MAGNETIC PROPERTIES OF TUNGSTEN COMPOSITES

Podobne dokumenty
Mikrostruktura, struktura magnetyczna oraz właściwości magnetyczne amorficznych i częściowo skrystalizowanych stopów Fe, Co i Ni

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.


Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

ROZPRAWY NR 128. Stanis³aw Mroziñski


Few-fermion thermometry

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Dr inż. Paulina Indyka

BADANIE STRUKTURY SPIEKU 90W-7Ni-3Fe WYKONANEGO METODĄ REZYSTANCYJNĄ, ODKSZTAŁCANEGO PLASTYCZNIE


Sargent Opens Sonairte Farmers' Market

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

P/M COMPOSITES OF Al-Si-Fe-Cu ALLOY WITH SiC PARTICLES HOT-EXTRUDED AFTER PRELIMINARY COMPACTION

WŁAŚCIWOŚCI MAGNETYCZNE I ELEKTRYCZNE AMORFICZNEGO STOPU FERROMAGNETYCZNEGO

Investigation of the coexistence of superconductivity and magnetism in substituted EuFe 2 As 2. Lan Maria Tran

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

DOI: / /32/37

WYTWARZANIE I WŁASNOŚCI SPIEKANYCH KOMPOZYTÓW STAL SZYBKOTNĄCA-WĘGLIK WC-MIEDŹ FOSFOROWA

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /v y

STRUCTURE OF PHOSPHOR TIN BRONZE CuSn10P MODIFIED WITH MIXTURE OF MICROADDITIVES

ROZSZERZALNOŚĆ CIEPLNA KOMPOZYTÓW NA OSNOWIE STOPU AlSi13Cu2 WYTWARZANYCH METODĄ SQUEEZE CASTING

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

WPŁYW POWŁOKI NIKLOWEJ CZĄSTEK Al2O3 NA WŁAŚCIWOŚCI MATERIAŁU KOMPOZYTOWEGO O OSNOWIE ALUMINIOWEJ

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

THE INFLUENCE OF THE STEEL CHEMICAL COMPOSITION ONTO THE POSSIBILITIES OF USING IT IN THE PROCESS OF COLD SHAPING


OBRÓBKA CIEPLNA SILUMINU AK132

Zarządzanie sieciami telekomunikacyjnymi

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Conception of reuse of the waste from onshore and offshore in the aspect of

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

WŁAŚCIWOŚCI MAGNETYCZNE KOMPOZYTÓW EPOKSYDOWYCH NAPEŁNIONYCH PROSZKIEM FERRYTU STRONTU

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

WPŁYW ZJAWISK STARZENIOWYCH NA WŁAŚCIWOŚCI MAGNETYCZNE KOMPOZYTÓW PROSZKOWYCH TYPU DIELEKTROMAGNETYK

ZUŻYCIE TRYBOLOGICZNE KOMPOZYTU NA OSNOWIE ZGARU STOPU AK132 UMACNIANEGO CZĄSTKAMI SiC


Helena Boguta, klasa 8W, rok szkolny 2018/2019


Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

Własności mechaniczne kompozytów odlewanych na osnowie stopu Al-Si zbrojonych fazami międzymetalicznymi

Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas

Tychy, plan miasta: Skala 1: (Polish Edition)

miniature, low-voltage lighting system MIKRUS S

ANDRZEJ GONTARZ, ANNA DZIUBIŃSKA

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Knovel Math: Jakość produktu

BARIERA ANTYKONDENSACYJNA

Lecture 18 Review for Exam 1

yft Lublin, June 1999

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /v

Jazz EB207S is a slim, compact and outstanding looking SATA to USB 2.0 HDD enclosure. The case is

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

KSZTAŁTOWANIE STRUKTURY I WŁASNOŚCI INFILTROWANYCH KOMPOZYTÓW M3/2-WC-Cu W WYNIKU ZMIAN ZAWARTOŚCI WC I PARAMETRÓW WYTWARZANIA

WPŁYW PARAMETRÓW OBRÓBKI CIEPLNEJ TAŚM ZE STALI X6CR17 NA ICH WŁAŚCIWOŚCI MECHANICZNE I STRUKTURĘ

OBRÓBKA CIEPLNA STOPOWYCH KOMPOZYTÓW POWIERZCHNIOWYCH

Stargard Szczecinski i okolice (Polish Edition)

