OCHRONA PRZED KOROZJĄ
|
|
- Jolanta Żukowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 OCHRONA PRZED KOROZJĄ Opracowanie: Krystyna Moskwa, Bogusław Mazurkiewicz CZĘŚĆ TEORETYCZNA 1. Sposoby ochrony przed korozją Modyfikacja środowiska korozyjnego. Modyfikacja polega na usuwaniu składników korozyjnych ze środowiska w którym pracują lub są magazynowane chronione wyroby. Jako przykłady zastosowania tej metody mozna wymienić: a) wyeliminowanie z wody tlenu (jako depolaryzatora) poprzez nasycenie azotem lub dodatek do wody substancji wiążących tlen b) zobojętnianie substancji kwaśnych w wodzie np. poprzez dodatek wapna c) usuwanie z wody soli za pomocą wymieniaczy jonowych d) obniżenie wilgotności powietrza przez osuszanie lub podwyższanie temperatury w pomieszczeniu magazynowym e) usuwanie cząstek zanieczyszczeń stałych z powietrza lub wody przez filtrację Zastosowanie inhibitorów. Inhibitory są to substancje, które powodują zmniejszenie szybkości reakcji (w przeciwieństwie do katalizatorów). Inhibitorami korozji nazywamy więc substancje, które w środowisku korozyjnym powodują zmniejszenie szybkości korozji w wyniku zahamowania procesu anodowego i (lub) katodowego w ogniwach korozyjnych. Rozróżniamy: a) inhibitory anodowe hamujące anodowy proces roztwarzania metalu b) inhibitory katodowe hamujące katodowy proces depolaryzacji c) inhibitory organiczne anodowo - katodowe. Są to przeważnie inhibitory adsorpcyjne o działaniu podwójnym, co oznacza, że są one zdolne hamować równocześnie procesy anodowe i katodowe Ochrona elektrochemiczna. Metody ochrony elektrochemicznej polegają na zmianie potencjału elektrodowego metalu w celu zapobieżenia lub ograniczenia jego rozpuszczania. W zależności od kierunku przesuwania potencjału elektrodowego chronionego metalu do wartości niższych lub wyższych (do zakresu pasywnego) rozróżniamy metody ochrony katodowej i anodowej. a) ochrona katodowa oznacza, że przedmiot poddany ochronie spełnia rolę katody w korozyjnym ogniwie galwanicznym. Potencjał elektrodowy chronionego metalu przesuwa się w kierunku dodatnich wartości, a więc roztwarzanie (utlenianie) tego metalu jest ograniczone. Metal chroniony jest katodą, na której mogą zachodzić tylko reakcje redukcji. Rozróżnia się ochronę katodową galwaniczną i elektrolityczną. - galwaniczna ochrona katodowa zwana często protektorową zachodzi bez użycia zewnętrznego źródła prądu. Chroniony przedmiot jest katodą ogniwa galwanicznego, którego anodę stanowi celowo tracony metal mniej szlachetny (Mg, Zn, Al) zwany protektorem. Protektor rozpuszczając się zabezpiecza chroniony przedmiot. Protektorem może być powłoka na metalu chronionym (np. cynkowana stal) lub odpowiednio rozmieszczone płyty anodowe. Schematycznie proces ten przedstawiony jest na rys. 1a. - w elektrolitycznej ochronie katodowej chroniony przedmiot jest jest katodą ogniwa zasilanego prądem stałym z zewnętrznego żródła prądu (prostownika). Pomocnicza anoda jest najczęściej wykonana z materiału nie ulegającemu roztwarzaniu (Pt, Pb, C, Ni). Rys. 4b przedstawia schematycznie tego typu ochronę. b) ochrona anodowa stosowana jest głównie dla metali na których tworzą się warstewki pasywne. Zahamowanie korozji można uzyskać przez podwyższenie potencjału elektrodowego próbki do wartości w której powstanie termodynamicznie trwała faza. Na przykład dla żelaza jest nią tlenek żelaza na wyższym stopniu utlenienia. Zakłada się, że otrzymany tlenek wytwarza cienką, spoistą i dobrze przylegającą do metalu warstwę. Ma ona własności półprzewodnika o małym przewodnictwie jonowym i dla jej zachowania (utrzymania pasywacji) wystarcza już tylko niewielki prąd dodatkowy. Podobnie jak w wyżej wymienionym przypadku rozróżnia się ochronę anodową galwaniczną lub elektrolityczną, zgodnie z charakterystyką: - w galwanicznej ochronie anodowej stosuje się metale szlachetne (Pt, Pd, Ag, Cu) jako dodatki stopowe, tworzące katody lokalne w procesie korozji lub powłoki na metalach pasywujących się np. stal nierdzewna, Ti, Ta, Zr - w elektrolitycznej ochronie anodowej zapewnia się dopływ prądu stałego ze żródła zewnętrznego przez katodę pomocniczą. Potencjał elektrodowy chronionego metalu (anoda) reguluje się za pomocą potencjostatu.
2 a) b) Rys. 1. Zasada ochrony katodowej przy pomocy: a) anody protektorowej, b) prądu zewnętrznego Powłoki metalowe. Można tu stosować powłoki izolujące z metalu bardziej szlachetnego od metalu chronionego lub powłoki ekranujące z metalu mniej szlachetnego zapewniające ochronę katodową. a) Powłoki izolujące. Jeżeli założymy, że materiałem chronionym jest stal to przykładem powłok z metali bardziej szlachetnych są powłoki np. z Cu, Ni, Cr, Pb, Sn, Ag. W wodzie miękkiej nawet aluminium wykazuje bardziej dodatni potencjał elektrochemiczny (jest bardziej szlachetne) niż stal ze względu na powstawanie warstewki pasywnej, która decyduje o odporności korozyjnej metalu. Powłoki z metali bardziej szlachetnych od metalu podłoża powinny być całkowicie szczelne. W przypadku występowania w powłoce porów lub rys sięgających podłoża metalu chronionego (anody) powstać może niebezpieczny układ elektrochemiczny. Powierzchnia anodowa jest bardzo mała w porównaniu z powierzchnią katodową co może doprowadzić do korozji lokalnej metalu konstrukcyjnego (chronionego). Powłoki metalowe wykonane z metali bardziej szlachetnych nazywane są powłokami katodowymi. b) Powłoki ekranujące. Pokrywanie metalem mniej szlachetnym niż metal chroniony oprócz ekranującego działania powłoki zapewnia ochronę katodową, gdyż powłoka z metalu mniej szlachetnego działa w charakterze anody jako protektor w stosunku do metalu chronionego. Powłoki takie nazywane są powłokami anodowymi. Najważniejszym z praktycznego punktu widzenia zastosowaniem anodowych powłok metalicznych jest cynkowanie, czyli pokrywanie stali powłoką cynkową. Zdecydowana większość powłok metalowych nakładana jest albo przez zwykłe zanurzenie w stopionym metalu, zwane pokrywaniem ogniowym, albo elektrolitycznie z wodnego roztworu elektrolitu przez elektrolizę. W mniejszym stopniu stosuje się inne metody nakładania. Jedną z nich jest metalizacja natryskowa wykonana przy użyciu pistoletu, który jednocześnie topi i napyla metal w postaci drobnych cząsteczek na powlekaną powierzchnię. W niniejszym skrypcie szerzej zostanie omówiona elektrolityczna metoda nanoszenia powłok metalowych Powłoki nieorganiczne a) Emalie szkliste b) Powłoki tlenkowe c) Powłoki fosforanowe d) Powłoki chromianowe Powłoki organiczne Mają tu zastosowanie różnego rodzaju tworzywa polimerowe, farby wykazujące działanie inhibitujące (np. farby podkładowe przeciwrdzewne), oleje i smary z dodatkiem inhibitorów korozji, farby nawierzchniowe i in.
