PROGRAMOWANIE RÓWNOLEGŁE PIERWSZE PROSTE PRZYKŁADY Michał Bieńkowski Katarzyna Lewenda
Programowanie równoległe Dodawanie wektorów SPIS TREŚCI Fraktale Podsumowanie Ćwiczenia praktyczne
Czym jest? PROGRAMOWANIE RÓWNOLEGŁE Prawo Amdahla Prawo Gustafsona Porównanie Przykładowe zadania
Programowanie równoległe Czym jest? Obliczenia równoległe to takie, w których wiele operacji obliczeniowych wykonuje się jednocześnie w ramach dostępnych jednostek obliczeniowych (procesorów, rdzeni, węzłów obliczeniowych). Bardzo często duże problemy obliczeniowe mogą byd podzielone na mniejsze podproblemy, które mogą wykonywad się jednocześnie. Proces modyfikacji istniejącego kodu tak, aby można go było uruchomid równolegle nazywamy zrównoleglaniem kodu.
Czym jest? PROGRAMOWANIE RÓWNOLEGŁE Prawo Amdahla Prawo Gustafsona Porównanie Przykładowe zadania
Programowanie równoległe Prawo Amdahla Zakłada, że duży problem składa się z takich części, które udaje się zrównoleglid i z takich, dla których nie jest to możliwe. Fragmenty, które nie mogą byd zrównoleglone ograniczają możliwe do osiągnięcia przyspieszenie całego procesu. Często wykorzystywane w przypadku prowadzenia obliczeo równoległych do przewidzenia teoretycznego maksymalnego wzrostu szybkości obliczeo przy użyciu wielu procesorów.
Programowanie równoległe Prawo Amdahla Przyspieszenie algorytmu jest równe: S n = T 1 T n = 1 F + 1 F n Gdzie: T czas wykonania algorytmu, F udział części nierównoległej, n liczba procesorów.
Programowanie równoległe Prawo Amdahla Przykład: 1 h 1 h 2 h 1 h 1 h 1 h 1 h
Programowanie równoległe Prawo Amdahla Dane: F = 50% = 0,5 n = 2 Rozwiązanie: S 2 = 1 1 2 + 1 1 2 2 = 1 1 1 2 + 2 2 = 1 1 2 + 1 4 = 1 3 4 = 4 3 1,3 Odpowiedź: Teoretyczne przyspieszenie algorytmu wynosi 1,3.
Czym jest? PROGRAMOWANIE RÓWNOLEGŁE Prawo Amdahla Prawo Gustafsona Porównanie Przykładowe zadania
Programowanie równoległe Prawo Gustafsona Zakłada, że każdy wystarczająco duży problem może byd efektywnie zrównoleglony. Odnosi się do wad prawa Amdahla, które nie jest skalowalne do tego stopnia, aby brad pod uwagę dostępnośd mocy obliczeniowej przy rozrastaniu się maszyny. Usuwa problem ustalonego rozmiaru problemu lub ustalonego ładowania obliczeo na równoległych procesorach. Zamiast tego proponuje koncepcje ustalonego czasu, która prowadzi do skalowanego przyspieszenia.
Programowanie równoległe Prawo Gustafsona Przyspieszenie algorytmu jest równe: S P = P α P 1 Gdzie: P ilośd procesorów, S przyspieszenie, α częśd programu, której nie da się zrównoleglid.
Programowanie równoległe Prawo Gustafsona Przykład: 1 h 1 h 4 h 2 h 2 h 1 h 1 h
Programowanie równoległe Prawo Gustafsona Dane: P = 2 α 0,3 Rozwiązanie: S 2 = 2 0,3 2 1 = 2 0,3 = 1,7 Odpowiedź: Teoretyczne przyspieszenie algorytmu wynosi 1,7.
Czym jest? PROGRAMOWANIE RÓWNOLEGŁE Prawo Amdahla Prawo Gustafsona Porównanie Przykładowe zadania
Programowanie równoległe Porównanie Prawo Amdahla jedna ciężarówka jest w stanie przewieźd z punktu A do B jedną tonę towaru w ciągu 9 godzin. Pomoc dodatkowych ośmiu ciężarówek nie spowoduje skrócenia tego czasu do jednej godziny. Prawo Gustafsona 9 ciężarówek jest w stanie przewieźd z punktu A do punktu B 9 ton towaru w ciągu 9 godzin.
Czym jest? PROGRAMOWANIE RÓWNOLEGŁE Prawo Amdahla Prawo Gustafsona Porównanie Przykładowe zadania
Programowanie równoległe Przykładowe zadania Porównywanie danych, Obliczanie liczby π metodą Monte Carlo, Operacje macierzowe, Algorytm sortowania QuickSort, Rozwiązywanie układów równao liniowych, Obliczanie sieci neuronowych.
Programowanie równoległe Dodawanie wektorów SPIS TREŚCI Fraktale Podsumowanie Ćwiczenia praktyczne
Teoria DODAWANIE WEKTORÓW C/C++ C Porównanie Podsumowanie
Dodawanie wektorów Teoria Dodawanie wektorów polega na zwykłym dodawaniu elementów znajdujących się na odpowiadających sobie pozycjach. Wyniki zapisywane są w trzeciej tablicy. 5 3 6 3 1 9 2 6 1 0 + 2 5 7 1 4 0 4 3 6 8 = 7 8 13 4 5 9 6 9 7 8
Teoria DODAWANIE WEKTORÓW C/C++ C Porównanie Podsumowanie
Dodawanie wektorów C/C++ int main() int *a, *b, *c; int size = N * sizeof(int); a = (int *)malloc(size); b = (int *)malloc(size); c = (int *)malloc(size); for (int i=0; i<n; i++) a[i] = rand() % 100; b[i] = rand() % 100; void add(int *a, int *b, int *c, int n) int index = 0; while(index < N) c[index] = a[index] + b[index]; index++; add(a, b, c); for (int i=0; i<n; i++) printf("%d + %d = %d\n", a[i], b[i], c[i]); free(a); free(b); free(c); return 0;
Dodawanie wektorów C/C++ Zrównoleglanie obecnej funkcji add() wydaje się bardzo proste. Wystarczy: Zmienid wartośd inkrementacji, Zainicjowad wartośd index odpowiednio dla każdego procesora. Rdzeo 1 void add(int *a, int *b, int *c) int index = 0; Rdzeo 2 void add(int *a, int *b, int *c) int index = 1; while(index < N) c[index] = a[index] + b[index]; index += 2; while(index < N) c[index] = a[index] + b[index]; index += 2;
Dodawanie wektorów C/C++ Ostatecznie możemy wprowadzid dodatkowe argumenty do funkcji add(): void add(int *a, int *b, int *c, int id, int cores) int index = id; while(index < N) c[index] = a[index] + b[index]; index += cores; Niestety o ile zmiana kodu funkcji add() jest prosta to samo uruchomienie tego kodu, aby działał zgodnie z założeniami wymagania napisania sporej ilości dodatkowego kodu.
Teoria DODAWANIE WEKTORÓW C/C++ C Porównanie Podsumowanie
Dodawanie wektorów C Hello world Jest to pierwszy program C więc napiszmy go od podstaw: int main() printf("hello world\n"); return 0; Standardowy kod języka C wykonuje się na procesorze gospodarza (host). Kompilator NVIDIA może byd użyty do kompilowania programów bez kodu urządzenia (device).
Dodawanie wektorów C Hello world z kodem urządzenia Dopiszmy kod urządzenia oraz jego najprostsze wywołanie: int main() kernel<<< 1, 1 >>>(); printf("hello world\n"); global void kernel() // Brak instrukcji return 0; Słowo kluczowe global wskazuje funkcję, która: Uruchamia się na urządzeniu (device), Wywoływana jest z kodu gospodarza (host). W potrójnych nawiasach występują dodatkowe opcje wywołania funkcji. * Argumenty znajdujące się w <<<( )>>> zostaną opisane w dalszej części prezentacji.
Dodawanie wektorów C Hello world z kodem urządzenia dodający dwie liczby int main() int a, b, c; int *d_a, *d_b, *d_c; int size = sizeof(int); global void add(int *a, int *b, int *c) *c = *a + *b; cudamalloc((void **)&d_a, size); cudamalloc((void **)&d_b, size); cudamalloc((void **)&d_c, size); a = 5; b = 3; cudamemcpy(d_a, &a, size, cudamemcpyhosttodevice); cudamemcpy(d_b, &b, size, cudamemcpyhosttodevice); add<<< 1, 1 >>>(d_a, d_b, d_c); cudamemcpy(&c, d_c, size, cudamemcpydevicetohost); printf("%d + %d = %d\n", a, b, c); cudafree(d_a); cudafree(d_b); cudafree(d_c); return 0;
Dodawanie wektorów C Równoległe dodawanie wektorów z wykorzystaniem bloków Chcąc uruchomid kod równoległe zmieniamy argumenty wywołania funkcji: add<<< 1, 1 >>>(d_a, d_b, d_c); add<<< N, 1 >>>(d_a, d_b, d_c); Zmiana pierwszego argumentu z wartości 1 na N spowoduje wywołanie funkcji add() N razy. Korzystając z funkcji add() wywoływanej równolegle możemy dodad do siebie dwa wektory. Każde równoległe wywołanie funkcji add() jest określane jako blok. Zbiór wszystkich bloków określamy jako siatkę. Każda wywołana funkcja add() może odczytad numer swojego bloku używając zmiennej blockidx.x.
Dodawanie wektorów C Równoległe dodawanie wektorów z wykorzystaniem bloków Funkcja add() wykorzystująca numer bloku jako indeks w tablicy: global void add(int *a, int *b, int *c) c[blockidx.x] = a[blockidx.x] + b[blockidx.x]; Reprezentacja graficzna: Blok 0 c[0] = a[0] + b[0]; Blok 1 c[1] = a[1] + b[1]; Blok 2 Blok 3 c[2] = a[2] + b[2]; c[3] = a[3] + b[3];
Dodawanie wektorów C Równoległe dodawanie wektorów z wykorzystaniem bloków #define N (2048*2048) add<<< N, 1 >>>(d_a, d_b, d_c); int main() int *a, *b, *c; int *d_a, *d_b, *d_c; int size = N * sizeof(int); a = (int *)malloc(size); b = (int *)malloc(size); c = (int *)malloc(size); cudamalloc((void **)&d_a, size); cudamalloc((void **)&d_b, size); cudamalloc((void **)&d_c, size); for(int i=0; i<n; i++) a[i] = rand() % 100; b[i] = rand() % 100; cudamemcpy(c, d_c, size, cudamemcpydevicetohost); for(int i=0; i<n; i++) printf("%d + %d = %d\n", a[i], b[i], c[i]); free(a); free(b); free(c); cudafree(d_a); cudafree(d_b); cudafree(d_c); return 0; cudamemcpy(d_a, a, size, cudamemcpyhosttodevice); cudamemcpy(d_b, b, size, cudamemcpyhosttodevice);
Dodawanie wektorów C Równoległe dodawanie wektorów z wykorzystaniem wątków Każde wywołanie funkcji może zostad podzielone na wątki. Porównajmy równoległe wywołania względem bloków oraz wątków. Bloki global void add(int *a, int *b, int *c) c[blockidx.x] = a[blockidx.x] + b[blockidx.x]; add<<< N, 1 >>>(d_a, d_b, d_c); Wątki global void add(int *a, int *b, int *c) c[threadidx.x] = a[threadidx.x] + b[threadidx.x]; add<<< 1, N >>>(d_a, d_b, d_c);
Dodawanie wektorów C Równoległe dodawanie wektorów z wykorzystaniem bloków oraz wątków Jak do tej pory widzieliśmy w jaki sposób dodajemy wektory z użyciem: Bloków, Wątków. Połączmy oba sposoby:
Dodawanie wektorów C Równoległe dodawanie wektorów z wykorzystaniem bloków oraz wątków Chcąc odwoład się do konkretnego elementu wektora nie wystarczy już tylko użyd blockidx.x lub threadidx.x. Przykładowa reprezentacja graficzna wywołania z 4 blokami oraz 8 wątkami dla wektora o długości 32 elementów: 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 r r r blockid.x = 0 blockid.x = 1 blockid.x = 2 blockid.x = 3 Odnalezienie indeksu wektora sprowadza się do obliczenia wartości M = ilość wątków na blok, dla której: int index = threadidx.x + blockidx.x * M;
Dodawanie wektorów C Równoległe dodawanie wektorów z wykorzystaniem bloków oraz wątków W celu ułatwienia zamiast wyznaczad za każdym razem wartośd zmiennej M możemy skorzystad z danych wbudowanych: M = blockdim.x // Wyraża ilość wątków dla pojedynczego bloku Funkcja add() po zmianach wygląda zatem następująco: global void add(int *a, int *b, int *c) int index = threadidx.x + blockidx.x * blockdim.x; c[index] = a[index] + b[index]; Funkcja main() również wymaga drobnych zmian. Należy bowiem odpowiednio wywoład add().
Dodawanie wektorów C Równoległe dodawanie wektorów z wykorzystaniem bloków oraz wątków #define N (2048*2048) #define THREADS_PER_BLOCK 512 int main() int *a, *b, *c; int *d_a, *d_b, *d_c; int size = N * sizeof(int); a = (int *)malloc(size); b = (int *)malloc(size); c = (int *)malloc(size); cudamalloc((void **)&d_a, size); cudamalloc((void **)&d_b, size); cudamalloc((void **)&d_c, size); for(int i=0; i<n; i++) a[i] = rand() % 100; b[i] = rand() % 100; add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>( d_a, d_b, d_c ); cudamemcpy(c, d_c, size, cudamemcpydevicetohost); for(int i=0; i<n; i++) printf("%d + %d = %d\n", a[i], b[i], c[i]); free(a); free(b); free(c); cudafree(d_a); cudafree(d_b); cudafree(d_c); return 0; cudamemcpy(d_a, a, size, cudamemcpyhosttodevice); cudamemcpy(d_b, b, size, cudamemcpyhosttodevice);
Dodawanie wektorów C Równoległe dodawanie wektorów z wykorzystaniem bloków oraz wątków Niestety w takim kodzie mogą wystąpid błędy: Niecałkowite dzielenie N/THREADS_PER_BLOCK. Rozwiązanie: int M = THREADS_PER_BLOCK; add<<< (N + M-1) / M, M >>>(d_a, d_b, d_c); Wyjście poza zakres wektora. Rozwiązanie: global void add(int *a, int *b, int *c, int n) int index = threadidx.x + blockidx.x * blockdim.x; if (index < n) c[index] = a[index] + b[index]; add<<< (N + M-1) / M, M >>>(d_a, d_b, d_c, N);
Dodawanie wektorów C Równoległe dodawanie wektorów z wykorzystaniem bloków oraz wątków Wydaje się, że wątki są niepotrzebne, wprowadzają jedynie dodatkowy kod i zamieszanie. Jednak posiadają dodatkowe atuty, których bloki nie mają, są to: Pamięd współdzielona, Możliwośd komunikacji między sobą, Korzystając z bloków oraz wątków jesteśmy w stanie wykonad więcej obliczeo względem jednego wywołania.
Teoria DODAWANIE WEKTORÓW C/C++ C Porównanie Podsumowanie
Dodawanie wektorów Porównanie #define N (2048*2048) void add(int *a, int *b, int *c) int index = 0; while(index < N) c[index] = a[index] + b[index]; index++; int main() int *a, *b, *c; int size = N * sizeof(int); a = (int *)malloc(size); b = (int *)malloc(size); c = (int *)malloc(size); #define N (2048*2048) #define THREADS_PER_BLOCK 512 global void add(int *a, int *b, int *c, int n) int index = threadidx.x + blockidx.x * blockdim.x; if (index < n) c[index] = a[index] + b[index]; int main() int *a, *b, *c; int *d_a, *d_b, *d_c; int size = N * sizeof(int); a = (int *)malloc(size); b = (int *)malloc(size); c = (int *)malloc(size); cudamalloc((void **)&d_a, size); cudamalloc((void **)&d_b, size); cudamalloc((void **)&d_c, size);
Dodawanie wektorów Porównanie for (int i=0; i<n; i++) a[i] = rand() % 100; b[i] = rand() % 100; for(int i=0; i<n; i++) a[i] = rand() % 100; b[i] = rand() % 100; cudamemcpy(d_a, a, size, cudamemcpyhosttodevice); cudamemcpy(d_b, b, size, cudamemcpyhosttodevice); add(a, b, c); add<<< (N + THREADS_PER_BLOCK-1) / THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(d_a, d_b, d_c, N); cudamemcpy(c, d_c, size, cudamemcpydevicetohost); for (int i=0; i<n; i++) printf("%d + %d = %d\n", a[i], b[i], c[i]); free(a); free(b); free(c); for(int i=0; i<n; i++) printf("%d + %d = %d\n", a[i], b[i], c[i]); free(a); free(b); free(c); cudafree(d_a); cudafree(d_b); cudafree(d_c); return 0; return 0;
Teoria DODAWANIE WEKTORÓW C/C++ C Porównanie Podsumowanie
Dodawanie wektorów Podsumowanie Zrównolaglenie kodu na potrzeby C nie wymaga dużych zmian. Należy starannie dobierad ilośd bloków oraz wątków. Przed ustaleniem ilości bloków oraz wątków należy sprawdzid jak dużo z wymienionych wartości jest w stanie obsłużyd karta graficzna. Przy dodawaniu krótkich wektorów należy unikad obliczeo na układach GPU ze względu na długi czas kopiowania danych z hosta do urządzenia i odwrotnie.
Programowanie równoległe Dodawanie wektorów SPIS TREŚCI Fraktale Podsumowanie Ćwiczenia praktyczne
Teoria Pseudokod FRAKTALE C Porównanie wydajności CPU oraz GPU Podsumowanie
Fraktale Teoria Fraktal figura geometryczna o złożonej strukturze, którą cechuje samopodobieostwo, tzn. podobieostwo fraktala do jego części. Zbiór Julii fraktal będący także podzbiorem płaszczyzny zespolonej. Wzór ogólny: z 0 = p z n+1 = z 2 n + c Gdzie: z n - liczba zespolona p punkt na płaszczyźnie, c stała.
Fraktale Teoria Przykładowy fraktal Julii
Fraktale Teoria Działania na liczbach zespolonych Liczba zespolona składa się z części rzeczywistej z r oraz części urojonej z i. z = z r + iz i Potęgowanie: z 2 = z r 2 z i 2 + i(2 z r z i ) Dodawanie: Moduł: a + b = a r + b r + i a i + b i z = z r 2 + z i 2
Teoria Pseudokod FRAKTALE C Porównanie wydajności CPU oraz GPU Podsumowanie
Fraktale Pseudokod getcolorlevel(complex c, Complex p) begin i := 0; z := p; until ( z < 4) and (i < maxiter) do z = z^2 + c; i := i + 1; end; return i; end; Gdzie: C - liczba zespolona służąca generowaniu zbioru Julii P - liczba zespolona obliczona dla odpowiedniego punktu płaszczyzny
Teoria Pseudokod FRAKTALE C Porównanie wydajności CPU oraz GPU Podsumowanie
Fraktale C Zmienne const int MAX_LEVEL = 255; const int THREADS_PER_BLOCK = 512; int main() unsigned char **colorsarray; unsigned char *fractallevelscpu; unsigned char *fractallevelsgpu; float minx = -1.7; float maxx = 1.7; float miny = -1.3; float maxy = 1.3; float input_re = -0.79; float input_im = 0.1463; int width = 500; int height = 380; float stepx = (maxx - minx) / (float) width; float stepy = (maxy - miny) / (float) height; int BLOCKS = (width + THREADS_PER_BLOCK-1) / THREADS_PER_BLOCK;
Fraktale C Alokacja pamięci oraz wartości domyślne colorsarray = (unsigned char**) malloc((max_level+1) * sizeof(unsigned char*)); for(int i=0; i<=max_level; i++) colorsarray[i] = (unsigned char *) malloc(3 * sizeof(unsigned char)); colorsarray[i][0] = (int) (255.0 * i / MAX_LEVEL); colorsarray[i][1] = (int) (255.0 * log((float) i) / log((float) MAX_LEVEL)); colorsarray[i][2] = (int) (255.0 * i / MAX_LEVEL); fractallevelscpu = (unsigned char*) malloc(width * sizeof(unsigned char)); cudamalloc((unsigned char **) &fractallevelsgpu, width * sizeof(unsigned char)); createbitmapfile((...)); for(int h = 0; h < height; h++) fractalgpu<<< BLOCKS, THREADS_PER_BLOCK >>>(fractallevelsgpu, h, (...)); cudamemcpy(fractallevelscpu, fractallevelsgpu, width * sizeof(unsigned char), cudamemcpydevicetohost); appendbitmapfile((...));
Fraktale C Obliczanie fraktala, zapis do pliku oraz czyszczenie pamięci createbitmapfile((...)); for(int h = 0; h < height; h++) fractalgpu<<< BLOCKS, THREADS_PER_BLOCK >>>(fractallevelsgpu, h, (...)); cudamemcpy(fractallevelscpu, fractallevelsgpu, width * sizeof(unsigned char), cudamemcpydevicetohost); appendbitmapfile((...)); closebitmapfile(); for(int i=0; i<=max_level; i++) free(colorsarray[i]); free(colorsarray); free(fractallevelscpu); cudafree(fractallevelsgpu); return 0;
Fraktale C Funkcja wykonywana na procesorze GPU global void fractalgpu(unsigned char *a, int y, (...)) int x = blockidx.x * blockdim.x + threadidx.x; if(x < width) float p_re = x * stepx + minx; float p_im = y * stepy + miny; float z_re = p_re; float z_im = p_im; int iteration = 0; while ((z_re * z_re + z_im * z_im) < 4 && iteration < maxlevel) float tmp_re = z_re * z_re - z_im * z_im + c_re; float tmp_im = 2 * z_re * z_im + c_im; z_re = tmp_re; z_im = tmp_im; iteration++; a[x] = iteration;
Teoria Pseudokod FRAKTALE C Porównanie wydajności CPU oraz GPU Podsumowanie
Fraktale Porównanie wydajności CPU oraz GPU Wykres czasu obliczania przykładowego fraktala względem długości boku: 120 100 80 60 40 20 0 0 5000 10000 15000 20000 25000 Czas GPU Czas CPU * Do testów czasowych wyłączono zapis na dysk w celu uniknięcia zakłóceo pomiaru.
Teoria Pseudokod FRAKTALE C Porównanie wydajności CPU oraz GPU Podsumowanie
Fraktale Podsumowanie Testy wydajnościowe wykazały, że do pewnego momentu obliczenia na procesorze graficznym były równie wydajne jak na zwykłym CPU. Wraz ze wzrostem rozdzielczości generowanego obrazu widad, że na procesorze graficznym był osiągany krótszy czas. Obliczenia dwuwymiarowych tablic możemy uprościd obliczając je wiersz po wierszu lub spłaszczyd je do tablic jednowymiarowych i operowad jak na zwykłym wektorze.
Programowanie równoległe Dodawanie wektorów SPIS TREŚCI Fraktale Podsumowanie Ćwiczenia praktyczne
Wnioski PODSUMOWANIE Materiały do pobrania Bibliografia
Podsumowanie Wnioski Im dłużej wykonywane są obliczenia na układzie graficznym tym większą otrzymamy różnicę czasu dla wykonywanego zadania (na korzyśd GPU). Czas wykonania zadania zależy od dobrania odpowiednich wartości w wywołaniu funkcji urządzenia. Układ graficzny ma ograniczenia co do ilości wykonywanych bloków oraz wątków.
Wnioski PODSUMOWANIE Materiały do pobrania Bibliografia
Podsumowanie Materiały do pobrania Cała prezentacja wraz z kodami oraz działającymi programami jest do pobrania pod następującym adresem: http://tnij.org/prezentacja Animacje w postaci filmów dostępne są pod następującym adresem: http://tnij.org/animacje
Wnioski PODSUMOWANIE Materiały do pobrania Bibliografia
Podsumowanie Bibliografia by Example, Jason Sanders, Edward Kandrot www.nvidia.com www.wikipedia.org
Programowanie równoległe Dodawanie wektorów SPIS TREŚCI Fraktale Podsumowanie Ćwiczenia praktyczne
Zakooczenie Ćwiczenia praktyczne Pobrad dostępne materiały z wcześniej udostępnionego linku. Uruchomid programy i zapoznad się z kodem. Napisad dowolny program z wykorzystaniem technologii C.
Dziękujemy za uwagę :) PYTANIA?