Zaawansowane operacje wejścia/wyjścia
|
|
- Julian Kaźmierczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zaawansowane operacje wejścia/wyjścia Witold Paluszyński witold/ Copyright c Witold Paluszyński All rights reserved. Niniejszy dokument zawiera materia ly do wyk ladu na temat zaawansowanych operacji wejścia/wyjścia w systemie Unix. Jest on udost epniony pod warunkiem wykorzystania wy l acznie do w lasnych, prywatnych potrzeb i może być kopiowany wy lacznie w ca lości, razem z niniejsza strona tytu low a.
2 Blokowanie operacji I/O Blokowanie operacji wejścia/wyjścia oznacza oczekiwanie na możliwość odczytania albo zapisania danych. Przyk lady blokowania wejścia/wyjścia: odczyt z plików urzadzeń, gdy nie ma w nich już danych (potoki, terminale, gniazdka), zapis do tych samych urzadzeń, jeśli dane nie moga być od razu przyj ete, otwarcie pliku blokuje do momentu spe lnienia pewnych warunków (np. otwarcie pliku terminala do chwili nawiazania po laczenia przez modem, otwarcie FIFO do zapisu gdy żaden proces nie ma go otwartego do odczytu, itp.), operacje na plikach z mandatory record locking, i inne. Nieblokujace wejście/wyjście Blokowanie operacji I/O można kontrolować, to znaczy można tak skonfigurować operacje wejścia/wyjścia, by w sytuacji która normalnie spowodowa laby blokowanie, funkcja wróci la od razu z kodem wskazujacym niemożność wykonania operacji. open z flaga O_NONBLOCK fcntl na otwartym deskryptorze z ta sama flaga Wtedy powrót z funkcji read/write nast epuje z b l edem wskazujacym, że operacja by blokowa la. UWAGA: można zastosować stara flag e O_NDELAY, wtedy funkcje read/write zwracaja 0, co jednak pokrywa si e z sygnalizacja EOF (System V).
3 Równoczesne operacje I/O Jak zorganizować operacje wejścia/wyjścia, gdy mamy np. jednocześnie kilka źróde l, z których nadchodza dane? Na przyk lad, emulator terminala, komunikujacy si e z jednej strony z użytkownikiem, a z drugiej ze zdalnym systemem: Możliwe sa nast epuj ace rozwiazania: polling: nieblokujace próby odczytu na przemian z kolejnych deskryptorów; w niektórych systemach można też użyć na gniazdkach: ioctl(fd,fionread,&nread); prze laczanie (multiplexing): funkcje select i poll asynchroniczne I/O: powiadamianie procesu przez j adro (przy pomocy sygna lu) o gotowości deskryptora do operacji I/O
4 I/O multiplexing Ten mechanizm nie jest obj ety norma POSIX, jednak funkcja select() istnieje w Unixach AT&T i BSD od dawna i jest dość standardowa. Funkcja poll() jest nowa, i w niektórych systemach jest zaimplementowana przez select. struct timeval { time_t tv_sec; /* seconds */ suseconds_t tv_usec; /* and microseconds */ ; int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds, struct timeval *timeout); Funkcja select() zwraca liczb e deskryptorów gotowych do operacji I/O. Po powrocie wynikajacym z up lyni ecia zadanego czasu funkcja zeruje wszystkie zbiory deskryptorów w systemie V, lecz pozostawia je niezmienione w systemie BSD. Te systemy również inaczej licza deskryptory gotowe do I/O (AT&T liczy je w sensie mnogościowym, a BSD sumuje arytmetycznie liczności wszystkich trzech zbiorów deskryptorów). Ponadto, niektóre systemy w przypadku gotowości deskryptora ustawiaja w strukturze timeval czas pozosta ly do wyczerpania (Linux). Do tworzenia odpowiednich zbiorów deskryptorów, a także sprawdzania otrzymanych wyników, istnieja makra: void FD_SET(int fd, fd_set *fdset); void FD_CLR(int fd, fd_set *fdset); int FD_ISSET(int fd, fd_set *fdset); void FD_ZERO(fd_set *fdset); Funkcja poll zapewnia podobne dzia lanie lecz inny interface programisty: struct pollfd { int fd; /* file descriptor */ short events; /* requested events */ short revents; /* returned events */ int poll(struct pollfd fds[], nfds_t nfds, int timeout); Tablica struktur pollfd określa wszystkie deskryptory i zdarzenia, na które chcemy oczekiwać (czas określany jest tu w milisekundach). Wartość zwracana z funkcji daje liczb e gotowych deskryptorów.