3 1. 7. Projektowanie a ochrona przed korozją. Przy połączeniach elementów konstrukcyjnych wykonanych z róznych gatunków metali można już na etapie projektowania w znacznym stopniu ograniczyć korozję galwaniczną kontaktową przez zastosowanie materiałów izolacyjnych. W przypadku połączeń spawanych, nitowanych, lutowanych i skręcanych złącze powinno być wykonane z materiału bardziej szlachetnego niż metal konstrukcyjny. 2. Galwanotechnika jako metoda otrzymywania powłok ochronnych. Pod pojęciem galwanotechnika określa się dział elektrochemii zajmujący się teorią i praktycznym zastosowaniem procesów zachodzących na elektrodach, a wymuszonych zewnętrzną różnicą potencjałów i związanych z przepływem prądu w ogniwie galwanicznym. Do procesów tych zaliczamy przede wszystkim elektrolityczne nakładanie powłok metalicznych, elektrolityczne trawienie metali, polerowanie, barwienie metali, metaloplastykę, powlekanie tworzyw sztucznych metalami, wytwarzanie proszków metalicznych, utlenianie (anodowanie) metali - głównie aluminium Zarys procesów elektrolizy. W omawianych dotychczas ogniwach galwanicznych, samorzutne reakcje utlenienia i redukcji zachodzące na elektrodach były źródłem energii elektrycznej dostarczanej w czasie pracy tych ogniw. Natomiast w procesie elektrolizy, reakcje redox zachodzące na elektrodach są wymuszone zewnętrzną różnicą potencjałów. Szybkość i rodzaj reakcji zależy od materiału elektrod katody i anody, rodzaju elektrolitu, oraz stosowanego napięcia między elektrodami. Na przykład w roztworze elektrolitu MeA, w którym znajdują się dwie elektrody połączone ze źródłem prądu stałego, ruch jonów staje się uporządkowany. Kationy Me + dążą do elektrody połączonej z ujemnym biegunem źródła prądu (katoda), natomiast aniony A - dążą do elektrody połączonej z dodatnim biegunem źródła prądu (anoda). Na elektrodach zachodzą reakcje chemiczne: Na katodzie nastąpi przyłączenie elektronów przez dodatnie jony (kationy) Me + (redukcja tych jonów) i tworzenie się atomów Me, wg reakcji: Me + + e Me Na anodzie natomiast, ujemne jony A - oddają nadmiar swych elektronów (utleniają się): A - - e A W wodnych roztworach elektrolitów obok procesów zasadniczych (utleniania i redukcji jonów elektrolitu), zachodzi reakcja elektrolizy wody. Przebieg tego procesu jest następujący: Katoda: 2H 2O + 2e = H 2 + 4OH - Anoda: 2H 2O - 4e = O 2 + 4H + Ilość wydzielonych produktów na elektrodach jest związana z ilością elektryczności, jaka przepłynęła przez roztwór podczas elektrolizy. Zależności te określają prawa Faraday'a: I prawo Faraday'a. Masa substancji wydzielonej na elektrodzie podczas elektrolizy jest proporcjonalna do natężenia prądu i czasu trwania elektrolizy: m = k I t m - masa substancji wydzielonej na elektrodzie k - współczynnik proporcjonalności nazwany równoważnikiem elektrochemicznym I - natężenie prądu [A] t - czas trwania elektrolizy [s] I prawo Faraday'a można zapisać w podany wyżej sposób, gdy natężenie prądu jest stałe podczas elektrolizy. Jeśli natężenie prądu byłoby zmienne, iloczyn I t należy we wzorze zastąpić wartością ładunku Q, który przepłynął przez elektrolizer. m = k Q Jeżeli Q = 1 kulomb, m = k, czyli k jest liczbowo równy masie substancji, która zostanie wydzielona na elektrodzie w wyniku przepływu ładunku 1 kulomba (C).
