A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /amm

Podobne dokumenty
A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /amm

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

The influence of the chosen welding technology on the microstructure and selected mechanical properties of welded magnesium alloy AZ91

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /v y

Dr inż. Łukasz Rogal zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /v

STRUCTURE OF PHOSPHOR TIN BRONZE CuSn10P MODIFIED WITH MIXTURE OF MICROADDITIVES

Stopy metali nieżelaznych Non-Ferrous Alloys

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

OBRÓBKA CIEPLNA SILUMINU AK132

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

Streszczenia / Abstracts 7/ 2012

Patients price acceptance SELECTED FINDINGS

Wpływ powłoki Al Si na proces wytwarzania i jakość zgrzewanych aluminiowanych rur stalowych

Conception of reuse of the waste from onshore and offshore in the aspect of

Akademia Morska w Szczecinie. Wydział Mechaniczny

Lutowanie twarde stopów na osnowie aluminidków

WYSOKOTEMPERATUROWE WŁASNOŚCI TRIBOLOGICZNE STOPÓW Fe-Al

WPŁYW OBRÓBKI PLASTYCZNEJ NA GORĄCO NA WŁAŚCIWOŚCI MECHANICZNE STOPÓW NA OSNOWIE FAZY MIĘDZYMETALICZNEJ Fe 3 Al

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /amm


THERMODYNAMICS OF OXYGEN IN DILUTE LIQUID SILVER-TELLURIUM ALLOYS

Krytyczne czynniki sukcesu w zarządzaniu projektami

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /v x

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Zarządzanie sieciami telekomunikacyjnymi

-Special. Ceny wraz z dopłatą surowcową Prices without any addition new! Ø 32 Strona/Page 4,5. Black Panther DN 630 +

T R I B O L O G I A 93

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

WYBRANE ZAGADNIENIA WYTRZYMAŁOŚCI POŁĄCZEŃ SPAWANYCH I KLEJOWYCH STALI KONSTRUKCYJNEJ S235JR

LISTA PUBLIKACJI PAKIETU BADAWCZEGO KCM 1

AFTER LONG-TERM OPERATION IN CREEP CONDITIONS FOR THE POWER INDUSTRY

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

WPŁYW PARAMETRÓW ODLEWANIA CIŚNIENIOWEGO NA STRUKTURĘ i WŁAŚCIWOŚCI STOPU MAGNEZU AM50

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II

Własności mechaniczne kompozytów odlewanych na osnowie stopu Al-Si zbrojonych fazami międzymetalicznymi

ALUMINIOWE KOMPOZYTY Z HYBRYDOWYM UMOCNIENIEM FAZ MIĘDZYMETALICZNYCH I CERAMICZNYCH

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

M210 SNKX1205 SNKX1607. Stable face milling under high-load conditions Stabilna obróbka przy wysokich posuwach FACE MILLING CUTTERS

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Helena Boguta, klasa 8W, rok szkolny 2018/2019


Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

THE INFLUENCE OF THE STEEL CHEMICAL COMPOSITION ONTO THE POSSIBILITIES OF USING IT IN THE PROCESS OF COLD SHAPING

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

UMOWY WYPOŻYCZENIA KOMENTARZ

ROZPRAWY NR 128. Stanis³aw Mroziñski

Post low voltage insulators

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

Has the heat wave frequency or intensity changed in Poland since 1950?

Veles started in Our main goal is quality. Thanks to the methods and experience, we are making jobs as fast as it is possible.

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /amm

DOI: / /32/37

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

WPŁYW WARUNKÓW PRZESYCANIA I STARZENIA STOPU C355 NA ZMIANY JEGO TWARDOŚCI

OTRZYMYWANIE KOMPOZYTÓW METALOWO-CERAMICZNYCH METODAMI PLAZMOWYMI

Dr inż. Paulina Indyka

THE IMPACT OF BRAZING PARAMETERS ON THE STRENGTH OF A WC/Co-FILLER METAL-STEEL JOINT

Streszczenia / Abstracts 6/ 2011

Streszczenie rozprawy doktorskiej

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Knovel Math: Jakość produktu