5 #include <sys/types.h> #include <sys/time.h> #include <stdio.h> #include <fcntl.h> #include <sys/ioctl.h> #include <unistd.h> int main() { char buffer[128]; int result, nread; fd_set inputs, testfds; struct timeval timeout; FD_ZERO(&inputs); FD_SET(0,&inputs); while(1) { testfds = inputs; timeout.tv_sec = 2; timeout.tv_usec = ; Funkcja select przyk lad result = select(fd_setsize, &testfds, (fd_set *)0, (fd_set *)0, &timeout); switch(result) { case 0: printf("timeout\n"); break; case -1: perror("select"); exit(1); default: if (FD_ISSET(0,&testfds)) { ioctl(0,fionread,&nread); if (nread == 0) { printf("keyboard done\n"); exit(0); nread = read(0,buffer,nread); buffer[nread] = 0; printf("read %d from keyboard: %s", nread, buffer); break;
6 #include <sys/types.h> #include <sys/socket.h> #include <stdio.h> #include <netinet/in.h> #include <sys/time.h> #include <sys/ioctl.h> #include <unistd.h> Funkcja select inny przyk lad int main() { int server_sockfd, client_sockfd; int server_len, client_len; struct sockaddr_in server_address; int result; fd_set readfds, testfds; server_sockfd = socket(af_inet, SOCK_STREAM, 0); server_address.sin_family = AF_INET; server_address.sin_addr.s_addr = htonl(inaddr_any); server_address.sin_port = htons(9734); server_len = sizeof(server_address); bind(server_sockfd, (struct sockaddr *)&server_address, server_len); listen(server_sockfd, 5); FD_ZERO(&readfds); FD_SET(server_sockfd, &readfds); while(1) { char ch; int fd, nread; testfds = readfds; printf("server waiting\n"); result = select(fd_setsize, &testfds, (fd_set *)0, (fd_set *)0, (struct timeval *) 0); if(result < 1) { perror("server5"); exit(1); for(fd = 0; fd < FD_SETSIZE; fd++) { if(fd_isset(fd,&testfds)) { if(fd == server_sockfd) { client client_sockfd = accept(server_sockfd, 0, 0); FD_SET(client_sockfd, &readfds); printf("adding client on fd %d\n", client_sockfd);
7 else { ioctl(fd, FIONREAD, &nread); if(nread == 0) { close(fd); FD_CLR(fd, &readfds); printf("removing client on fd %d\n", fd); else { read(fd, &ch, 1); sleep(5); printf("serving client on fd %d\n", fd); ch++; write(fd, &ch, 1);
8 Asynchroniczne I/O Dla każdego deskryptora, dla którego chcemy oczekiwać na dane, należy ustawić powiadamianie przez jadro odpowiednim sygna lem. Ten mechanizm również nie jest jednak obj ety norma POSIX i jest troch e inny w systemach AT&T i BSD. AT&T Mechanizm dzia la dla wszystkich urzadzeń opartych na systemie streams. Należy ustawić sygna l sigpoll dla deskryptora funkcja ioctl(fd,i_setsig,flags), gdzie argumentem flags określa si e jakie wydarzenie powinno spowodować wys lanie sygna lu. BSD Tu mamy do dyspozycji dwa sygna ly: sigio (dla zwyk lych operacji I/O), i sigurg (dla danych out-of-band z po l aczeń sieciowych). Należy ustawić proces lub grup e procesów, która ma otrzymać sygna l dla deskryptora (funkcja fcntl z komenda F_SETOWN), oraz ustawić flag e O_ASYNC dla deskryptora (funkcja fcntl z komenda F_SETFL). W chwili otrzymania sygna lu nadal nie wiemy, który deskryptor jest gotów do wykonywania operacji I/O i musimy to i tak po kolei sprawdzać.
9 Odwzorowanie plików do pami eci Użycie odwzorowania pliku do pami eci pozwala wykonywać operacje I/O na pliku przez manipulacje na pami eci. Zamiast przesuwać kursor pliku funkcja lseek, wystarczy obliczyć inny adres w pami eci. Odwzorowanie realizuje funkcja mmap. Poniższe wywo lanie powoduje odwzorowanie sekcji otwartego pliku fildes od pozycji off o d lugości len do obszaru pami eci od adresu addr. Adres ten może być określony jako 0, wtedy funkcja sama wybiera obszar pami eci i zwraca jego adres. pa = mmap(addr, len, prot, flags, fildes, off); Argument prot określa prawa dost epu do regionu pami eci i musi być zgodny z trybem otwarcia pliku. Argument flags określa różne atrybuty mapowanego regionu: MAP_SHARED operacje zapisu do pami eci powoduja zapis do pliku MAP_PRIVATE operacje zapisu do pami eci nie powoduja modyfikacji pliku tworzona jest robocza kopia pliku MAP_FIXED wymusza przydzia l adresu zadany argumentem (normalnie jest on tylko wskazówka dla jadra) MAP_FILE flaga wymagana w systemie BSD Operacje I/O na plikach odwzorowanych do pami eci Wykonywanie operacji I/O przez odwzorowana pami eć pozwala na wykorzystanie kana lów DMA, co daje duża szybkość operacji I/O i odciażenie g lównego procesora. Jeśli różne procesy odwzoruja ten sam plik do swoich przestrzeni adresowych, to uzyskuja dzi eki temu obszar pami eci pozwalajacy na komunikacj e mi edzyprocesow a. Ze wzgl edu na efektywność, system nie wykonuje natychmiast operacji I/O wynikajacych z zapisów do odwzorowanej pami eci. Można wymusić wykonanie tych operacji funkcja msync(). Synchronizacj e można wywo lać w dowolna stron e, tzn. zarówno zapis zawartości pami eci do pliku, jak i wczytanie zawartości pliku do pami eci. Zwyk le zamkni ecie odwzorowanego pliku nie kasuje odwzorowania mmap, należy w tym celu wywo lać: res = munmap(addr, len); Skasowanie odwzorowania nie powoduje żadnych operacji I/O do pliku. Zapis do pliku w trybie MAP_SHARED odbywa si e na bieżaco w trakcie operacji na obszarze pami eci.