4 II prawo Faraday'a. Masy różnych substancji wydzielone przez jednakową ilość elektryczności są proporcjonalne do równoważników chemicznych tych substancji. Doświadczalnie stwierdzono, że w celu wydzielenia 1 gramorównoważnika dowolnej substancji należy przez roztwór przepuścić C elektryczności. Liczbę tą nazwano stałą Faraday'a. Wobec tego: G k = F = M n F G - gramorównoważnik substancji wydzielonej na elektrodzie M - masa molowa wydzielonej substancji n - ilość elektronów biorących udział w elementarnym procesie utleniania lub redukcji F - stała Faraday'a Obydwa prawa Faraday'a można zatem wyrazić wzorem: G I t M I t m = = F n F Galwaniczne metody nanoszenia powłok. Z punktu widzenia użytkowego stosuje się oprócz powłok antykorozyjnych katodowych i anodowych, powłoki dekoracyjne złote, rodowe, palladowe, platynowe lub powłoki wielowarstwowe np. miedziano - niklowo - chromowe i inne. Technologie nanoszenia powłok pomimo, że znane od XIX wieku, są nadal doskonalone i stanowią przedmiot ochrony patentowej. Podręczniki podają zasadnicze typy kąpieli i warunki prowadzenia procesu. W konkretnym przypadku konieczne jest jednak indywidualne dopracowanie technologii. Miedziowanie. Miedź, pierwiastek należący do grupy metali szlachetnych ze względu na wysoki potencjał elektrochemiczny jest bardziej odporna na korozję niż inne metale konstrukcyjne takie jak żelazo, cynk, aluminium. Powłoki miedziowe podnoszą odporność korozyjną wyrobu jedynie przy zachowaniu ciągłości i szczelności warstewki. W innych przypadkach miedź staje się katodą w krótkozwartym ogniwie korozyjnym i przyspiesza korozję metalu pod powłoką. Powłoki miedziowe osadza się w celach dekoracyjnych jako samodzielne warstewki lub jako jedną z wielowarstwowej powłoki Cu-Ni-Cr. Miedziowanie można wykonać na dwa sposoby: a) elektrolitycznie - stosuje się tu kąpiele siarczanowe i cyjankowe b) metodą bezprądową - przez zanurzenie metalu o niższym potencjale elektrochemicznym w roztworze soli miedzi(ii). Reakcja rozpuszczania (utleniania) metalu mniej szlachetnego i osadzania się (redukcji) miedzi zachodzi samorzutnie. Cynkowanie. Cynk jest szeroko stosowany jako metal na powłoki szczególnie na stali i żeliwie. Mimo, że jest metalem o niższej termodynamicznej stabilności od żelaza to jednak powłoka cynkowa posiada dobre własności ochronne. Efekt ochronny na żeliwie i stali spowodowany jest: - ochroną protektorową - cynk jest anodą (protektorem) w ogniwie galwanicznym - cynk posiada wysokie nadnapięcie wydzielania wodoru w środowiskach obojętnych - w środowisku atmosferycznym i w obecności CO 2 powierzchnia cynku pokrywa się pasywną warstewką węglanową - w środowisku słabo alkalicznym wytwarza się pasywna warstewka Zn(OH) 2. Cynk jest więc metalem odpornym na korozję w środowiskach, których ph waha się w granicach Poza tym obszarem ulega korozji w roztworach kwaśnych z utworzeniem jonów Zn 2+, a w alkalicznych ZnO W przypadku uszkodzenia powłoki podłoże chronione jest protektorowo. Powłoki cynkowe otrzymuje się: a) metodą ogniową - przez zanurzenie chronionego metalu lub wyrobu w kąpieli stopionego cynku b) metodą galwaniczną - w procesie elektrolizy.
5 PYTANIA KONTROLNE 1. Na czym polega modyfikacja środowiska korozyjnego? 2. Co to są inhibitory korozji? 3. Jakie są sposoby ochrony elektrochemicznej metali? Omówić ochronę katodową i anodową na dowolnych przykładach. 4. Z jakiego metalu powinny być wykonane połączenia konstrukcyjne dwóch różnych metali? 5. Podać treść praw elektrolizy Faraday'a. 6. Jakie są sposoby miedziowania? Omówić miedziowanie bezprądowe. 7. Dlaczego powłoka cynkowa chroni od korozji wyroby ze stali? Literatura: 1. Praca zbiorowa pod red. K. Moskwy: Ćwiczenia laboratoryjne z chemii z elementami teorii i obliczeń dla mechaników, Skrypt AGH nr 1478 str , Kraków Praca zbiorowa pod red. J. Banasia i W. Solarskiego: Chemia dla inżynierów, AGH OEN, Kraków 2000, rozdz. VII.
6 CZĘŚĆ DOŚWIADCZALNA Ćw.1. Ochrona protektorowa Sprzęt: - elektrody: Fe, Zn, Cu Odczynniki: - 0,1 M roztwór H 2SO 4 - papier ścierny - roztwór K 3[Fe(CN) 6] - alkohol etylowy Celem ćwiczenia jest ilustracja zmiany szybkości korozji żelaza w kontakcie z miedzią oraz cynkiem. Jako wskaźnik ilości rozpuszczonego żelaza służy roztwór sześciocyjanożelazianu(iii) potasu (żelazicyjanek potasowy). Odczynnik ten w reakcji z powstającymi podczas korozji żelaza jonami Fe +2 tworzy Fe 3[Fe(CN) 6] 2 o zabarwieniu błękitnym. Opis ćwiczenia. Elektrody oczyścić papierem ściernym i przemyć alkoholem. Do trzech probówek nalać po 2-4 cm 3 roztworu H 2SO 4 z dodatkiem 2-3 kropli K 3[Fe(CN) 6]. W probówkach umieścić kolejno: a) blaszkę żelazną b) blaszkę żelazną zwartą z miedzią c) blaszkę żelazną zwartą z cynkiem Po czasie 3 min wyjąć metale z próbówek i porównać intensywność zabarwienia roztworów. W którym przypadku szybkość korozji żelaza jest największa? W toku badania można także zaobserwować wydzielanie się gazu (wodoru) - na którym metalu zachodzi reakcja wydzielania wodoru i z jaką szybkością? Który metal jest protektorem w przypadku b) i c)? Ćw. 2. Cynkowanie elektrolityczne. Sprzęt: - elektrody: stalowa i cynkowa Odczynniki: - roztwór do cynkowania - układ polaryzacyjny wg schematu - alkohol etylowy - waga analityczna - mikroskop optyczny - papier ścierny - suszarka Opis ćwiczenia Powierzchnię blachy stalowej oczyścić do metalicznego połysku. Następnie przemyć wodą, odtłuścić alkoholem, wysuszyć i zważyć na wadze analitycznej. Połączyć układ elektryczny wg schematu. Nalać do zlewki roztwór do cynkowania, zmierzyć powierzchnię blaszki stalowej. Sprawdzić poprawność połączeń, a następnie włączyć zasilacz prądu stałego, ustawiając wartość prądu tak, aby gęstość prądu wynosiła ok. 2 A/dm 2 powierzchni cynkowanej blaszki. Proces elektrolizy prowadzić w temp o C przez 10 minut. Po zakończeniu cynkowania rozlączyć układ. Przemyć elektrody w bieżącej i destylowanej wodzie, wysuszyć oraz ponownie zważyć elektrodę stalową. Należy pamiętać, aby porządnie wysuszyć ważoną elektrodę - aby nie ważyć zawartej w próbce wody. Roztwór zlać do naczynia na zużytą kąpiel. Rys. 2. Schemat układu do galwanicznego cynkowania żelaza. 1 - płytka cynkowa 2 - płytka stalowa 3 - kąpiel do cynkowania 4 - zasilacz regulowany prądu stałego
7 Ćw. 3. Miedziowanie bezprądowe. Sprzęt: - blaszki stalowe 3 szt. Odczynniki: - roztwór do miedziowania - mieszadło magnetyczne, - roztwór do trawienia 18% HCl - 3 zlewki - stężony HNO 3 - waga analityczna - alkohol etylowy - papier ścierny - suszarka Opis ćwiczenia. Blaszkę (a) oczyścić papierem ściernym do uzyskania metalicznego połysku. Blaszki (b) i (c) wytrawić w stęż. HNO 3. Blaszkę (c) dodatkowo aktywować w roztworze HCl do momentu wydzielenia banieczek wodoru. Wszystkie blaszki przemyć bieżącą wodą, następnie alkoholem. Blaszkę (c) wysuszyć suszarką i zważyć na wadze analitycznej. Wszystkie próbki zawiesić na nitce teflonowej w zlewce wypełnionej do połowy roztworem do miedziowania i włączyć mieszanie. Proces miedziowania prowadzić : dla blaszki (a) przez 1 min dla blaszki (b) przez 3 min dla blaszki (c) przez 5 min Po określonym czasie próbki wyciągnąć, przemyć bieżąca wodą, alkoholem, wysuszyć. Zważyć ponownie próbkę (c). Porównać jakość osadzonej warstwy miedzi. Obliczyć ilość miedzi wydzielonej na blaszce (c) z przyrostu masy próbki. W obliczeniach należy uwzględnić fakt, że podczas wydzielania 1 mola miedzi (tj. 64g Cu) rozpuszcza się (utlenia) 1 mol żelaza (tj. 56g Fe) zgodnie z reakcją: Fe + Cu 2+ = Fe 2+ + Cu Przyrost masy próbki o 8g ( m = 64g 56g) odpowiada zatem wydzieleniu się na próbce 64g miedzi.
8 20.../... Wydz. Nazwisko, imię: Zaliczenie Gr. Temat: OCHRONA PRZED KOROZJĄ Ćw. 1. Ochrona protektorowa Na podstawie zabarwienia roztworu określić w którym przypadku szybkość korozji żelaza jest największa? W toku badania można także zaobserwować wydzielanie się gazu (wodoru) - na którym metalu zachodzi reakcja wydzielania wodoru i z jaką szybkością? Który metal jest protektorem w przypadku b) i c)? Fe metale intensywność barwy szybkość korozji wydzielanie wodoru protektor Fe Zn Fe Cu Ćw. 2. Cynkowanie elektrolityczne Obliczyć teoretyczny przyrost masy cynku na pręcie stalowym po cynkowaniu ze wzoru: m Zn = k I t =... gdzie: k = 1,22 [g/ah] I natężenie prądu [A] t czas cynkowania [h] Obliczyć wydajność prądową procesu cynkowania w % jako stosunek przyrostu masy próbki cynkowanej do teoretycznej ilości wydzielonego cynku obliczonej z I prawa Faraday'a. W = ( m/ m Zn) 100% =... Wymiary elektrody [dm] d = Powierzchnia elektrody s [dm 2 ] Czas cynkowania t [h] Natężenie prądu I [A] Masa przed cynkowaniem m 1 Masa po cynkowaniu m 2 Zmiana masy m m Zn obl. z prawa Faradaya Wydajność procesu W [%] h = Ćw. 3. Miedziowanie bezprądowe Określić wizualnie jakość osadzonej warstwy miedzi: próbka przygotowanie czas miedziowania wygląd warstwy (a) (b) (c) oczyszczenie papierem ściernym 1min 3 min 5min
9 Obliczyć ilość miedzi wydzielonej na próbce (c) (obliczenia zapisać pod tabelą) masa próbki przed miedziowaniem m 1 masa próbki po miedziowaniu m 2 zmiana masy m masa wydzielonej miedzi m Cu
OCHRONA PRZED KOROZJĄ
OCHRONA PRZED KOROZJĄ Opracowanie: dr inż. Krystyna Moskwa, dr inż. Bogusław Mazurkiewicz, mgr Magdalena Bisztyga W przypadku większości materiałów nie jest możliwe całkowite usunięcie korozji, stąd też
OCHRONA PRZED KOROZJĄ
OCHRONA PRZED KOROZJĄ Opracowanie: dr inż. Krystyna Moskwa, dr inż. Bogusław Mazurkiewicz, mgr Magdalena Bisztyga, dr inż. Zbigniew Szklarz W przypadku większości materiałów nie jest możliwe całkowite
KOROZJA ELEKTROCHEMICZNA i OCHRONA PRZED KOROZJĄ.
KOROZJA ELEKTROCHEMICZNA i OCHRONA PRZED KOROZJĄ. Ćwiczenie 1. - korozja z depolaryzacją wodorową Sprzęt: - blaszki Zn - biureta - pompka gumowa - zlewki - waga analityczna Odczynniki: - 1M H 2 SO 4 Celem
KOROZJA I OCHRONA PRZED KOROZJĄ
KOROZJA I OCHRONA PRZED KOROZJĄ Opracowanie: Krystyna Moskwa, Bogusław Mazurkiewicz CZĘŚĆ TEORETYCZNA 1. Rodzaje korozji. Procesy niszczenia metali i stopów, będące wynikiem ich reakcji z otoczeniem (środowiskiem
KOROZJA I OCHRONA PRZED KOROZJĄ
KOROZJA I OCHRONA PRZED KOROZJĄ Opracowanie: Krystyna Moskwa, Bogusław Mazurkiewicz 1. Rodzaje korozji. Procesy niszczenia metali i stopów, będące wynikiem ich reakcji z otoczeniem (środowiskiem korozyjnym)
KOROZJA. KOROZJA: Proces niszczenia materiałów spowodowany warunkami zewnętrznymi.