KOLEKCJE PŁYTEK CERAMICZNYCH COLLECTIONS OF CERAMIC TILES

WPŁYW GNIOTU WZGLĘDNEGO NA WSKAŹNIK ZMNIEJSZENIA CHROPOWATOŚCI POWIERZCHNI POWŁOK Z FAZ MIĘDZYMETALICZNYCH

Typ MFPCR FOR THE MOST DEMANDING REQUIREMENTS ON THE PURITY OF INDOOR AIR, WORKSTATIONS, AND DEVICES

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

-Special. -Endmills. Ceny wraz z dopłatą surowcową Prices without any addition new! Ø 32 Strona/Page 4,5. Black Panther DN 630 +

WENYLATORY PROMIENIOWE ROOF-MOUNTED CENTRIFUGAL DACHOWE WPD FAN WPD

WPŁYW POWŁOKI NIKLOWEJ CZĄSTEK Al2O3 NA WŁAŚCIWOŚCI MATERIAŁU KOMPOZYTOWEGO O OSNOWIE ALUMINIOWEJ

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

WYKAZ PRÓB / SUMMARY OF TESTS

WYKORZYSTANIE TECHNOLOGII MODELI CIEPLNIE ZGAZOWYWANYCH DO WYKONANIA ODLEWÓW STOSOWANYCH W GEOTECHNICE. Instytut Odlewnictwa w Krakowie,

Zastosowania kolejowe - Urządzenia stacjonarne - Trakcja elektryczna - Profilowane druty jezdne z miedzi i jej stopów

The Overview of Civilian Applications of Airborne SAR Systems

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Installation of EuroCert software for qualified electronic signature

WPŁYW WARUNKÓW UTWARDZANIA I GRUBOŚCI UTWARDZONEJ WARSTEWKI NA WYTRZYMAŁOŚĆ NA ROZCIĄGANIE ŻYWICY SYNTETYCZNEJ

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK ELEKTROLITYCZNYCH ZE STOPÓW NIKLU PO OBRÓBCE CIEPLNEJ

Streszczenia / Abstracts 2/ 2013

Stargard Szczecinski i okolice (Polish Edition)

Transkrypt:

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 59 2014 Issue 4 DOI: 10.2478/amm-2014-0253 A. WINIOWSKI, M. RÓŻAŃSKI BRAZING OF ALLOY BASED ON Fe 3 Al ALUMINIDE LUTOWANIE TWARDE STOPU NA OSNOWIE ALUMINIDKU Fe 3 Al Alloys based on the Fe 3 Al intermetallic phase belong to a new generation of metallic materials intended for operation at higher temperatures and having properties something between those of metals and ceramic materials. They are characterised by relatively high oxidation resistance, high corrosion resistance, high-temperature creep resistance, high electrical resistivity, high abrasion resistance as well as resistance to erosion and cavitation. Although the material costs of these alloys are relatively low, they belong to materials which are very difficult to join by means of welding methods. For this reason, joining such materials remains an important and current research and technological problem. One of the methods used for joining such materials is brazing. This work shows the results of technological tests concerned with vacuum brazing an alloy based on the Fe 3 Al (Fe86Al14) phase using silver (Ag72Cu28) and copper-nickel (Cu90Ni10, Cu95Ni5) filler metals as well as presents the results of tests on the mechanical and structural properties of obtained joints. Keywords: vacuum brazing, Fe 3 Al based alloy, brazing parameters, mechanical properties of brazed joints, structural properties of brazed joints Stopy na osnowie fazy międzymetalicznej typu Fe 3 Al należą do nowszej generacji materiałów metalicznych, przeznaczonych do pracy w podwyższonych temperaturach, o właściwościach pośrednich pomiędzy metalami a materiałami ceramicznymi. Charakteryzują się one przede wszystkim stosunkowo wysoką odpornością na utlenianie i korozję, żarowytrzymałością, wysoką rezystywnością elektryczną, a także wysoką odpornością na ścieranie, erozję i kawitację Stopy te, o stosunkowo niskich kosztach materiałowych, należą jednak do materiałów bardzo trudno spajalnych metodami spawalniczymi, dlatego zagadnienie ich łączenia wciąż stanowi wciąż ważny i aktualny problem badawczy oraz technologiczny. Jedną z metod łączenia takich materiałów jest lutowanie twarde. W niniejszej pracy przedstawiono wyniki badań technologicznych z zakresu lutowania próżniowego stopu na osnowie fazy Fe 3 Al (Fe86Al14), spoiwami: srebrnym (Ag72Cu28) i miedziano-niklowymi (Cu90Ni10, Cu95Ni5), a także wyniki badań właściwości wytrzymałościowych i strukturalnych uzyskanych połączeń. 1. Introduction Iron and aluminium create a phase equilibrium system with numerous intermetallic phases, yet only the FeAl and Fe 3 Al phases constitute the usable base of engineering materials as they meet the von Mises yield criterion, characteristic of structures being the derivatives of regular body-centred crystal lattice designated as A2. Alloys based on the FeAl and Fe 3 Al intermetallic phases are characterised by advantageous utility properties such as excellent resistance to oxidation, carburising and sulfuration, good resistance to corrosion in seawater and melted salts, high electric resistivity (increasing along with temperature) as well as high resistance to abrasion, erosion and cavitation. Owing to a relatively high Al content these alloys are characterised by low density (lower than in other iron alloys) and a low price. However, their disadvantages include low plasticity and susceptibility to brittle cracking at the room temperature in the atmosphere of air and steam. The characteristic feature of both these intermetallic phases is the abnormality of tensile strength in the function of temperature. It increases in the 300 C 600 C range and next significantly falls. The plasticity and the brittle crack resistance of the alloys based on the FeAl and Fe 3 Al phases can be increased by the appropriate modification of their chemical composition and microstructure as well as by decreasing the degree of the atomic order and using protective coatings. These alloys find applications in the power generation sector (elements of boilers and burners, gas filters, heat exchangers, pipes, screens etc.) as well as in chemical, food, shipbuilding and automotive industries (heat exchangers, heating elements, tools, pipes, containers, tanks, valve seats, rings, elements of exhaust systems) etc. [1 3]. Methods used for making inseparable joints of alloys based on the FeAl and Fe 3 Al phases include TIG welding without a filler metal or TIG and MIG welding with the use of specialist nickel filler metals, electron welding, laser welding, friction welding, diffusion welding and brazing [2 11]. DEPARTMENT OF WELDING TECHNOLOGY IN INSTYTUT SPAWALNICTWA (INSTITUTE OF WELDING) GLIWICE, POLAND

1488 However, these alloys are very difficult to weld due to the following factors: high aluminium content and susceptibility to the intense formation of very durable aluminium oxide (Al 2 O 3 ) on the surface, low ductility both at low and high temperatures, susceptibility to the formation of welding cracks, required heat resistance and high-temperature creep resistance of joints. The available scientific and technical publications contain relatively little and fragmentary information about brazing alloys based on the Fe-Al types of phases, which indicates that the problem is still at the experimental stage. The advantage resulting from using brazing for joining alloys based on the Fe-Al phases is the fact that their low ductility at the room temperature, usually making welding and friction welding difficult, in this case does limit the use of this joining process or prevents obtaining of good quality joints. The presence of the film of the durable oxide Al 2 O 3 is not the major technological problem either, as is the case with, for instance, diffusion welding. The studies presented were concerned with brazing (diffusion brazing) of alloys based on the Fe 3 Al phase using filler metals (interlayers) made of copper, aluminium, nickel (BNi-2 according to AWS) and Au-Cu alloys. The tests were mostly related to the structural analysis of the mechanisms of the formation of brazed joints [8 11]. Recently, tests on brazing of alloys based on the Fe 3 Al intermetallic phase have also been carried out at Instytut Spawalnictwa in Gliwice [18]. These tests are the continuation of research on brazing alloys based on nickel and titanium aluminides [12, 13, 17]. This article presents the results of the aforesaid tests focused on the effect of the material-technological conditions of brazing of alloys based on Fe 3 Al by means of silver and copper-nickel filler metals on the mechanical and structural properties of joints. The tests aimed at developing brazing technological conditions making it possible to obtain the most advantageous operational properties of brazed joints. 2. Base and filler metals used in tests The alloy used in the tests was based on the Fe 3 Al phase (Fe86Al14 % wt.) and had the form of cast cylindrical samples 13 15 mm (made at the Department of Engineering and Cast Alloys and Composites of the Faculty of Foundry Engineering at the AGH University of Science and Technology in Kraków). The filler metals (interlayers between joined parts) used for making brazed joints were silver filler metal grade B-Ag72Cu-780 (Ag 272) according to PN-EN ISO 17672 (72.45% wt. Ag, remainder Cu) in the form of 0.05 mm thick band [19] and copper- nickel filler metal grades B-Cu90Ni-1140/1100 (Ni 10.55% wt., Cu remainder) and B-Cu95Ni-1120/1085 (Ni 5.37% wt., Cu remainder) in the form of 0.1 mm thick band. 3. Selection of brazing parameters and making of test joints The shear strength tests and the structural tests of the brazed joints made of the alloy based on the Fe 3 Al (Fe86Al14) phase involved the use of butt-brazed cylindrical test joints. Previous experimentation acc. methodology worked out at Instytut Spawalnictwa [12 16] has revealed that the cylindrical type of the sample favours the economical use of materials (base and filler metals) and when supported by appropriate fixtures enables obtaining shear stresses in the brazed joint during strength tests. After chemical etching and matching with brazing metal shapes (in the number ensuring obtaining 0.10 mm thick layer) all the samples were brazed in a TORVAC S 16 furnace in the vacuum range 10 3 10 5 mbar. The temperature of the samples during brazing was monitored with a Pt-PtRh13 contact thermocouple being part of the vacuum furnace. The adjustment of temperature and brazing time depended on the type of a brazing metal and its melting point and was determined on the basis of available reference publications [1 3] and after the analysis of appropriate phase equilibrium systems Fe-Al, Fe-Cu, Cu-Al, Ni-Al. The samples were subjected to diffusion brazing. For this reason the brazing temperatures significantly exceeded the melting points of the brazing metals and the times at which the joints were held at such temperatures were relatively long. The samples made of the Fe86Al14 alloy were brazed at the following brazing temperatures and hold times: in the case of copper-nickel filler metals grade B-Cu90Ni-1100/1140 (melting point of 1100 1140 C) and B-Cu95Ni-1085/1120 (melting point of 1085 1120 C) the brazing temperature amounted to 1200 C, the hold time was 30 180 min. in the case of silver filler metal B-Ag72Cu-780 (brazing metal Ag72Cu28 having a eutectic-like composition, melting point of 780 C) the brazing temperature amounted to 1000 1150 C, the hold time was 30 300 min. In all of the joints the brazing gaps were properly filled with the filler metal. The samples brazed with the silver filler metal were characterised by better wettability than the ones brazed with the copper-nickel filler metals. This was manifested by the fact that the side walls of the joined cylindrical elements were, to a considerable degree, whitened with the filler metal in the area adjacent to the braze. 4. Shear strength of brazed joints The mechanical properties of the brazed cylindrical samples were determined acc. methodology worked out at Instytut Spawalnictwa [12 15] with a testing machine manufactured by the Instron company (model 4210) by subjecting them to shearing in special holders designed in such a manner that the samples were subjected to shear forces only, without bending. The shear strength tests involved the use of three samples and were carried out for each variant of temperature time brazing process parameters. Test results after the statical processing are presented in Table 1.

1489 No TABLE 1 Shear strength of brazed joints of Fe86Al14 alloy Brazing filler metal Parameters of brazing Temp., C Time, min Shear strength of brazed joints MPa Stand. Average dev. 1 30 168.6 87.0 2 B-Cu95Ni-1120/1085 1200 60 202.2 4.4 3 180 181.8 13.2 4 1200 30 210.7 3.9 5 B-Cu90Ni-1140/1100 1200 60 233.3 43.4 6 1200 180 199.1 18.6 7 30 99.2 4.9 8 1000 180 94.6 21.1 9 B-Ag72Cu-780 300 131.1 18.3 10 1150 60 95.6 22.2 11 120 130.1 20.1 copper content (even up to 20%) and nickel (Fig. 1, 2,a,b). For relatively longer hold times (approximately 180 min) at the brazing temperatures it was possible to observe the areas of the braze with the entire diffusion of the filler metal into the material being joined (Fig. 1, 2c). These joints also revealed the following imperfections: numerous voids (Fig. 4d), being probably the result of the Kirkendall effect; penetration of the filler metal between the grains of the material being joined (this penetration was already observed for the hold time of 60 min Fig. 4b). In the case of copper-nickel filler metals the highest shear strength values of 233 MPa (B-Cu90Ni-1140/1100) and 202 MPa (B-Cu95Ni-1120/1085) were obtained for the joints made at 1200 C and with the hold time of 60 min. Further elongation and reduction of a hold time decreased the aforesaid property. The joints made using the B-Ag72Cu-780 brazing metal were characterised by the highest shear strength of 131 MPa for the brazing temperature of 1000 C and the hold time amounting to 300 min. Similar strength (130 MPa) was obtained by the joints brazed at 1150 C with the hold time of 120 min. Slightly lower shear strength was observed in the case of the joints brazed with the aforesaid brazing metal at 1100 C with the hold time of 30min (99 MPa) as well as at the temperatures of 1100 and 1150 C and the hold times of 180 min and 60 min (95 MPa) respectively. 5. Structural tests of brazed joints The initial identification of the structures made during the technological tests of the Fe86Al14 alloy brazed joints were carried out by means of metallographic tests (acc. PN-EN 12797:2002) on a light microscope (type MeF4M) manufactured by Leica [20]. In the case of the copper-nickel filler metals (grade B-Cu90Ni-1100/1140 and B-Cu95Ni-1085/1120) the brazed joints of the Fe86Al14 alloy made at a temperature below 1200 C revealed numerous voids or the complete lack of a joint representing metallic continuity. Only the joints brazed at 1200 C were characterised by good quality (without any significant imperfections). As showed additionally EDS analyses, the structures of the brazes obtained were composed of the mixture of solid solutions based on copper with a diversified aluminium content: 14 16% (wt.) darker precipitates and 7 9% (wt.) brighter precipitates, enriched with nickel and iron (Fig. 1, 2 b). In these brazes it was possible to observe the globular particles of the material being joined (the alloy based on the Fe 3 Al phase passed into the braze) with a high Fig. 1. Structure of Fe86Al14 alloy joints brazed with B-Cu90Ni-1100/1140 filler metal in the following brazing conditions: a) 1200 C/60 min, b), c) 1200 C/180 min (etch. 10 ml HNO 3 + 20 ml HCl + 30 ml glicerol, magn. 400-1000x)

1490 in the solid solution based on copper it was 8.48 20.56% (wt.) and increased along with the process temperature and the hold time at that temperature. The joints made with shorter hold times revealed cracks between the solid solution precipitates. Fig. 3. Structures of Fe86Al14 alloy joints brazed with B-Ag72Cu-780 filler metal in the following brazing conditions: a) 1000 C/300 min, b) 1150 C/120 min (etch. 10 ml HNO3 + 20 ml HCl + 30 ml glicerol, magn. 400x) Fig. 2. Structure of Fe86Al14 alloy joints brazed with B-Cu95Ni-1085/1120 filler metal in the following brazing conditions: a) 1200 C/60 min, b), c) 1200 C/180 min (etch. 10 ml HNO3 + 20 ml HCl + 30 ml glicerol, magn. 400-1000x) In the case of the Fe86Al14 alloy joints brazed with the silver filler metal (grade B-Ag72Cu-780) the brazes obtained were characterised by the structure composed of solid solutions based on copper (dark precipitates) and silver (bright precipitates), similar to the eutectic structure of the filler metal (Fig. 3). The phases which were present in these joints were solid solutions which, apart from silver and copper, contained also the components making up the composition of the material being joined, i.e. aluminium and iron. Additionally EDS analyses showed, that the content of aluminium in the solid solution based on silver amounted to 0.46 1.93% (wt.), whereas Fig. 4. The examples of brazing imperfections in Fe86Al14 alloy joints brazed with silver filler metal B-Ag72Cu-780 in temperature 1150 C and time 120 min (a, c) and brazed with Cu-Ni filler metal B-Cu95Ni-1085/1120 in temperature 1200 C and time 60 (b) i 120 (d) min (etch. 10 ml HNO3 + 20 ml HCl + 30 ml glicerol, magn. 400-1000x)

1491 In turn, the joints of the highest strength, made with the parameters of 1000 C/300 min and 1150 C/120 min revealed the capilary penetration of the brazing metal between the enlarge grains of the alloy as well as few voids being probably, as in the case of the joints brazed with copper-nickel filler metals, the result of the Kirkendall effect. 6. Conclusions 1. The technological tests focused on the vacuum brazing of the Fe86Al14 alloy with the silver filler metal grade B-Ag72Cu-780 and copper nickel filler metal grades B-Cu90Ni-1100/1140 and B-Cu95Ni-1085/1120 enabled obtaining good quality joints with the following brazing temperatures and times: 1000 C/300 min and 1150 C/120 min for the silver brazing metal, 1200 C/30 180 min for the copper-nickel filler metals. 2. The highest shear strength (131 MPa) of the joints made of the Fe86Al14 alloy brazed with the B-Ag72Cu-780 silver filler metal was obtained for the following temperature/time parameters: 1000 C/300min and 1150 C/120min. 3. In the case of the joints made with the copper-nickel B-Cu95Ni-1120/1085 and B-Cu90Ni-1140/1100 the highest shear strength, i.e. 202 MPa and 233 MPa respectively, was obtained for the brazing parameters of 1200 C/60 min. 4. The structures of the joints made with the silver filler metal and copper-nickel metals at the brazing temperatures 1150 and 1200 C respectively, with longer hold times, contained few imperfections in the form of voids, characteristic of diffusion brazed joints and attributable to the Kirkendall effect. 5. The extension of welding time leads to the coagulation of dispersive precipitates having the chemical composition corresponding to the Fe 3 Al phase and, as a result, to the reduction of the strength of the joints made using the B-Cu90Ni-1140/1100 filler metal. REFERENCES [1] Z. B o j a r a, W. P r z e t a k i e w i c z, Materiały metalowe z udziałem faz międzymetalicznych. BEL Studio, Warszawa (2006) (in Polish). [2] R.W. M e s s l e r, Joining of Advanced Materials. Butterworth Heineman, Stoneham (1993). [3] S.C. D e e v i, V.K. S i k k a, C.T. L i u, Progress in Materials Science 42, 177-192 (1997). [4] J. A d a m i e c, P. A d a m i e c, Kongres JOIN-TEC 189 (2003). [5] J. A d a m i e c, A. G r a b o w s k i, A. L i s i e c k i, Materiały konferencyjne, 7STL, Szczecin (2002) (in Polish). [6] J. A d a m i e c, P. A d a m i e c, M. W i ę c e k, Acta Metallurgica Slovaca 10, 745-748 (2004). [7] W. W ł o s i ń s k i, T. C h m i e l e w s k i, M. K u c h a r - c z y k, Przegląd Spawalnictwa 1, 222-228, 2004 (in Polish). [8] Z. L i, R.K. S h i u e, S.K. W u, Intermetallics 18, 422-428 (2010). [9] R.K. S h i u e, S.K. W u, Y.L. L e e, Intermetallics 13, 818-826 (2005). [10] R.K. S h i u e, S.K. W u, I-H L e e, Gold Bull 44, 49-56 (2011). [11] Y.L. L e e, R.K. S h i u e, S.K. W u, Intermetallics 11, 187-195 (2003). [12] A. W i n i o w s k i, M. R ó ż a ń s k i, Kovove Materialy 51, 2, 123-128 (2013). [13] Z. M i r s k i, M. R ó ż a ń s k i, Archives of Civil and Mechanical Engineering 13, 4, 415-421 (2013). [14] A. W i n i o w s k i, Archives of Metallurgy and Materials 55, 4, 991-1000 (2010). [15] W. G ą s i o r, A. W i n i o w s k i, Archives of Metallurgy and Materials 57, 4, 1087-1093 (2012). [16] A. W i n i o w s k i, M. R ó ż a ń s k i, Archives of Metallurgy and Materials 58, 4, 1007-1011 (2013). [17] A. W i n i o w s k i, M. R ó ż a ń s k i, Welding International 5, 331-335 (2011). [18] A. W i n i o w s k i, M. R ó ż a ń s k i, The Final Report of Statutory R&D Activity. Cc-53, Instytut Spawalnictwa, Gliwice (2010) (in Polish). [19] PN-EN ISO 17672:2010, Brazing Filler metals. [20] PN-EN 12797:2002, Brazing Destructive tests of brazed joints. Received: 20 January 2014.