10 Odwzorowanie pami eci przyk lady #include <sys/types.h> #include <sys/stat.h> #include <sys/mman.h> /* mmap() */ #include <fcntl.h> #ifndef MAP_FILE /* 44BSD defines this & requires it to mmap files */ #define MAP_FILE 0 /* to compile under systems other than 44BSD */ #endif int main(int argc, char *argv[]) { int fdin, fdout; char *src, *dst; struct stat statbuf; if (argc!= 3) err_quit("usage: a.out <fromfile> <tofile>"); if ( (fdin = open(argv[1], O_RDONLY)) < 0) /*... */; if ( (fdout = open(argv[2], O_RDWR O_CREAT O_TRUNC, FILE_MODE)) < 0) /*... */; if (fstat(fdin, &statbuf) < 0) /* need size of input file */; if (lseek(fdout, statbuf.st_size - 1, SEEK_SET) == -1) err_sys("lseek error"); if (write(fdout, "", 1)!= 1) /* set size of output file */ err_sys("write error"); if ( (src = mmap(0, statbuf.st_size, PROT_READ, MAP_FILE MAP_SHARED, fdin, 0)) == (caddr_t) -1) err_sys("mmap error for input"); if ( (dst = mmap(0, statbuf.st_size, PROT_READ PROT_WRITE, MAP_FILE MAP_SHARED, fdout, 0)) == (caddr_t) -1) err_sys("mmap error for output"); memcpy(dst, src, statbuf.st_size); /* does the file copy */ exit(0);
11 typedef struct { int integer; char string[12]; RECORD; #define NRECORDS (100) int main() { RECORD record, *mapped; int i, f; FILE *fp; fp = fopen("records.dat","w+"); for(i=0; i<nrecords; i++) { record.integer = i; sprintf(record.string,"record-%d",i); fwrite(&record,sizeof(record),1,fp); fclose(fp); fp = fopen("records.dat","r+"); fseek(fp,43*sizeof(record),seek_set); fread(&record,sizeof(record),1,fp); record.integer = 143; sprintf(record.string,"record-%d",record.integer); fseek(fp,43*sizeof(record),seek_set); fwrite(&record,sizeof(record),1,fp); fclose(fp); f = open("records.dat",o_rdwr); read(f,&record,sizeof(record)); mapped = (RECORD *)mmap(0, NRECORDS*sizeof(record), PROT_READ PROT_WRITE, MAP_SHARED, f, 0); mapped[43].integer = 243; sprintf(mapped[43].string,"record-%d",mapped[43].integer); msync((void *)mapped, NRECORDS*sizeof(record), MS_ASYNC); munmap((void *)mapped, NRECORDS*sizeof(record)); close(f); exit(0);
12 #include <sys/types.h> #include <stropts.h> Przekazywanie otwartych deskryptorów int send_fd(int clifd, int fd) { char buf[2]; /* send_fd()/recv_fd() 2-byte protocol */ buf[0] = 0; /* null byte flag to recv_fd() */ if (fd < 0) { buf[1] = -fd; /* nonzero status means error */ if (buf[1] == 0) buf[1] = 1; /* -256, etc. would screw up protocol */ else { buf[1] = 0; /* zero status means OK */ if (write(clifd, buf, 2)!= 2) if (fd >= 0) if (ioctl(clifd, I_SENDFD, fd) < 0) return(0); int send_err(int clifd, int errcode, const char *msg) { int n; if ( (n = strlen(msg)) > 0) if (writen(clifd, msg, n)!= n) /* send the error message */ if (errcode >= 0) errcode = -1; /* must be negative */ if (send_fd(clifd, errcode) < 0) return(0);
13 #include <sys/types.h> #include <stropts.h> int recv_fd(int servfd, ssize_t (*userfunc)(int, const void *, size_t)) { int newfd, nread, flag, status = -1; char *ptr, buf[maxline]; struct strbuf dat; struct strrecvfd recvfd; for ( ; ; ) { dat.buf = buf; dat.maxlen = MAXLINE; flag = 0; if (getmsg(servfd, NULL, &dat, &flag) < 0) err_sys("getmsg error"); nread = dat.len; if (nread == 0) { err_ret("connection closed by server"); for (ptr = buf; ptr < &buf[nread]; ) { if (*ptr++ == 0) { if (ptr!= &buf[nread-1]) err_dump("message format error"); status = *ptr & 255; if (status == 0) { if (ioctl(servfd, I_RECVFD, &recvfd) < 0) newfd = recvfd.fd; /* new descriptor */ else newfd = -status; nread -= 2; if (nread > 0) if ((*userfunc)(stderr_fileno, buf, nread)!= nread) if (status >= 0) /* final data has arrived */ return(newfd); /* descriptor, or -status */
Zaawansowane operacje wejścia/wyjścia
Zaawansowane operacje wejścia/wyjścia Witold Paluszyński witold.paluszynski@pwr.wroc.pl http://sequoia.ict.pwr.wroc.pl/ witold/ Copyright c 2002 2003 Witold Paluszyński All rights reserved. Niniejszy dokument
Zaawansowane operacje wejścia/wyjścia
Zaawansowane operacje wejścia/wyjścia Witold Paluszyński witold.paluszynski@pwr.edu.pl http://www.kcir.pwr.edu.pl/ witold/ Copyright c 2002 2003 Witold Paluszyński All rights reserved. Blokowanie operacji
Zaawansowane operacje wejścia/wyjścia
Zaawansowane operacje wejścia/wyjścia Witold Paluszyński witold.paluszynski@pwr.edu.pl http://www.kcir.pwr.edu.pl/ witold/ Copyright c 2002 2003 Witold Paluszyński All rights reserved. Niniejszy dokument
Zwielokrotnianie wejścia wyjścia
Zwielokrotnianie wejścia wyjścia Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź, 21 marca 2006 Wstęp Zwielokrotnianie wejścia wyjścia informowanie przez jądro procesu użytkownika
J. Ułasiewicz Łącza nienazwane, nazwane, select 1
J. Ułasiewicz Łącza nienazwane, nazwane, select 1 4. Komunikacja pomiędzy procesami przez łącza nienazwane i nazwane Łącza nienazwane (ang. Unnamed Pipes) i nazwane (ang. Unnamed Pipes) - jedna z historycznie
Obsługa plików. Systemy Operacyjne 2 laboratorium. Mateusz Hołenko. 25 września 2011
Obsługa plików Systemy Operacyjne 2 laboratorium Mateusz Hołenko 25 września 2011 Plan zajęć 1 Pliki w systemie Linux i-węzły deskryptory plików 2 Operacje na plikach otwieranie i zamykanie zapis i odczyt
Gniazda. S. Samolej: Gniazda 1
Gniazda dr inż. Sławomir Samolej Katedra Informatyki i Automatyki Politechnika Rzeszowska Program przedmiotu oparto w części na materiałach opublikowanych na: http://wazniak.mimuw.edu.pl/ oraz na materiałach
4. Komunikacja pomiędzy procesami przez łącza nienazwane i nazwane
Jędrzej Ułasiewicz Łącza nienazwane, nazwane, funkcja select 1 4. Komunikacja pomiędzy procesami przez łącza nienazwane i nazwane Łącza nienazwane (ang. Unnamed Pipes) i nazwane (ang. Named Pipes) - jedna
J. Ułasiewicz Łącza nienazwane, nazwane, select 1
J. Ułasiewicz Łącza nienazwane, nazwane, select 1 4. Komunikacja pomiędzy procesami przez łącza nienazwane i nazwane Łącza nienazwane (ang. Unnamed Pipes) i nazwane (ang. Unnamed Pipes) - jedna z historycznie
Laboratorium Systemów Operacyjnych. Ćwiczenie 4. Operacje na plikach
Laboratorium Systemów Operacyjnych Ćwiczenie 4. Operacje na plikach Wykonanie operacji wymaga wskazania pliku, na którym operacja ma zostać wykonana. Plik w systemie LINUX identyfikowany jest przez nazwę,
Krótkie wprowadzenie do korzystania z OpenSSL
Krótkie wprowadzenie do korzystania z OpenSSL Literatura: http://www.openssl.org E. Rescola, "An introduction to OpenSSL Programming (PartI)" (http://www.linuxjournal.com/article/4822) "An introduction
Pliki. Funkcje tworzące pliki i operujące na nich opisane są w części 2 pomocy systemowej. Tworzenie i otwieranie plików:
Pliki W celu wykonania jakiejkolwiek operacji na istniejącym pliku, plik ten musi zostać otwarty, natomiast jeśli plik jeszcze nie istnieje, to musi zostać utworzony. Plik może zostać otwarty w trybie:
TCP - receive buffer (queue), send buffer (queue)
BSD sockets c.d. TCP - receive buffer (queue), send buffer (queue) Z każdym gniazdem sieciowym są skojarzone: Bufor do odbierania danych (ang. receive buffer) Przychodzące dane są umieszczane w buforze
Funkcje systemu Unix
Funkcje systemu Unix Witold Paluszyński witold@ict.pwr.wroc.pl http://sequoia.ict.pwr.wroc.pl/ witold/ Copyright c 2002 2005 Witold Paluszyński All rights reserved. Niniejszy dokument zawiera materia ly
Gniazda BSD. komunikacja bezpołączeniowa
Gniazda BSD komunikacja bezpołączeniowa Użycie gniazd w transmisji bezpołączeniowej socket() socket() bind() bind() STOP! recv() żądanie send() send() odpowiedź recv() STOP! recvfrom() #include
4.2 Sposób korzystania z l acza
4.2 Sposób korzystania z l acza 31 Opis programu: Program procesu potomnego (linie 16 19) jest taki sam, jak w przyk ladzie na listingu 3. W procesie macierzystym nastepuje z kolei przekierowanie standardowego
Obsługa plików Procesy
Obsługa plików Procesy Systemy Operacyjne 2 laboratorium Mateusz Hołenko 15 października 2011 Plan zajęć 1 Obsługa plików 1 Pliki w systemie Linux i-węzły deskryptory plików 2 Operacje na plikach 3 Operacje
J. Ułasiewicz Programowanie aplikacji współbieżnych 1
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 9. Komunikacja przez pamięć dzieloną Metoda komunikacji przez wspólną pamięć może być użyta gdy procesy wykonywane są na maszynie jednoprocesorowej
eć dzielona standardu POSIX
c Wies law P laczek 25 6 Pami eć dzielona standardu POSIX 6.1 Wprowadzenie Pami eć dzielona inaczej wspólna (ang. shared memory) jestzasobemumożliwiaj acym najszybszy sposób komunikacji mi edzy procesami
Temat zajęć: Obsługa systemu plików.
Temat zajęć: Obsługa systemu plików. Czas realizacji zajęć: 90 min. Zakres materiału, jaki zostanie zrealizowany podczas zajęć: I. Operacje na plikach zwykłych. Tworzenie i otwieranie plików, deskryptory
Sieciowa komunikacja procesów - XDR i RPC
*** abc.x Przyklad pliku RPCGEN Obliczanie sumy, roznicy i iloczynu dwoch liczb calkowitych *** ************************************ Wywolanie procedury odleglej dopuszcza tylko jeden argument wywolania
Systemy Operacyjne - Operacje na plikach
Systemy Operacyjne - Operacje na plikach Andrzej Stroiński Institute of Computer Science Poznań University of Technology 1 październik, 2012 Wprowadzenie do ANSI-C Pomoc systemowa man gcc man 2 write man
Programowanie sieciowe
Programowanie sieciowe dr Tomasz Tyrakowski Dyż ury: wtorki 12:00 13:00 czwartki 14:00 15:00 pokój B4-5 e-mail: ttomek@amu.edu.pl materiały: http://www.amu.edu.pl/~ttomek 1 Wymagania podstawowa znajomość
Iteracyjny serwer TCP i aplikacja UDP
Iteracyjny serwer TCP i aplikacja UDP Iteracyjny serwer TCP Funkcje wywoływane przez serwer TCP socket() - bind() - listen() - accept() - read() / write() - close() socket() Creates an endpoint for communication
Literatura uzupełniająca: W. Richard Stevens, Programowanie zastosowań sieciowych w systemie Unix WNT 1998
Gniazda BSD Literatura uzupełniająca: W. Richard Stevens, Programowanie zastosowań sieciowych w systemie Unix WNT 1998 socket() Użycie gniazd w transmisji połączeniowej bind() listen() socket() accept()
3. Identyfikacja. SKŁADNIA #include <sys/socket.h> int getpeername(int socket, struct sockaddr *addr, int *addrlen);
3.1. Określanie adresu połączonego hosta 3. #include int getpeername(int socket, struct sockaddr *addr, int *addrlen); Funkcja getpeername dostarcza adresu drugiej strony połączenia. Parametry:
Pobieranie argumentów wiersza polecenia
Pobieranie argumentów wiersza polecenia 2. Argumenty wiersza polecenia Lista argumentów Lista argumentów zawiera cały wiersz poleceń, łącznie z nazwą programu i wszystkimi dostarczonymi argumentami. Przykłady:
Łącza nienazwane(potoki) Łącza nienazwane mogą być używane tylko pomiędzy procesami ze sobą powiązanymi.