1 KOROZJA KOROZJA: Proces niszczenia materiałów spowodowany warunkami zewnętrznymi. Korozja metali i stopów, korozja materiałów budowlanych (np. betonów), tworzyw sztucznych. KOROZJA Elektrochemiczna atmosferyczna
Elektrochemia - szereg elektrochemiczny metali. Zadania
Elektrochemia - szereg elektrochemiczny metali Zadania Czym jest szereg elektrochemiczny metali? Szereg elektrochemiczny metali jest to zestawienie metali według wzrastających potencjałów normalnych. Wartości
Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1
Elektrochemia elektroliza Wykład z Chemii Fizycznej str. 4.3 / 1 ELEKTROLIZA POLARYZACJA ELEKTROD Charakterystyka prądowo-napięciowa elektrolizy i sposób określenia napięcia rozkładu Wykład z Chemii Fizycznej
Elektrochemia - prawa elektrolizy Faraday a. Zadania
Elektrochemia - prawa elektrolizy Faraday a Zadania I prawo Faraday a Masa substancji wydzielonej na elektrodach podczas elektrolizy jest proporcjonalna do natężenia prądu i czasu trwania elektrolizy q
Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA I Ćw. 5: POWŁOKI OCHRONNE NIKLOWE I MIEDZIOWE
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją GALWANOTECHNIKA I Ćw. 5: POWŁOKI
PODSTAWY KOROZJI ELEKTROCHEMICZNEJ
PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODZIAŁ KOROZJI ZE WZGLĘDU NA MECHANIZM Korozja elektrochemiczna zachodzi w środowiskach wilgotnych, w wodzie i roztworach wodnych, w glebie, w wilgotnej atmosferze oraz
Schemat ogniwa:... Równanie reakcji:...
Zadanie 1. Wykorzystując dane z szeregu elektrochemicznego metali napisz schemat ogniwa, w którym elektroda cynkowa pełni rolę anody. Zapisz równanie reakcji zachodzącej w półogniwie cynkowym. Schemat
Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA Część I Ćw. 7: POWŁOKI NIKLOWE
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją GALWANOTECHNIKA Część I Ćw.
POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA
POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: KOROZJA I OCHRONA PRZED KOROZJĄ ĆWICZENIA LABORATORYJNE Temat ćwiczenia: OGNIWA GALWANICZNE Cel
ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1.
Zasada oznaczania polega na wydzieleniu analitu w procesie elektrolizy w postaci osadu na elektrodzie roboczej (katodzie lub anodzie) i wagowe oznaczenie masy osadu z przyrostu masy elektrody Zalety: -
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych
Karta pracy III/1a Elektrochemia: ogniwa galwaniczne
Karta pracy III/1a Elektrochemia: ogniwa galwaniczne I. Elektroda, półogniwo, ogniowo Elektroda przewodnik elektryczny (blaszka metalowa lub pręcik grafitowy) który ma być zanurzony w roztworze elektrolitu
Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII
Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII O G N I W A Zadanie 867 (2 pkt.) Wskaż procesy, jakie zachodzą podczas pracy ogniwa niklowo-srebrowego. Katoda Anoda Zadanie 868* (4 pkt.) W wodnym roztworze
Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych.
Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 22 listopada 2005 roku Temat lekcji: Elektroliza roztworów wodnych. Cel ogólny lekcji: Wprowadzenie pojęcia
KOROZJA I OCHRONA PRZED KOROZJĄ
KOROZJA I OCHRONA PRZED KOROZJĄ Opracowanie: Krystyna Moskwa, Bogusław Mazurkiewicz 1. Rodzaje korozji. Procesy niszczenia metali i stopów, będące wynikiem ich reakcji z otoczeniem (środowiskiem korozyjnym)
Korozja kontaktowa depolaryzacja tlenowa
Ć w i c z e n i e 21 Korozja kontaktowa depolaryzacja tlenowa Wstęp: Podczas korozji elektrochemicznej metali w roztworach zawierających rozpuszczony tlen, anodowemu roztwarzaniu metalu: M M n+ + n e (1)
CIENKOŚCIENNE KONSTRUKCJE METALOWE
CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 2: Materiały, kształtowniki gięte, blachy profilowane MATERIAŁY Stal konstrukcyjna na elementy cienkościenne powinna spełniać podstawowe wymagania stawiane stalom:
OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA
1 OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA PRZEMIANY CHEMICZNE POWODUJĄCE PRZEPŁYW PRĄDU ELEKTRYCZNEGO. PRZEMIANY CHEMICZNE WYWOŁANE PRZEPŁYWEM PRĄDU. 2 ELEKTROCHEMIA ELEKTROCHEMIA dział
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza Cel ćwiczenia: Wyznaczenie stałej Faradaya oraz równoważnika elektrochemicznego miedzi metodą elektrolizy. Literatura [1] Kąkol Z., Fizyka dla
Korozja kontaktowa depolaryzacja wodorowa.
Ć w i c z e n i e 20 Korozja kontaktowa depolaryzacja wodorowa. Wstęp: Korozja to niszczenie materiałów w wyniku reakcji chemicznej lub elektrochemicznej z otaczającym środowiskiem. Podczas korozji elektrochemicznej
Laboratorium Ochrony przed Korozją. Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM
KOROZJA MATERIAŁÓW KOROZJA KONTAKTOWA. Część II DEPOLARYZACJA TLENOWA. Ćw. 6
KOROZJA MATERIAŁÓW KOROZJA KONTAKTOWA Część II DEPOLARYZACJA TLENOWA Ćw. 6 Akademia Górniczo-Hutnicza Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii Ciała tałego Korozja kontaktowa depolaryzacja
Ć W I C Z E N I E 7 WPŁYW GĘSTOŚCI PRĄDU NA POSTAĆ OSADÓW KATODOWYCH MIEDZI
Ć W I C Z E N I E 7 WPŁYW GĘSTOŚCI PRĄDU NA POSTAĆ OSADÓW KATODOWYCH MIEDZI WPROWADZENIE Osady miedzi otrzymywane na drodze katodowego osadzania z kwaśnych roztworów siarczanowych mogą charakteryzować
Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA II Ćw. 6: ANODOWE OKSYDOWANIE ALUMINIUM
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją GALWANOTECHNIKA II Ćw. 6: ANODOWE
Nauka przez obserwacje - Badanie wpływu różnych czynników na szybkość procesu. korozji
Nauka przez obserwacje - Badanie wpływu różnych czynników na szybkość procesu korozji KOROZJA to procesy stopniowego niszczenia materiałów, zachodzące między ich powierzchnią i otaczającym środowiskiem.
Wrocław dn. 18 listopada 2005 roku
Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 18 listopada 2005 roku Temat lekcji: Zjawisko korozji elektrochemicznej. Cel ogólny lekcji: Wprowadzenie
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.
LABOATOIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.. Wprowadzenie Proces rozpadu drobin związków chemicznych
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
GALWANOTECHNIKA WSTĘP Galwanotechnika jest działem elektrochemii zajmującym się osadzaniem na powierzchni przedmiotów metali z roztworów. Stosowane w praktyce powłoki galwaniczne z punktu widzenia ich
INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA
INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA WSTĘP TEORETYCZNY Powłoki konwersyjne tworzą się na powierzchni metalu
Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach
HYDROMETALURGIA METALI NIEŻELAZNYCH 1 Ć W I C Z E N I E 6 Nadnapięcie wydzielania wodoru na metalach WPROWADZENIE ażdej elektrodzie, na której przebiega reakcja elektrochemiczna typu: x Ox + ze y Red (6.1)
stali ochrona protektorowa
Laboratorium Budownictwa WBiA Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zagadnieniami elektrochemii takimi jak : galwaniczne nanoszenie powłok, szereg napięciowy metali, ogniwa galwaniczne,
Katedra Inżynierii Materiałowej
Katedra Inżynierii Materiałowej Instrukcja do ćwiczenia z Biomateriałów Polaryzacyjne badania korozyjne mgr inż. Magdalena Jażdżewska Gdańsk 2010 Korozyjne charakterystyki stałoprądowe (zależności potencjał
Elektroliza: polaryzacja elektrod, nadnapięcie Jakościowy oraz ilościowy opis elektrolizy. Prawa Faraday a
Elektrochemia elektroliza oraz korozja 5.3.1. Elektroliza: polaryzacja elektrod, nadnapięcie 5.3.2. Jakościowy oraz ilościowy opis elektrolizy. Prawa Faraday a 5.3.3. Zjawisko korozji elektrochemicznej
KOROZJA. Korozja kontaktowa z depolaryzacja tlenową 1
KOROZJA Słowa kluczowe do ćwiczeń laboratoryjnych z korozji: korozja kontaktowa depolaryzacja tlenowa depolaryzacja wodorowa gęstość prądu korozyjnego natęŝenie prądu korozyjnego prawo Faradaya równowaŝnik
Laboratorium Ochrony przed Korozją. KOROZJA KONTAKTOWA Część I Ćw. 5: DEPOLARYZACJA WODOROWA
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją KOROZJA KONTAKTOWA Część I Ćw.
TŻ Wykład 9-10 I 2018
TŻ Wykład 9-10 I 2018 Witold Bekas SGGW Elementy elektrochemii Wiele metod analitycznych stosowanych w analityce żywnościowej wykorzystuje metody elektrochemiczne. Podział metod elektrochemicznych: Prąd
INSTYTUT INśYNIERII MATERIAŁOWEJ POLITECHNIKA ŁÓDZKA
INSTYTUT INśYNIERII MATERIAŁOWEJ POLITECHNIKA ŁÓDZKA INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM KOROZJI ĆWICZENIE NR 5 TECHNOLOGIE NANOSZENIA POWŁOK GALWANICZNYCH Celem ćwiczenia jest zapoznanie
METODY OCHRONY PRZED KOROZJĄ ELEKTROCHEMIZNĄ
METODY OCHRONY PRZED KOROZJĄ ELEKTROCHEMIZNĄ OCHRONA PRZED KOROZJĄ Podstawowym celem ochrony przed korozją jest zmniejszenie szybkości korozji do akceptowalnego poziomu. METODY OCHRONY PRZED KOROZJĄ ochrona
Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM,
Ćw.2 Elektroliza wody za pomocą ogniwa paliwowego typu PEM Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, A także określenie wydajności tego urządzenia, jeśli
ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu.
ELEKTRODY i OGNIWA Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu. Me z+ + z e Me Utl + z e Red RÓWNANIE NERNSTA Walther H. Nernst
ELEKTROLIZA. Oznaczenie równoważnika elektrochemicznego miedzi oraz stałej Faradaya.
ELEKTROLIZA Cel ćwiczenia Oznaczenie równoważnika elektrocheicznego iedzi oraz stałej Faradaya. Zakres wyaganych wiadoości. Elektroliza i jej prawa.. Procesy elektrodowe. 3. Równoważniki cheiczne i elektrocheiczne.
IV A. Reakcje utleniania i redukcji. Metale i niemetale
IV A. Reakcje utleniania i redukcji. Metale i niemetale IV-A Elektrochemia IV-A.1. Porównanie aktywności chemicznej metali IV-A.2. Ogniwo jako źródło prądu elektrycznego a) ogniwo Daniella b) ogniwo z
IV. Reakcje utleniania i redukcji. Metale i niemetale
IV-A Elektrochemia IV. Reakcje utleniania i redukcji. Metale i niemetale IV-A.1. Porównanie aktywności chemicznej metali IV-A.2. Ogniwo jako źródło prądu elektrycznego a) ogniwo Daniella b) ogniwo z produktów
MODUŁ. Elektrochemia
MODUŁ Warsztaty badawczo-naukowe: Elektrochemia 1. Zakładane efekty kształcenia modułu Poznanie podstawowych pojęć z zakresu elektrochemii takich jak: przewodnictwo, półogniwo (elektroda), ogniwo, elektroliza,
Zadanie 2. Przeprowadzono następujące doświadczenie: Wyjaśnij przebieg tego doświadczenia. Zadanie: 3. Zadanie: 4
Zadanie: 1 Do niebieskiego, wodnego roztworu soli miedzi wrzucono żelazny gwóźdź i odstawiono na pewien czas. Opisz zmiany zachodzące w wyglądzie: roztworu żelaznego gwoździa Zadanie 2. Przeprowadzono
Ć W I C Z E N I E 5. Kinetyka cementacji metali
Ć W I C Z E N I E Kinetyka cementacji metali WPROWADZENIE Proces cementacji jest jednym ze sposobów wydzielania metali z roztworów wodnych. Polega on na wytrącaniu jonów metalu bardziej szlachetnego przez
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część V Wydział Chemii UAM Poznań 2011 POJĘCIA PODSTAWOWE Reakcjami utleniania i redukcji (oksydacyjno-redukcyjnymi) nazywamy reakcje,
STĘŻENIE JONÓW WODOROWYCH. DYSOCJACJA JONOWA. REAKTYWNOŚĆ METALI
Ćwiczenie 8 Semestr 2 STĘŻENIE JONÓW WODOROWYCH. DYSOCJACJA JONOWA. REAKTYWNOŚĆ METALI Obowiązujące zagadnienia: Stężenie jonów wodorowych: ph, poh, iloczyn jonowy wody, obliczenia rachunkowe, wskaźniki
Cel ogólny lekcji: Omówienie ogniwa jako źródła prądu oraz zapoznanie z budową ogniwa Daniella.
Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 9 listopada 2005r Temat lekcji: Ogniwa jako źródła prądu. Budowa ogniwa Daniella. Cel ogólny lekcji:
ĆWICZENIE: Wpływ przewodnictwa elektrycznego roztworu na promień działania protektora
ĆWICZENIE: Wpływ przewodnictwa elektrycznego roztworu na promień działania protektora WPROWADZENIE W celu ochrony metalu przed korozją w roztworach elektrolitów często stosuje się tak zwaną ochronę protektorową.
Zabezpieczanie żelaza przed korozją pokryciami. galwanicznymi.
1 Zabezpieczanie żelaza przed korozją pokryciami galwanicznymi. Czas trwania zajęć: 90 minut Pojęcia kluczowe: - galwanizacja, - miedziowanie. Hipoteza sformułowana przez uczniów: 1. Można zabezpieczyć
Akademickie Centrum Czystej Energii. Ogniwo paliwowe
Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody
KOROZJA. Ćwiczenie 1. Pomiar potencjału korozyjnego różnych metali
KOROZJA Ćwiczenie 1. Pomiar potencjału korozyjnego różnych metali - 4 próbki metali lub stopów - 0,1M roztwór NaCl - naczyńko pomiarowe - alkohol etylowy - miernik potencjału (multimetr) - klucz elektrolityczny
Przetwarzanie energii: kondensatory
Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia
Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)
Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach
Przetwarzanie energii: kondensatory
Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia
SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE
SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE Opracowanie: dr inż. Krystyna Moskwa, dr inż. Bogusław Mazurkiewicz CZĘŚĆ TEORETYCZNA. 1. Potencjał elektrochemiczny metali. Każdy metal zanurzony w elektrolicie
POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY. PRACOWNIA MATERIAŁOZNAWSTWA ELEKTROTECHNICZNEGO KWNiAE
POLITECHNIK WRSZWSK WYDZIŁ ELEKTRYCZNY PRCOWNI MTERIŁOZNWSTW ELEKTROTECHNICZNEGO KWNiE ĆWICZENIE 11 WYZNCZNIE ELEKTROCHEMICZNEGO RÓWNOWśNIK MIEDZI ORZ STŁEJ FRDY 1. Elektrolity i przewodnictwo jonowe Ogólnie
Podstawy elektrochemii i korozji Ćwiczenie 5. Korozja. Diagramy Pourbaix. Krzywe polaryzacyjne. Wyznaczanie parametrów procesów korozji.
Podstawy elektrochemii i korozji Ćwiczenie 5 Korozja Diagramy Pourbaix. Krzywe polaryzacyjne. Wyznaczanie parametrów procesów korozji. O zachowaniu metalu w środowisku korozyjnym (jego odporności, korozji
PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?)
Korozja chemiczna PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) 1. Co to jest stężenie molowe? (co reprezentuje jednostka/ metoda obliczania/
Laboratorium Ochrony przed Korozją. Ćw. 10: INHIBITORY
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 10: INHIBITORY Cel ćwiczenia
Nazwy pierwiastków: ...
Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20
Elektroliza - rozkład wody, wydzielanie innych gazów. i pokrycia galwaniczne.
1 Elektroliza - rozkład wody, wydzielanie innych gazów i pokrycia galwaniczne. Czas trwania zajęć: 45 minut Pojęcia kluczowe: - elektroliza, - elektrody, - katoda, - anoda, - potencjał ujemny, - potencjał
Laboratorium Ochrony przed Korozją. Ćw. 4: KOROZJA KONTAKTOWA - DEPOLARYZACJA WODOROWA
Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 4: KOROZJA KONTAKTOWA -
K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au
WSTĘP DO ELEKTROCHEMII (opracowanie dr Katarzyna Makyła-Juzak Elektrochemia jest działem chemii fizycznej, który zajmuje się zarówno reakcjami chemicznymi stanowiącymi źródło prądu elektrycznego (ogniwa
KOROZJA. Opracowanie: dr inż. K. Moskwa, dr inż. B. Mazurkiewicz, dr U. Lelek-Borkowska, mgr M. Bisztyga
KOROZJA Opracowanie: dr inż. K. Moskwa, dr inż. B. Mazurkiewicz, dr U. Lelek-Borkowska, mgr M. Bisztyga 1. Rodzaje korozji. Procesy niszczenia metali i stopów, będące wynikiem ich reakcji z otoczeniem
LABORATORIUM KOROZJI MATERIAŁÓW PROTETYCZNYCH
INSTYTUT INŻYNIERII MATERIAŁOWEJ POLITECHNIKA ŁÓDZKA INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM KOROZJI MATERIAŁÓW PROTETYCZNYCH ĆWICZENIE NR 6 WYZNACZANIE KRZYWYCH POLARYZACJI KATODOWEJ I ANODOWEJ
SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE
SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE Opracowanie: dr inż. Krystyna Moskwa, dr inż. Bogusław Mazurkiewicz CZĘŚĆ TEORETYCZNA. 1. Potencjał elektrochemiczny metali. Każdy metal zanurzony w elektrolicie
ĆWICZENIE 10. Szereg napięciowy metali
ĆWICZENIE 10 Szereg napięciowy metali Szereg napięciowy metali (szereg elektrochemiczny, szereg aktywności metali) obrazuje tendencję metali do oddawania elektronów (ich zdolności redukujących) i tworzenia
PL 203790 B1. Uniwersytet Śląski w Katowicach,Katowice,PL 03.10.2005 BUP 20/05. Andrzej Posmyk,Katowice,PL 30.11.2009 WUP 11/09 RZECZPOSPOLITA POLSKA
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203790 (13) B1 (21) Numer zgłoszenia: 366689 (51) Int.Cl. C25D 5/18 (2006.01) C25D 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Ć W I C Z E N I E 9 GALWANICZNE POWŁOKI NIKLOWE
Ć W I C Z E N I E 9 GALWANICZNE POWŁOKI NIKLOWE WPROWADZENIE Jednym z najczęściej stosowanych sposobów modyfikacji powierzchni wyrobów metalowych jest nakładanie powłok metalowych. W zależności od przeznaczenia
Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ
Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Temat: Badania odporności korozyjnej złącza spawanego Cel ćwiczenia Zapoznanie się z mechanizmem korozji złącza spawanego i
Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy
Reakcje chemiczne Literatura: L. Jones, P. Atkins Chemia ogólna. Cząsteczki, materia, reakcje. Lesław Huppenthal, Alicja Kościelecka, Zbigniew Wojtczak Chemia ogólna i analityczna dla studentów biologii.
wykład 6 elektorochemia
elektorochemia Ogniwa elektrochemiczne Ogniwo elektrochemiczne składa się z dwóch elektrod będących w kontakcie z elektrolitem, który może być roztworem, cieczą lub ciałem stałym. Elektrolit wraz z zanurzona
Podstawowe pojęcia 1
Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,
wodny roztwór chlorku cyny (SnCl 2 ) stężony kwas solny (HCl), dwie elektrody: pręcik cynowy i gwóźdź stalowy, źródło prądu stałego (zasilacz).
