię gwiazd na Ziemi? Porównanie elektrowni węglowej i elektrowni syntezy wytwarzającej 7 mld kwh w ciągu roku (przykład z
Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA
Energetyka Jądrowa Wykład 5 28 marca 2017 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Kiedy efektywne
Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów
Elementy Fizyki Jądrowej Wykład 8 Rozszczepienie jąder i fizyka neutronów Rozszczepienie lata 30 XX w. poszukiwanie nowych nuklidów n + 238 92U 239 92U + reakcja przez jądro złożone 239 92 U 239 93Np +
Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM
Laboratorium z Konwersji Energii Ogniwo Paliwowe PEM 1.0 WSTĘP Ogniwo paliwowe typu PEM (ang. PEM FC) Ogniwa paliwowe są urządzeniami elektro chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii,
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
Obiegi gazowe w maszynach cieplnych
OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost
Wykłady z Geochemii Ogólnej
Wykłady z Geochemii Ogólnej III rok WGGiOŚ AGH 2010/11 dr hab. inż. Maciej Manecki A-0 p.24 www.geol.agh.edu.pl/~mmanecki ELEMENTY KOSMOCHEMII Nasza wiedza o składzie materii Wszechświata pochodzi z dwóch
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 10-11.XII.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Energetyka Jądrowa 11.XII.2018
TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE
TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE Skraplarka Claude a i skraplarka Heylandt a budowa, działanie, bilans cieplny, charakterystyka techniczna. Natalia Szczuka Inżynieria mechaniczno-medyczna St.II
Elementy Fizyki Jądrowej. Wykład 9 Fizyka neutronów i reakcja łańcuchowa
Elementy Fizyki Jądrowej Wykład 9 Fizyka neutronów i reakcja łańcuchowa Charakterystyka procesu rozszczepienia Emisja neutronów 1. natychmiastowa, średnio 2,5 neutronów, 10 16 s 2. opóźniona, emisja neutronów
4. Wytwarzanie energii elektrycznej i cieplnej 4.1. Uwagi ogólne
4. Wytwarzanie energii elektrycznej i cieplnej 4.1. Uwagi ogólne Elektrownia zakład produkujący energię elektryczną w celach komercyjnych; Ciepłownia zakład produkujący energię cieplną w postaci pary lub
Następnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15:
Reakcje syntezy lekkich jąder są podstawowym źródłem energii wszechświata. Słońce - gwiazda, która dostarcza energii niezbędnej do życia na naszej planecie Ziemi, i w której 94% masy stanowi wodór i hel
CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego
CIEPŁO, PALIWA, SPALANIE CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego WYMIANA CIEPŁA. Zmiana energii wewnętrznej
ELEKTROWNIE. Czyste energie 2014-01-20. Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk
Czyste energie wykład 11 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2014 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk
Reaktor jądrowy. Schemat. Podstawy fizyki jądrowej - B.Kamys
Reaktor jądrowy Schemat Elementy reaktora Rdzeń Pręty paliwowe (np. UO 2 ) Pręty regulacyjne i bezpieczeństwa (kadm, bor) Moderator (woda, ciężka woda, grafit, ) Kanały chłodzenia (woda, ciężka woda, sód,
Energetyczne wykorzystanie odpadów z biogazowni
Energetyczne wykorzystanie odpadów z biogazowni Odpady z biogazowni - poferment Poferment obecnie nie spełnia kryterium nawozu organicznego. Spełnia natomiast definicję środka polepszającego właściwości
Wykorzystanie ciepła odpadowego dla redukcji zużycia energii i emisji 6.07.09 1
Wykorzystanie ciepła odpadowego dla redukcji zużycia energii i emisji 6.07.09 1 Teza ciepło niskotemperaturowe można skutecznie przetwarzać na energię elektryczną; można w tym celu wykorzystywać ciepło
Energia słoneczna i cieplna biosfery Pojęcia podstawowe
Dr inż. Mariusz Szewczyk Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki 35-959 Rzeszów, ul. W. Pola 2 Energia słoneczna i cieplna biosfery Pojęcia podstawowe
Specjalność ZRÓWNOWAŻONA ENERGETYKA. Nowe i odnawialne źródła energii
Specjalność ZRÓWNOWAŻONA ENERGETYKA Nowe i odnawialne źródła energii Co wykładamy?? Prowadzimy również wykłady w języku angielskim! Konwersja energii, Nowoczesne źródła energetyki odnawialnej, Energetyka
Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie
FUZJA LASEROWA JAKO PRZYSZŁE ŹRÓDŁO ENERGII
Konferencja naukowo-techniczna NAUKA I TECHNIKA WOBEC WYZWANIA BUDOWY ELEKTROWNI JĄDROWEJ MĄDRALIN 2013 Warszawa, 13-15 lutego 2013 roku. Instytut Techniki Cieplnej Politechniki Warszawskiej FUZJA LASEROWA
Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA
Energetyka Jądrowa Wykład 7 11 kwietnia 2017 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moderator
Analiza możliwości zastosowania układów ORC uwzględniając uwarunkowania dotyczące śladu węglowego GK JSW
Analiza możliwości zastosowania układów ORC uwzględniając uwarunkowania dotyczące śladu węglowego GK JSW Koksownictwo www.jsw.pl 2019 1 Histeria środowiskowa Cena uprawnienia do emisji CO2 [EUR] Koszt
Rozszczepienie jądra atomowego
Rozszczepienie jądra atomowego W przypadku izotopów 235 U i 239 Pu energia wzbudzenia jądra po wychwycie neutronu jest większa od wysokości bariery, którą trzeba pokonać aby nastąpiło rozszczepienie. Izotop
I ,11-1, 1, C, , 1, C
Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony
BILANS CIEPLNY CZYNNIKI ENERGETYCZNE
POLITECHNIKA WARSZAWSKA Wydział Chemiczny LABORATORIUM PROCESÓW TECHNOLOGICZNYCH PROJEKTOWANIE PROCESÓW TECHNOLOGICZNYCH Ludwik Synoradzki, Jerzy Wisialski BILANS CIEPLNY CZYNNIKI ENERGETYCZNE Jerzy Wisialski
Inżynieria procesów przetwórstwa węgla, zima 15/16
Inżynieria procesów przetwórstwa węgla, zima 15/16 Ćwiczenia 1 7.10.2015 1. Załóżmy, że balon ma kształt sfery o promieniu 3m. a. Jaka ilość wodoru potrzebna jest do jego wypełnienia, aby na poziomie morza
Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań
Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań 24-25.04. 2012r EC oddział Opole Podstawowe dane Produkcja roczna energii cieplnej
BUDOWA I ZASADA DZIAŁANIA ABSORPCYJNEJ POMPY CIEPŁA
Anna Janik AGH Akademia Górniczo-Hutnicza Wydział Energetyki i Paliw BUDOWA I ZASADA DZIAŁANIA ABSORPCYJNEJ POMPY CIEPŁA 1. WSTĘP W ostatnich latach obserwuje się wzrost zainteresowania tematem pomp ciepła.
Czyste energie. Energetyka jądrowa. wykład 13. dr inż. Janusz Teneta. Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej
Czyste energie wykład 13 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2013 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk
Pompy ciepła 25.3.2014
Katedra Klimatyzacji i Transportu Chłodniczego prof. dr hab. inż. Bogusław Zakrzewski Wykład 6: Pompy ciepła 25.3.2014 1 Pompy ciepła / chłodziarki Obieg termodynamiczny lewobieżny Pompa ciepła odwracalnie
Konsekwencje termodynamiczne podsuszania paliwa w siłowni cieplnej.
Marcin Panowski Politechnika Częstochowska Konsekwencje termodynamiczne podsuszania paliwa w siłowni cieplnej. Wstęp W pracy przedstawiono analizę termodynamicznych konsekwencji wpływu wstępnego podsuszania
PL B1. GULAK JAN, Kielce, PL BUP 13/07. JAN GULAK, Kielce, PL WUP 12/10. rzecz. pat. Fietko-Basa Sylwia
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 207344 (13) B1 (21) Numer zgłoszenia: 378514 (51) Int.Cl. F02M 25/022 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 22.12.2005
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń
Element budowy bezpieczeństwa energetycznego Elbląga i rozwoju rozproszonej Kogeneracji na ziemi elbląskiej
Mgr inŝ. Witold Płatek Stowarzyszenie NiezaleŜnych Wytwórców Energii Skojarzonej / Centrum Elektroniki Stosowanej CES Sp. z o.o. Element budowy bezpieczeństwa energetycznego Elbląga i rozwoju rozproszonej
INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk
INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk 日本 The Fukushima INuclear Power Plant 福島第一原子力発電所 Fukushima Dai-Ichi Krzysztof Kozak INSTYTUT FIZYKI JĄDROWEJ PAN ROZSZCZEPIENIE
Elektrociepłownie w Polsce statystyka i przykłady. Wykład 3
Elektrociepłownie w Polsce statystyka i przykłady Wykład 3 Zakres wykładu Produkcja energii elektrycznej i ciepła w polskich elektrociepłowniach Sprawność całkowita elektrociepłowni Moce i ilość jednostek
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów
Techniki niskotemperaturowe w medycynie