Przykład: $ ls more Łącza nienazwane(potoki) Łącza nienazwane mogą być używane tylko pomiędzy procesami ze sobą powiązanymi. Tworzenie łącza #include int pipe(int filedes[2]); Przykład: int
Laboratorium z systemów operacyjnych. System plików - funkcje systemowe. Anna Wojak
Laboratorium z systemów operacyjnych System plików - funkcje systemowe Anna Wojak 1 Zagadnienia do samodzielnego przygotowania: podstawowe polecenia linux, podstawy programowania w jezyku C, deskryptor
SUMA KONTROLNA (icmp_cksum) NUMER KOLEJNY (icmp_seq)
Program my_ping: wysłanie komunikatu ICMP z żądaniem echa Struktura icmp (plik netinet/ip_icmp.h) 0 7 8 15 16 31 TYP (icmp_type) KOD (icmp_code) IDENTYFIKATOR (icmp_id) SUMA KONTROLNA (icmp_cksum) NUMER
Kolejki komunikatów POSIX
Jędrzej Ułasiewicz IIAiR Politechnika Wrocławska 1 Kolejki komunikatów POSIX 1 Wstęp Kolejka komunikatów Q posiada następujące własności: - Posiada określoną pojemność N komunikatów (długość bufora komunikatów).
Rys. 9-1 Procesy P1 i P2 komunikuję się poprzez wspólny obszar. pamięci.
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 9. Komunikacja przez pamięć dzieloną Metoda komunikacji przez wspólną pamięć może być użyta gdy procesy wykonywane są na maszynie jednoprocesorowej
Przykład aplikacji UDP
#include #include #include /* atoi */ #include /* htons, ntohs... */ #include /* memset */ #include /* inet_ntoa */ #include
1.1 Przykład znajdowanie liczb pierwszych leżących w zadanym zakresie, tryb bezpołączeniowy
1.1 Przykład znajdowanie liczb pierwszych leżących w zadanym zakresie, tryb bezpołączeniowy Należy znaleźć liczby pierwsze w zakresie od 2 do N na P komputerach. Zarządca pocz[i], kon[i] wykonawca 1 wykonawca
J. Ułasiewicz Programowanie aplikacji współbieżnych 1
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 9. Komunikacja przez pamięć dzieloną Pamięć wirtualna Procesy nie adresują bezpośrednio pamięci fizycznej. Zamiast tego system operacyjny przydziela
7. Sterowanie współbieżnością
7. Zalety stosowania współbieżności: skrócenie obserwowanego czasu odpowiedzi na zgłoszenie, w konsekwencji zwiększenie ogólnej przepustowości serwera uniknięcie ryzyka zakleszczenia Realizacja serwerów
Shared memory and messages. Functions. process 0. process 1. program 0. program 0. data 0. data 1. program 1. data 0. data 1.
Shared memory and messages Shared memory vs message passing Shared memory - C functions Shared memory - example program Message queues - C functions Message queues - example program process 0 process 1
Programowanie aplikacji równoległych i rozproszonych. Wykład 4
Wykład 4 p. 1/44 Programowanie aplikacji równoległych i rozproszonych Wykład 4 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Gniazda - Wstęp
Programowanie proceduralne INP001210WL rok akademicki 2015/16 semestr letni. Wykład 6. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2015/16 semestr letni Wykład 6 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411b Plan wykładu Operacje wejścia-wyjścia Dostęp do plików Struktury
sposób wykonywania operacji zapisu i odczytu dane odczytywane z l acza usuwane (nie można ich odczytać ponownie),
27 4 L acza L acza w systemie UNIX sa plikami specjalnymi, s luż acymi do komunikacji pomiedzy procesami. L acza maja kilka cech typowych dla plików zwyk lych, czyli posiadaja swój i-weze l, posiadaja
Funkcje. Piotr Zierhoffer. 7 października Institute of Computer Science Poznań University of Technology
Funkcje Piotr Zierhoffer Institute of Computer Science Poznań University of Technology 7 października 2012 Funkcje Funkcja podprogram. Nazwany blok kodu realizujacy jakieś zadanie. sin(x), arccos(x), min(a,
Gniazda - Wstęp. Oprogramowanie systemów równoległych i rozproszonych. Sposób komunikacji. Domena adresowa. olas@icis.pcz.pl
Gniazda - Wstęp Oprogramowanie systemów równoległych i rozproszonych Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Domena adresowa 1/??
Podstawy programowania w języku C++
Podstawy programowania w języku C++ Część jedenasta Przetwarzanie plików amorficznych Konwencja języka C Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie
PROGRAMOWANIE SYSTEMÓW CZASU RZECZYWISTEGO
PROGRAMOWANIE SYSTEMÓW CZASU RZECZYWISTEGO LABORATORIUM Temat: QNX Neutrino Interrupts Mariusz Rudnicki 2016 Wstęp W QNX Neutrino wszystkie przerwania sprzętowe przechwytywane są przez jądro systemu. Obsługę
Funkcje zawarte w bibliotece < io.h >
PLIKOWE OPERACJE WEJŚCIA - WYJŚCIA Język C/C++ nie ma wbudowanych żadnych instrukcji umożliwiających wykonywanie operacji wejścia-wyjścia! Służą do tego funkcje biblioteczne. Funkcje zawarte w bibliotece
1. Kolejki komunikatów POSIX
Jędrzej Ułasiewicz IIAiR Politechnika Wrocławska 1 1. Kolejki komunikatów POSIX 1.1 Podstawowe własności Kolejki FIFO maja następujące wady: Komunikaty pozbawione struktury Nie można testować stanu kolejki
aodczytywać zniegoza pomoc afunkcjiread, (niebuforowane funkcje wejścia/wyjścia). e sukcesem, to zwróci liczb, erzeczywiściezapisanychbajtów.