21.03.2018 Do doświadczenia użyto: wodny roztwór chlorku cyny (SnCl 2 ) stężony kwas solny (HCl), dwie elektrody: pręcik cynowy i gwóźdź stalowy, źródło prądu stałego (zasilacz). Do naczynia wlano roztwór
KOROZJA, AKTYWACJA i PASYWACJA METALI
ĆWICZENIE NR 5 KOROZJA, AKTYWACJA i PASYWACJA METALI Cel ćwiczenia Obserwacja procesów korozji, zapoznanie się z metodami ochrony. Zakres wymaganych wiadomości 1. Rodzaje korozji 2. Szybkość korozji 3.
( liczba oddanych elektronów)
Reakcje utleniania i redukcji (redoks) (Miareczkowanie manganometryczne) Spis treści 1 Wstęp 1.1 Definicje reakcji redoks 1.2 Przykłady reakcji redoks 1.2.1 Reakcje utleniania 1.2.2 Reakcje redukcji 1.3
w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych
w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych Spoiwa krzemianowe Kompozyty krzemianowe (silikatowe) kity, zaprawy, farby szkło wodne Na 2 SiO 3 + 2H 2 O H 2 SiO 3 +
1. Otrzymywanie proszków metodą elektrolityczną
1. Otrzymywanie proszków metodą elektrolityczną Wśród metod fizykochemicznych metoda elektrolizy zajmuje drugie miejsce po redukcji w ogólnej produkcji proszków. W metodzie elektrolitycznej reduktorem
(1) Przewodnictwo roztworów elektrolitów
(1) Przewodnictwo roztworów elektrolitów 1. Naczyńko konduktometryczne napełnione 0,1 mol. dm -3 roztworem KCl w temp. 298 K ma opór 420 Ω. Przewodnictwo właściwe 0,1 mol. dm -3 roztworu KCl w tej temp.
10. OGNIWA GALWANICZNE
10. OGNIWA GALWANICZNE Zagadnienia teoretyczne Teoria powstawania potencjału, czynniki wpływające na wielkość potencjału elektrod metalowych. Wzór Nernsta. Potencjał normalny elektrody, rodzaje elektrod
Grupa:.. Dzień: Godzina:
Politechnika Lubelska WBiA Laboratorium Budownictwa Pracownia Chemii Przedmiot : CHEMIA I Ćwiczenia laboratoryjne Imię Nazwisko:... Grupa:.. Dzień: Liczba porządkowa studenta: Godzina: Efektywność ochrony
Ć W I C Z E N I E N R E-16
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-16 WYZNACZANIE WYMIARU FRAKTALNEGO W PROCESIE
I 2 + H 2 S 2 HI + S Wielkością charakteryzującą właściwości redoksowe jest potencjał redoksowy E dany wzorem Nernsta. red
7. REAKCJE UTLENIANIA I REDUKCJI Reakcje redoksowe są to takie reakcje chemiczne, podczas których następuje zmiana stopni utlenienia atomów lub jonów w wyniku wymiany elektronów. Wymiana elektronów zachodzi
Pierwiastki bloku d w zadaniach maturalnych Zadanie 1. ( 3 pkt ) Zadanie 2. (4 pkt) Zadanie 3. (2 pkt) Zadanie 4. (2 pkt) Zadanie 5.
Pierwiastki bloku d w zadaniach maturalnych Zadanie 1. (3 pkt) Uzupełnij podane równanie reakcji: dobierz odpowiednie środowisko oraz dobierz współczynniki, stosując metodę bilansu elektronowego. ClO 3
VII Podkarpacki Konkurs Chemiczny 2014/2015
II Podkarpacki Konkurs Chemiczny 2014/2015 ETAP I 12.11.2014 r. Godz. 10.00-12.00 KOPKCh Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 1. Który z podanych zestawów zawiera wyłącznie
Kryteria oceniania z chemii kl VII
Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co
POWTÓRKA Z ELEKTROCHEMII
POWTÓRKA Z ELEKTROCHEMII Podstawowe pojęcia Zanim sprawdzisz swoje umiejętności i wiadomości z elektrochemii, przypomnij sobie podstawowe pojęcia: Stopień utlenienia pierwiastka to liczba elektronów, jaką
POWŁOKI GALWANICZNE. Wprowadzenie
POWŁOKI GALWANICZNE Celem ćwiczenia jest praktyczne zapoznanie się z przebiegiem elektrolitycznego niklowania, określenie wydajności katodowej tego procesu oraz zbadanie wpływu niektórych parametrów na
Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej
Ćwiczenie 2. Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej 1. Przygotowanie do wykonania ćwiczenia. 1.1. Włączyć zasilacz potencjostatu i nastawić go na
10. OGNIWA GALWANICZNE
10. OGNIWA GALWANICZNE Zagadnienia teoretyczne Teoria powstawania potencjału, czynniki wpływające na wielkość potencjału elektrod metalowych. Wzór Nernsta. Potencjał normalny elektrody, rodzaje elektrod
NAPIĘCIE ROZKŁADOWE. Ćwiczenie nr 37. I. Cel ćwiczenia. II. Zagadnienia wprowadzające
Ćwiczenie nr 37 NAPIĘCIE ROZKŁADOWE I. Cel ćwiczenia Celem ćwiczenia jest: przebadanie wpływu przemian chemicznych zachodzących na elektrodach w czasie elektrolizy na przebieg tego procesu dla układu:
Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.
Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tytuł i numer rozdziału w podręczniku Nr lekcji Temat lekcji Szkło i sprzęt laboratoryjny 1. Pracownia chemiczna.
Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II
Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra