Opracowanie technologii wytwarzania wyrobów ze stopów Mg o podwyższonej biozgodności Development of technologies of the production of Mg alloy products with increased biocompatibility prof. Andrzej Milenin dr inż. Piotr Kustra dr Dorota Byrska-Wójcik Wydział Inżynierii Metali i Informatyki Przemysłowej KONTECH 214 Poznań - Wąsowo 2-4.6.214
Content of presentation 1. Introduction 2. Numerical models 3. Materials tests 4. Yield stress model and ductility model, models calibration 5. Service GridExtrusion3D 6. Optimization of extrusion process 7. Drawing process of biocompatible magnesium alloys 8. Conclusions
Mg-Ca alloys as resorbable biomaterials Mg H O MgO 2 H 2 gas volume, cm 3 Skład chemiczny MgCa.8: Mg 99,2%; Ca,8%; Ax3: Mg 96,2%; Ca,8%; 3% Al; Immersion time, h Chr. Krause, D. Bormann, Th. Hassel, Fr.-W. Bach (University of Hanover), H. Windhagen (Medical University of Hanover) A. Krause, Chr. Hackenbroich, A. Meyer-Lindenberg (University of Veterinary Medicine, Hannover), Mechanical Properties of Degradable Magnesium Implants In Dependence of the Implantation Duration in Magnesium Technology in the Global Age, CIM, 26
Technology 1. Casting 2. Extrusion ø12 mm -> ø3 mm 3. Extrusion ø3 mm -> ø1 mm Milenin A.,. Seitz J.-M, Bach Fr.-W., Bormann D., Kustra P.: Production of thin wires of magnesium alloys for surgical applications// Proc. Conf. Wire Expo 21, Milwaukee, Wisconsin, USA, May 21, Wire Ass. Int. Inc. P. 61-7. A. Milenin, P. Kustra, J.-M. Seitz, Fr.-W. Bach, D. Bormann Development and Validation of a Mathematical Model of Warm Drawing Process of Magnesium Alloys in Heated Dies // Proc. Conf. InterWire 211, Atlanta, Georgia, USA, May 211, Wire Ass. Int. Inc 4. Drawing process in heated die ø1 mm->ø.1.2mm 5. Cold drawing process ø.1.2 -> ø.5.1 mm A. Milenin, D.J. Byrska, O. Grydin The multi-scale physical and numerical modeling of fracture phenomena in the MgCa.8 alloy // Computers and Structures 89 (211) 138 149
Model of yield stress was proposed as a modified Henzel-Spittel equation: 4 2 m m t 6 m1t m m 2 3 i m5t m7 i m8t m9 28 P Ae i i e 1 i e i t - for drawing m1t m2 m 3 P Ae i - for extrusion i Ductility Model is defined by the following formula: i d4 1 p d1 exp d2kexp d3t i k, t, where: k triaxility factor, k=σ /σ p Critical deformation function is obtained on the basis of experimental results for the upsetting and the tension tests. p mm ( m) i i d p k i m1 p, i Material models, t, k, t for drawing and extrusion (m) (m) where: deformation time i strain rate, time increment, i the values of the strain rate in the current time, m a index number of time step during numerical integration along the flow line. i ( m) t <.9t s for extrusion
Materials tests and data processing (a) (b) Shape and dimension of samples for upsetting test (a) and tensile test (b).
Inverse analysis, yield stress model t2 m m6 3 m 2 28 m4 mt p Aexpm1t exp 1 expm7 t 2 dt,9 i p c, 9 i p t1 t 18 d c P calc h fd p i,i, t1 3h m npnt calc exp P mn P mn test m n1 2 S h 3 C 2 C 5 8 9 Siła,N 16 14 12 1 8 6 4 2 m t m MgCa.8 Test 1, pomiar Test 3, pomiar Test 5, pomiar Test 7, pomiar Test 8, pomiar Test 1, obliczenia Test 3, obliczenia Test 5, obliczenia Test 7, obliczenia Test 8, obliczenia. 1. 2. 3. 4. 5. 6. Przemieszczenie narzędzia, mm grad t Siła,N 2 18 16 14 12 1 8 6 4 2 MgCa.8 Test 2, pomiar Test 4, pomiar Test 6, pomiar Test 2, obliczenia Test 4, obliczenia Test 6, obliczenia. 1. 2. 3. 4. 5. 6. Przemieszczenie narzędzia, mm MgCa.8: A=447.4; m 1 =.7542; m 2 =.4485; m 3 =.2867; m 4 =-.1899; m 5 =-.9392; m 6 =2; m 7 =.8318; m 8 =-.4359; m 9 =.7962
Ductility model, upsetting tests Test conditions: Temperature 25ºC, Tool velocity 6 mm/min, Tool displacement Δh 6,1 mm k, - strain - k, - Strain intensity Odkształcenie, - -,2 -,4 -,6 -,8-1 -1,2-1,4 2 4 6 8 Przemieszczenie narzędzi, mm 2 1,6 1,2,8,4 Tool displacement, mm 2 4 6 8 Przemieszczenie narzędzi, mm Tool displacement, mm stress - Temperature, C Temperatura, C Naprężenie, MPa 4 35 3 25 2 15 1 5 2 4 6 8 Przemieszczenie narzędzi, mm 16 14 12 1 8 6 4 2 Tool displacement, mm 2 4 6 8 Przemieszczenie narzędzi, mm Tool displacement, mm
Ductility model, tensile tests Test conditions: Temperature 3ºC, Tool velocity 6 mm/min, Tool displacement Δh 22,5 mm Strain intensity Mean stress, MPa Odkształcenie, - k, - strain - k, - 4,5 4 3,5 3 2,5 2 1,5 1,5 5 1 15 2 25 1,8,6,4,2 Przemieszczenie narzędzi, mm Tool displacement, mm 5 1 15 2 25 Tool displacement, mm Przemieszczenie narzędzi, mm stress - Temperature, C Temperature, C Naprężenie, MPa 31 38 36 34 32 3 298 5 1 15 2 25 Przemieszczenie narzędzi, mm Tool displacement, mm 16 14 12 1 8 6 4 2 5 1 15 2 25 Tool displacement, mm Przemieszczenie narzędzi, mm
Critical deformation, - Critical deformation, - Critical deformation function p b4 b k b t b1 exp exp 2 b 1 b 4 empirical coefficients 3 i calc m test m m m m1 i k, t, p ( m) i ( m) calc 2 1 m min MgCa.8 Ax3 d 1,1434,4517 d 2,37585 1,172 d 3,581,119 d 4 -,1215 -,1725 Odkształcenie graniczne, - 1,8,6,4,2 2ºC 1ºC 15ºC 2ºC 25ºC 3ºC,5 1 1,5 2 2,5 3 u, 1/s a) Odkształcenie graniczne, - 1,4 1,2 1,8,6,4,2 2ºC 1ºC 15ºC 2ºC 25ºC 3ºC,5 1 1,5 2 2,5 3 u, 1/s Critical deformation function of MgCa.8: a) k=,33, b) k=-,33. b)
Model of extrusion process
Optimization of matrix geometry in sequential mode optimal variant
Infrastructure - PLGrid computer performance: 23,16 TFlops Disc memory: 3,6 PB RAM: 51,33 TB Number of cores: 23 616 www.plgrid.pl
GridExtrusion3d service - PLGrid
GridExtrusion3d service - PLGrid
Parallelization of optimization process
Optimization of extrusion process Prasa 1 MN (Hannover University) A. Milenin, P. Kustra, J.-M. Seitz, Fr.-W. Bach, D. Bormann: Production of thin wires of magnesium alloys for surgical applications, 21, Conference Proceedings of the Wire Association International, Inc. - Wire and Cable Technical Symposium, 8th Annual Convention, May 21, Pages 61-7, Milwaukee, WI; Code 93453. t s =516 C T=4C, V extrusion=8 mm/s T=4C, V extrusion=2 mm/s
Pipe extrusion process Extruding device Wariant 1 3 C Wariant 2 4 C A. MILENIN, M. GZYL, T. REC, B. PLONKA Computer aided design of wires extrusion from biocompatible Mg-Ca magnesium alloy // Archives of Metallurgy and Materials, 2, 214.
Drawing process of MgCa.8 Patent - P.397292 ø.634 ø.42 ø.162 ø.1 1. >.913 >.833 >.761 >.694 >.634 >.579 >.528 >.482 >.44 >.42 >.367 >.335 >.36 >.279 >.255 >.233 >.212 >.194 >.177 >.162 >.147 >.135 >.123 >.112 >.1 ø,74
Conclusions 1. The mathematical models of yield stress and ductility function for MgCa.8 and Ax3 alloys were proposed. 2. Numerical tool for optimization of extrusion process was developed. This tool works in parallel mode which allows to solve optimization tasks in time of one simulation. Verification of developed software based on MgCa.8 tube extrusion process was done. 3. Developed software is available in PL-Grid infrastructure as a service Grid-Extrusion. 4. Technology of wire drawing processes in heated die was workout. The simulations of drawing processes were helpful for determination of technological parameters of drawing. Verification shows that parameters of yield stress function and ductility model were correctly calculated.