INŻYNIERIA MECHANICZNO-MEDYCZNA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA Techniki niskotemperaturowe w medycynie Temat: Lewobieżny obieg gazowy Joule a a obieg parowy Lindego Prowadzący: dr inż. Zenon
Rtęć w przemyśle. Technologia usuwania rtęci z węgla przed procesem zgazowania/spalania jako efektywny sposób obniżenia emisji rtęci do atmosfery
Rtęć w przemyśle Konwencja, ograniczanie emisji, technologia 26 listopada 2014, Warszawa Technologia usuwania rtęci z węgla przed procesem zgazowania/spalania jako efektywny sposób obniżenia emisji rtęci
Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α
Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego
Przewodnik po wielkich urządzeniach badawczych
Przewodnik po wielkich urządzeniach badawczych 5.07.2013 Grzegorz Wrochna 1 Wielkie urządzenia badawcze Wielkie urządzenia badawcze są dziś niezbędne do badania materii na wszystkich poziomach: od wnętrza
Doświadczenie PGE GiEK S.A. Elektrociepłownia Kielce ze spalania biomasy w kotle OS-20
Doświadczenie PGE GiEK S.A. Elektrociepłownia Kielce ze spalania biomasy w kotle OS-20 Forum Technologii w Energetyce Spalanie Biomasy BEŁCHATÓW 2016-10-20 1 Charakterystyka PGE GiEK S.A. Oddział Elektrociepłownia
r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1
r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów
XLI Zjazd Fizykow Polskich, Lublin 05.09.2011. 1 Seabrook, New Hampshire, USA
Popularyzacja wiedzy o oddziaływaniach jądrowych i interaktywna wystawa Atomowa Eureka - E=mc2 Mariusz P. Dąbrowski i Jerzy Stelmach, Instytut Fizyki, Uniwersytet Szczeciński XLI Zjazd Fizykow Polskich,
Plazma czwarty stan materii
Plazma czwarty stan materii Dariusz Twaróg IFJ PAN, Zakład Fizyki Transportu Promieniowania (NZ 54) 3.05.0 Seminarium WFiIS AGH Plan:. Plazma 4 stan materii. Kontrolowana Synteza Termojądrowa 3. Tokamaki,
Obliczenia chemiczne
strona 1/8 Obliczenia chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Wagowe stosunki stechiometryczne w związkach chemicznych i reakcjach chemicznych masa atomowa
Energetyka konwencjonalna
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w SZCZECINIE Wydział Inżynierii Mechanicznej i Mechatroniki KATEDRA TECHNIKI CIEPLNEJ Energetyka konwencjonalna Dr hab. inż. prof. ZUT ZBIGNIEW ZAPAŁOWICZ Energetyka
ENERGETYCZNE WYKORZYSTANIE GAZU W ELEKTROCIEPŁOWNI GORZÓW
Polska Agencja Prasowa Warszawa 18.11.2010 r. ENERGETYCZNE WYKORZYSTANIE GAZU W ELEKTROCIEPŁOWNI GORZÓW Struktura zużycia paliwa do generacji energii elektrycznej STRUKTURA W UE STRUKTURA W POLSCE 2 BLOK
Samochody na wodór. Zastosowanie. Wodór w samochodach. Historia. Przechowywanie wodoru
Samochody na wodór Zastosowanie Wodór w samochodach Historia Przechowywanie wodoru Wodór ma szanse stać się najważniejszym nośnikiem energii w najbliższej przyszłości. Ogniwa paliwowe produkują zeń energię
(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:
RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2047071 Urząd Patentowy Rzeczypospolitej Polskiej (96) Data i numer zgłoszenia patentu europejskiego: 21.07.2007 07786251.4
Dr Sebastian Werle, Prof. Ryszard K. Wilk Politechnika Śląska w Gliwicach Instytut Techniki Cieplnej
OTRZYMYWANIE PALIWA GAZOWEGO NA DRODZE ZGAZOWANIA OSADÓW ŚCIEKOWYCH Dr Sebastian Werle, Prof. Ryszard K. Wilk Politechnika Śląska w Gliwicach Instytut Techniki Cieplnej Dlaczego termiczne przekształcanie
Obiegi rzeczywisty - wykres Bambacha
Przedmiot: Substancje kontrolowane Wykład 7a: Obiegi rzeczywisty - wykres Bambacha 29.04.2014 1 Obieg z regeneracją ciepła Rys.1. Schemat urządzenia jednostopniowego z regeneracją ciepła: 1- parowacz,
Przy montażu należy uwzględnić wszystkie elementy krajobrazu które mogą powodować zacienienie instalacji
Czy kolektorami słonecznymi można ogrzewać dom? Sama instalacja solarna nie jest w stanie samodzielnie zapewnić ogrzewania budynku. Kolektory słoneczne, w naszej szerokości geograficznej, głównie wykorzystywane
Elektroenergetyka Electric Power Industry. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Metan z procesów Power to Gas - ekologiczne paliwo do zasilania silników spalinowych.
XXXII Konferencja - Zagadnienia surowców energetycznych i energii w energetyce krajowej Sektor paliw i energii wobec nowych wyzwań Metan z procesów Power to Gas - ekologiczne paliwo do zasilania silników
Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu
Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych
Rodzaj nadawanych uprawnień: obsługa, konserwacja, remont, montaż, kontrolnopomiarowe.
Kurs energetyczny G2 (6 godzin zajęć) Rodzaj nadawanych uprawnień: obsługa, konserwacja, remont, montaż, kontrolnopomiarowe. Zakres uprawnień: a. piece przemysłowe o mocy powyżej 50 kw; b. przemysłowe
Dr inż. Andrzej Tatarek. Siłownie cieplne
Dr inż. Andrzej Tatarek Siłownie cieplne 1 Wykład 1 Podziały i klasyfikacje elektrowni Moc elektrowni pojęcia podstawowe 2 Energia elektryczna szczególnie wygodny i rozpowszechniony nośnik energii Łatwość
Bezemisyjna energetyka węglowa
Bezemisyjna energetyka węglowa Szansa dla Polski? Jan A. Kozubowski Wydział Inżynierii Materiałowej PW Człowiek i energia Jak ludzie zużywali energię w ciągu minionych 150 lat? Energetyczne surowce kopalne:
Czym fascynuje, a czym niepokoi energetyka jądrowa?
Czym fascynuje, a czym niepokoi energetyka jądrowa? Kohabitacja. Rola gazu w rozwoju gospodarki niskoemisyjnej Ludwik Pieńkowski Środowiskowe Laboratorium CięŜkich Jonów Uniwersytet Warszawski Fascynacja
Energetyczna ocena efektywności pracy elektrociepłowni gazowo-parowej z organicznym układem binarnym
tom XLI(2011), nr 1, 59 64 Władysław Nowak AleksandraBorsukiewicz-Gozdur Roksana Mazurek Zachodniopomorski Uniwersytet Technologiczny Wydział Inżynierii Mechanicznej i Mechatroniki Katedra Techniki Cieplnej
Kongres Innowacji Polskich KRAKÓW 10.03.2015
KRAKÓW 10.03.2015 Zrównoważona energetyka i gospodarka odpadami ZAGOSPODAROWANIE ODPADOWYCH GAZÓW POSTPROCESOWYCH Z PRZEMYSŁU CHEMICZNEGO DO CELÓW PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Marek Brzeżański
Kocioł na biomasę z turbiną ORC
Kocioł na biomasę z turbiną ORC Sprawdzona technologia produkcji ciepła i energii elektrycznej w skojarzeniu dr inż. Sławomir Gibała Prezentacja firmy CRB Energia: CRB Energia jest firmą inżynieryjno-konsultingową
Technologia chemiczna. Zajęcia 2
Technologia chemiczna Zajęcia 2 Podstawą wszystkich obliczeń w technologii chemicznej jest bilans materiałowy. Od jego wykonania rozpoczyna się projektowanie i rachunek ekonomiczny planowanego lub istniejącego
Podstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA (zalecana): Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu
Koszt produkcji energii napędowej dla różnych sposobów jej wytwarzania. autor: Jacek Skalmierski
Koszt produkcji energii napędowej dla różnych sposobów jej wytwarzania autor: Jacek Skalmierski Plan referatu Prognozowane koszty produkcji energii elektrycznej, Koszt produkcji energii napędowej opartej
PL B1. OLESZKIEWICZ BŁAŻEJ, Wrocław, PL BUP 09/ WUP 12/16. BŁAŻEJ OLESZKIEWICZ, Wrocław, PL RZECZPOSPOLITA POLSKA
PL 224444 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224444 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 389256 (22) Data zgłoszenia: 12.10.2009 (51) Int.Cl.
Elektroenergetyka Electric Power Industry. Elektrotechnika I stopień ogólnoakademicki. stacjonarne
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM W artykule przedstawiono badania przeprowadzone na modelu