c Wies law P laczek 15 4 Potoki 4.1 Wprowadzenie Potok (ang. pipe) możnauznaćzaplikspecjalnegotypuktórys lużydoprzechowywania ograniczonej ilości danych i do którego dost ep może si eodbywaćjedyniewtrybie
Paradygmaty programowania. Paradygmaty programowania
Paradygmaty programowania Paradygmaty programowania Dr inż. Andrzej Grosser Cz estochowa, 2013 2 Spis treści 1. Zadanie 2 5 1.1. Wprowadzenie.................................. 5 1.2. Wskazówki do zadania..............................
13. Kolejki komunikatów POSIX
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 13. POSIX 13.1 Wstęp (mailboxy, bufory) są bardzo popularnym mechanizmem komunikacji międzyprocesowej. Występują w prawie każdym systemie operacyjnym.
Wykład 15. Literatura. Kompilatory. Elementarne różnice. Preprocesor. Słowa kluczowe
Wykład 15 Wprowadzenie do języka na bazie a Literatura Podobieństwa i różnice Literatura B.W.Kernighan, D.M.Ritchie Język ANSI Kompilatory Elementarne różnice Turbo Delphi FP Kylix GNU (gcc) GNU ++ (g++)
Funkcje zawarte w bibliotece < io.h >
PLIKOWE OPERACJE WEJŚCIA - WYJŚCIA Język C/C++ nie ma wbudowanych żadnych instrukcji umożliwiających wykonywanie operacji wejścia-wyjścia! Służą do tego funkcje biblioteczne. Funkcje zawarte w bibliotece
Zdalne wywołania procedur. Jarosław Kuchta Programowanie Współbieżne
Zdalne wywołania procedur Jarosław Kuchta Programowanie Współbieżne Podstawy RPC Remote Procedure Call Wywołanie procedur jednego procesu z innego procesu. Proces wywoływany serwer Proces wywołujący -
Pliki w C/C++ Przykłady na podstawie materiałów dr T. Jeleniewskiego
Pliki w C/C++ Przykłady na podstawie materiałów dr T. Jeleniewskiego 1 /24 Pisanie pojedynczych znaków z klawiatury do pliku #include void main(void) { FILE *fptr; // wkaznik do pliku, tzw. uchwyt
Architektura typu klient serwer: przesyłanie pliku tekstowo oraz logowania do serwera za pomocą szyfrowanego hasła
Architektura typu klient serwer: przesyłanie pliku tekstowo oraz logowania do serwera za pomocą szyfrowanego hasła Wydział Inżynierii Mechanicznej i Informatyki Instytut Informatyki Teoretycznej i Stosowanej
Systemy Operacyjne Ćwiczenia
Systemy Operacyjne Ćwiczenia Wies law P laczek Wydzia l Fizyki, Astronomii i Informatyki Stosowanej, Uniwersytet Jagielloński ul. Reymonta 4, 30-059 Kraków 4 lutego 2009 Streszczenie Praca ta zawiera materia
Ghost in the machine
Operacje na pami eci i odrobina I/O Zak lad Chemii Teoretycznej UJ 8 stycznia 2007 Funkcje operujace Wstep do operacji I/O na plikach 1 Operacje na pami eci 2 Funkcje operujace 3 Wst Funkcje operujace
Functionalization. Jeszcze o funkcjach i strukturze projektu. Marcin Makowski. 3 grudnia Zak lad Chemii Teoretycznej UJ
Jeszcze o funkcjach i strukturze projektu Zak lad Chemii Teoretycznej UJ 3 grudnia 2008 1 2 3 4 5 typedef Plan typedef specyfikator typu nazwa S luży do stworzenia nowej nazwy dla jakiegoś typu. Nazwa
Pliki. Informacje ogólne. Obsługa plików w języku C
Pliki Informacje ogólne Plik jest pewnym zbiorem danych, zapisanym w systemie plików na nośniku danych (np. dysku twardym, pendrive, płycie DVD itp.). Może posiadać określone atrybuty, a odwołanie do niego
Programowanie Proceduralne
Programowanie Proceduralne Struktury Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Co dziś będzie: Definiowanie struktury Deklarowanie zmiennych bȩda cych strukturami
przypadków wywo lanie systemowe (funkcja systemowa) lub funkcja biblioteczna zwraca wartość 1(czasamiNULL) iprzypisujezmiennej zewn etrznej,
c Wies law P laczek 3 1 Obs luga b l edów Wwi ekszości przypadków wywo lanie systemowe (funkcja systemowa) lub funkcja biblioteczna kończ ac si e b l edem zwraca 1(czasamiNULL) iprzypisujezmiennej zewn
Komunikacja międzyprocesowa. Krzysztof Banaś Systemy rozproszone 1
Komunikacja międzyprocesowa Krzysztof Banaś Systemy rozproszone 1 Komunikacja międzyprocesowa Dla funkcjonowania systemów rozproszonych konieczna jest sprawna komunikacja pomiędzy odległymi procesami Podstawowym
ISO/ANSI C - funkcje. Funkcje. ISO/ANSI C - funkcje. ISO/ANSI C - funkcje. ISO/ANSI C - funkcje. ISO/ANSI C - funkcje
Funkcje (podprogramy) Mianem funkcji określa się fragment kodu, który może być wykonywany wielokrotnie z różnych miejsc programu. Ogólny zapis: typ nazwa(argumenty) ciało funkcji typ określa typ danych
Uzupełnienie dot. przekazywania argumentów
Uzupełnienie dot. przekazywania argumentów #include #include struct nowa { int f; char line[20000]; int k; } reprezentant; int main() { void funkcja7( struct nowa x); reprezentant.k=17;
1. Kolejki komunikatów POSIX
Jędrzej Ułasiewicz IIAiR Politechnika Wrocławska 1 1. Kolejki komunikatów POSIX 1.1 Podstawowe własności Kolejki FIFO maja następujące wady: Komunikaty pozbawione struktury Nie można testować stanu kolejki
J. Ułasiewicz Programowanie aplikacji współbieżnych 1
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 9. Komunikacja przez pamięć dzieloną Pamięć wirtualna Procesy nie adresują bezpośrednio pamięci fizycznej. Zamiast tego system operacyjny przydziela
Języki programowania. Przetwarzanie plików amorficznych Konwencja języka C. Część siódma. Autorzy Tomasz Xięski Roman Simiński
Języki programowania Część siódma Przetwarzanie plików amorficznych Konwencja języka C Autorzy Tomasz Xięski Roman Simiński Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie
Łącza nienazwane(potoki)
8. Łącza nienazwane(potoki) Łącze (potok, ang. pipe) jest to urządzenie komunikacyjne pozwalające na przesyłanie informacji w jedną stronę. Jeden proces wysyła dane do łącza za pomocą funkcji write, zaś
Temat zajęć: Obsługa łączy komunikacyjnych
Temat zajęć: Obsługa łączy komunikacyjnych Czas realizacji zajęć: 180 min. Zakres materiału, jaki zostanie zrealizowany podczas zajęć: I. Łącza komunikacyjne Potoki nienazwane, potoki nazwane, przykłady
Wykład 1
Wstęp do programowania 1 Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Wprowadzenie Cel wykładów z programowania proceduralnego Wykład jest poświęcony językowi C i jego
Komunikacja międzyprocesowa. Krzysztof Banaś Systemy rozproszone 1
Komunikacja międzyprocesowa Krzysztof Banaś Systemy rozproszone 1 Komunikacja międzyprocesowa Dla funkcjonowania systemów rozproszonych i równoległych z pamięcią rozproszoną konieczna jest sprawna komunikacja
Semafory, pamięć dzielona i kolejki komunikatów
Semafory, pamięć dzielona i kolejki komunikatów dr inż. Sławomir Samolej Katedra Informatyki i Automatyki Politechnika Rzeszowska Program przedmiotu oparto w części na materiałach opublikowanych na: http://wazniak.mimuw.edu.pl/
Komunikacja sieciowa - interfejs gniazd
SOE Systemy Operacyjne Wykład 14 Komunikacja sieciowa - interfejs gniazd dr inŝ. Andrzej Wielgus Instytut Mikroelektroniki i Optoelektroniki WEiTI PW Model komunikacji sieciowej Model OSI (ang. Open System
Unix: programowanie z użyciem w atków
Unix: programowanie z użyciem w atków Witold Paluszyński witold.paluszynski@pwr.wroc.pl http://sequoia.ict.pwr.wroc.pl/ witold/ Copyright c 1999 2006 Witold Paluszyński All rights reserved. Niniejszy dokument
Unix: programowanie z użyciem w atków
Unix: programowanie z użyciem w atków Witold Paluszyński witold.paluszynski@pwr.wroc.pl http://sequoia.ict.pwr.wroc.pl/ witold/ Copyright c 1999 2006 Witold Paluszyński All rights reserved. Niniejszy dokument
Języki i metodyka programowania. Typy, operatory, wyrażenia. Wejście i wyjście.
Typy, operatory, wyrażenia. Wejście i wyjście. Typy, operatory, wyrażenia Zmienna: [] [ '[' ']' ] ['=' ]; Zmienna to fragment pamięci o określonym
Laboratorium Podstawy Przetwarzania Rozproszonego SPRAWOZDANIE z zadania SERWIS KOMPUTEROWY
Laboratorium Podstawy Przetwarzania Rozproszonego SPRAWOZDANIE z zadania SERWIS KOMPUTEROWY Nazwisko Imię album termin zajęć Marek Lewandowski 59817 Maciej Mietliński 59832 poniedziałek 18:30 tydzień nieparzysty
Podstawy programowania. Wykład Pętle. Tablice. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład Pętle. Tablice. Krzysztof Banaś Podstawy programowania 1 Pętle Pętla jest konstrukcją sterującą stosowaną w celu wielokrotnego wykonania tego samego zestawu instrukcji jednokrotne
ISO/ANSI C dostęp do plików ISO/ANSI C. ISO/ANSI C dostęp do plików. ISO/ANSI C dostęp do plików. ISO/ANSI C dostęp do plików
Plik to uporządkowany ciąg danych Dostęp do danych w pliku jest sekwencyjny, tj. istnieje pojęcie elementu aktualnego (tzw. wskaźnika pliku). Możliwy dostęp do danych w pliku jest tylko tam, gdzie wskazuje
Operacje wejścia/wyjścia (odsłona druga) - pliki
Operacje wejścia/wyjścia (odsłona druga) - pliki Bogdan Kreczmer ZPCiR IIAiR PWr pokój 307 budynek C3 bogdan.kreczmer@pwr.wroc.pl Copyright c 2005 2008 Bogdan Kreczmer Niniejszy dokument zawiera materiały
Pliki. Informacje ogólne. Obsługa plików w języku C
Pliki Informacje ogólne Plik jest pewnym zbiorem danych, zapisanym w systemie plików na nośniku danych. Może posiadać określone atrybuty, a odwołanie do niego odbywa się poprzez nazwę. Każdy plik ma skończoną
Podstawy informatyki. Informatyka stosowana - studia niestacjonarne. Grzegorz Smyk. Wydział Inżynierii Metali i Informatyki Przemysłowej
Podstawy informatyki Informatyka stosowana - studia niestacjonarne Grzegorz Smyk Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie, rok
Obsługa plików. Laboratorium Podstaw Informatyki. Kierunek Elektrotechnika. Laboratorium Podstaw Informatyki Strona 1. Kraków 2013
Laboratorium Podstaw Informatyki Strona 1 Laboratorium Podstaw Informatyki Kierunek Elektrotechnika Obsługa plików Kraków 2013 Laboratorium Podstaw Informatyki Strona 2 Obsługa plików Zanim będziemy mogli
METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02
METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się
Wykład VI. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik
Wykład VI Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Operacje na plikach Operacje na plikach Aby móc korzystać z pliku należy go otworzyć w odpowiednim
wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis
i cz. 2 Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 i cz. 2 2 i cz. 2 3 Funkcje i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje instrukcje } i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje
5. Algorytmy serwera
5. Algorytmy serwera 5.1. Typy serwerów Serwer iteracyjny (ang. iterative server) obsługuje zgłoszenia klientów sekwencyjnie, jedno po drugim. Serwer współbieżny (ang. concurrent server) obsługuje wiele
przerwany proces móg l zareagować na określone zdarzenie. Można je traktować jako software owe wersje przerwań sprz etowych.
c Wies law P laczek 9 3 Sygna ly 3.1 Opis sygna lów Najprostsz ametod akomunikacjimi edzyprocesowej w systenie UNIX s sygna ly. Umożliwiaj aoneasynchroniczne przerwanie dzia lania procesu przez inny proces
Wstęp do programowania 1
Wstęp do programowania 1 Struktury Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Struktura dla dat - przykład #include struct Date { int y; short m; short
dynamiczny przydział pamięci calloc() memset() memcpy( ) (wskaźniki!! )
dynamiczny przydział pamięci malloc() free() realloc() calloc() memset() memcpy( ) mempcpy( ) memmove() (wskaźniki!! ) 1 dynamiczny przydział pamięci void * memccpy (void * to, void * from, int c, int
1: ////////// 2: // test.c. 3: ssize_t ret = read(fd, buf, nbytes);
Poniżej wklejone są fragmenty kodu jądra, serwerów oraz sterownika. Kod ten przedstawia zarys mechanizmu używanego przy wywołaniach usług systemowych przez procesy użytkownika. W miejscach, w których występuje
Podział programu na moduły
Materiały Podział programu na moduły Informatyka Szczegółowe informacje dotyczące wymagań odnośnie podziału na moduły: http://www.cs.put.poznan.pl/wcomplak/bfiles/c_w_5.pdf Podział programu na moduły pozwala
Programowanie przy użyciu gniazdek
Programowanie przy użyciu gniazdek Gniazdo (ang. socket) pojęcie abstrakcyjne reprezentujące dwukierunkowy punkt końcowy połączenia. Dwukierunkowość oznacza możliwość wysyłania i przyjmowania danych. Wykorzystywane
ISO/ANSI C dostęp do plików ISO/ANSI C. ISO/ANSI C dostęp do plików. ISO/ANSI C dostęp do plików. ISO/ANSI C dostęp do plików
Plik to uporządkowany ciąg danych Dostęp do danych w pliku jest sekwencyjny, tj. istnieje pojęcie elementu aktualnego (tzw. wskaźnika pliku). Możliwy dostęp do danych w pliku jest tylko tam, gdzie wskazuje
Co nie powinno być umieszczane w plikach nagłówkowych:
Zawartość plików nagłówkowych (*.h) : #include #define ESC 27 dyrektywy dołączenia definicje stałych #define MAX(x,y) ((x)>(y)?(x):(y)) definicje makr int menu(char* tab[], int ilosc); struct
Obliczenia rozproszone z wykorzystaniem MPI
Obliczenia rozproszone z wykorzystaniem Zarys wst u do podstaw :) Zak lad Metod Obliczeniowych Chemii UJ 8 sierpnia 2005 1 e konkretniej Jak szybko, i czemu tak wolno? 2 e szczegó lów 3 Dyspozytor Macierz
Gniazda UDP. Bartłomiej Świercz. Łódź, 3 kwietnia Katedra Mikroelektroniki i Technik Informatycznych. Bartłomiej Świercz Gniazda UDP
Gniazda UDP Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź, 3 kwietnia 2006 Wstęp ZewzględunaróżnicewprotokołachTCPiUDPsposób korzystania z gniazd UDP różni sie znacznie od
Komunikacja mi edzyprocesowa (IPC)
Komunikacja miedzyprocesowa (IPC) Procesy tworzone w ramach systemu operacyjnego moga sie komunikować. Jeżeli duża aplikacja jest budowana z wielu wspó lpracuj acych procesów, to ta komunikacja może być
Programowanie Sieciowe 1
Programowanie Sieciowe 1 dr inż. Tomasz Jaworski tjaworski@iis.p.lodz.pl http://tjaworski.iis.p.lodz.pl/ Klient UDP Kolejność wykonywania funkcji gniazdowych klienta UDP Protokół UDP jest bezpołączeniowy:
Wykład 5_2 Algorytm ograniczania liczby serii za pomocą kopcowego rozdzielania serii początkowych
Wykład 5_2 Algorytm ograniczania liczby serii za pomocą kopcowego rozdzielania serii początkowych Założenia: 1. Pamięć wewnętrzna ma ograniczone rozmiary 2. Pamięć zewnętrzna ma rozmiary nieograniczone
Katedra Elektrotechniki Teoretycznej i Informatyki. wykład 12 - sem.iii. M. Czyżak
Katedra Elektrotechniki Teoretycznej i Informatyki wykład 12 - sem.iii M. Czyżak Język C - preprocesor Preprocesor C i C++ (cpp) jest programem, który przetwarza tekst programu przed przekazaniem go kompilatorowi.