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /v y

ELECTRIC AND MAGNETIC FIELDS NEAR NEW POWER TRANSMISSION LINES POLA ELEKTRYCZNE I MAGNETYCZNE WOKÓŁ NOWYCH LINII ELEKTROENERGETYCZNYCH

Revenue Maximization. Sept. 25, 2018

A. PATEJUK 1 Instytut Materiałoznawstwa i Mechaniki Technicznej WAT Warszawa ul. S. Kaliskiego 2, Warszawa

Streszczenie rozprawy doktorskiej

KRZEPNIĘCIE KOMPOZYTÓW HYBRYDOWYCH AlMg10/SiC+C gr

SNP SNP Business Partner Data Checker. Prezentacja produktu

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ

Rev Źródło:

AFTER LONG-TERM OPERATION IN CREEP CONDITIONS FOR THE POWER INDUSTRY

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Akademia Morska w Szczecinie. Wydział Mechaniczny

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

MICROSTRUCTURE AND WEAR RESISTANCE OF STELLITE-6/WC METAL MATRIX COMPOSITE COATINGS

Has the heat wave frequency or intensity changed in Poland since 1950?

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

KRYSTALIZACJA KOMPOZYTÓW ALUMINIOWYCH ZBROJONYCH SiC

OTRZYMYWANIE KOMPOZYTÓW METALOWO-CERAMICZNYCH METODAMI PLAZMOWYMI

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

KOMPOZYTY WOLFRAMOWE

17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL

WPŁYW DODATKU WĘGLIKA WC I PARAMETRÓW WYTWARZANIA NA STRUKTURĘ I WŁASNOŚCI WĘGLIKOSTALI NA OSNOWIE STALI SZYBKOTNĄCEJ


SNP Business Partner Data Checker. Prezentacja produktu

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

Transkrypt:

Kompozyty : 3 () 68-73 Janusz J. Bucki *, Elżbieta Fortuna-Zaleśna, Maciej Kowalczyk, Zbigniew Ludyński Warsaw University of Technology, Materials Science and Engineering Department, ul. Wołoska 4, -57 Warsaw, Poland Orbit Ltd., ul. Heymana 37, 4-483 Warsaw, Poland * Corresponding author. E-mail: jbucki@inmat.pw.edu.pl Otrzymano (Received) 7.5. MAGNETIC PROPERTIES OF TUNGSTEN COMPOSITES The magnetic properties of three grades of tungsten composites (heavy alloys): W9.3Ni7Fe.7Co, W9Ni4FeMo4 and W93Ni5Cu were examined. The dependence between the magnetic field and magnetic induction (hysteresis loop) was measured at room temperature. To determine the Curie temperature, the measurements of magnetic induction versus temperature were carried out (in temperature range 8 7 K). In order to completely describe the materials, microstructural characterization of the composites was performed in terms of the size and volume fraction of tungsten particles and the chemical composition of the matrix. In the case of the W-Ni-Cu composite no hysteresis loop was registered. The dependency between the magnetic field and magnetization was linear. Moreover the measured (mass)magnetizations was at a constant, extremely low level of.6 emu/g in the examined range of temperatures (8 7 K). The results obtained for this grade confirmed that the material in the whole temperature range was in a paramagnetic state. The results obtained for two other grades: W9.3Ni7Fe.7Co and W9Ni4FeMo4 showed that they were slightly magnetic. In the case of these materials, the magnetization measured for the field 7 A/m was at the relatively low level of 7 Gs. Both materials were difficult to saturate. The character of the hysteresis loops prove that at room temperature, the materials are close to ferro/paramagnetic transition. The Curie temperature is approached from the ferromagnetic side, which is confirmed by the plots of magnetization versus temperature. The Curie temperatures for these grades were estimated as 3 and 46 K, respectively. The results confirmed that the composite with a copper addition is a paramagnetic material whereas the two other grades are partially magnetic. Keywords: tungsten composites, tungsten heavy alloys, magnetic properties, microstructure WŁAŚCIWOŚCI MAGNETYCZNE KOMPOZYTÓW WOLFRAMOWYCH W pracy badano właściwości magnetyczne kompozytów wolframowych (stopów ciężkich) o trzech składach: W9.3Ni7Fe.7Co, W9Ni4FeMo4 i W93Ni5Cu. W temperaturze pokojowej badano zależność pomiędzy natężeniem pola magnetycznego a indukcją magnetyczną (pętle histerezy). W celu wyznaczenia temperatury Curie mierzono zmiany indukcji magnetycznej w funkcji temperatury (w zakresie 8 7K). W celu pełnego opisu materiałów scharakteryzowano strukturę badanych kompozytów. Wyznaczono średnią średnicę cząstek wolframowych, udział objętościowy fazy cząstek wolframowych, a także zmierzono skład chemiczny fazy wiążącej. Ilościowa analiza mikrostruktury wykazała, że wielkość cząstek wolframowych w badanych materiałach znacznie się różni. Najmniejsze cząstki występowały w kompozycie z dodatkiem molibdenu [E(d) ~ µm], największą wielkość cząstek zmierzono w kompozycie z dodatkiem miedzi [E(d) ~5 µm]. Udział objętościowy fazy cząstek wolframowych zależy od zawartości wolframu oraz rodzaju użytych dodatków stopowych. Jak oczekiwano, najwyższy udział fazy cząstek wolframowych (,87) uzyskano dla kompozytu o najwyższej zawartości wolframu - W93Ni5Cu. Najniższa zawartość cząstek wolframowych (,78) występowała w kompozycie o zawartości wolframu 9,3%. W przypadku kompozytu z najmniejszą zawartością wolframu (9%) udział objętościowy fazy cząstek wolframowych był stosunkowo wysoki -,86. Pomiary składu chemicznego cząstek wolframowych i osnowy wykazały, że w materiale tym większość molibdenu, dodanego jako dodatek stopowy, rozpuściła się w cząstkach wolframowych, zmniejszając w ten sposób udział fazy wiążącej. W kompozycie W-Ni-Cu nie udało się zarejestrować pętli histerezy. Zależność pomiędzy polem magnetycznym a magnetyzacją była liniowa, co jest typowe dla stanu paramagnetycznego. Również zmierzone wartości indukcji magnetycznej były na stałym, niskim poziomie -,6 emu/g, w całym zakresie temperatur. Uzyskane wyniki pozwalają na stwierdzenie, że w zakresie temperatur 8 7 K badany materiał jest paramagnetyczny. Wyniki uzyskane dla dwóch pozostałych kompozytów: W9.3Ni7Fe.7Co i W9Ni4FeMo4 potwierdziły, że materiały te są nieznacznie magnetyczne. W przypadku obu kompozytów indukcja magnetyczna zmierzona dla natężenia pola magnetycznego 7 A/m była na relatywnie niskim poziomie 7 Gs. Oba materiały również trudno się nasycały. Charakter uzyskanych pętli histerezy dowodzi, że materiały te w temperaturze pokojowej znajdują się blisko przemiany ferro/paramagnetyk. Temperatura Curie dla tych kompozytów wynosiła odpowiednio około 3 i 46 K. Krzywe zależności magnetyzacji od temperatury zarejestrowane dla tych kompozytów miały szeroki charakter, co świadczy, że przemiana ferro/paramagnetyk zachodzi w sposób stopniowy (nieostry). Słowa kluczowe: kompozyty wolframowe, wolframowe stopy ciężkie, właściwości magnetyczne, mikrostruktura

Magnetic properties of tungsten composites 69 INTRODUCTION Tungsten composites, also known as tungsten heavy alloys (WHA) are metal-metal composites produced by liquid phase sintering of mixed tungsten (9 97%), nickel, iron, copper, molybdenum and cobalt powders. After proper sintering, the material consists of spherical tungsten particles embedded into a solid solution Ni-Fe- W(Co), Ni-Fe-W(Mo) or Ni-Cu-W matrix. These composites exhibit a unique combination of high density (7 8.6 g/cm 3 ), high strength (7 9 MPa), good corrosion resistance, dumping capability, good thermal and electric conductivity and relatively high ductility, which allow them to withstand moderate amounts of cold working. Their properties make them attractive for many applications e.g.: balance weights, welding electrodes, extruding dies, anti-vibration holders for tools and armour penetrators. The ductility and strength of tungsten composites strongly depend on their microstructure, which in turn is controlled by thermal treatment and trace impurity content [, ]. Tungsten composites are increasingly used worldwide as radiation shields. They successfully replace lead, formerly used for this application. The advantage of tungsten composites over lead is the combination of radiographic density, machinability, good corrosion resistance, high radiation absorption, high strength, high melting temperature and, what is always emphasized, lack of toxicity. WHA can provide the same protection as lead with a significantly reduced thickness of the wall of the shields and containers. They are stable at high temperatures, which is important in case of fire, and they are characterized by good mechanical properties. These characteristics result in that this group of materials is used in such applications as: collimators, isotopes containers and different kinds of shields: e.g. syringe shields or nuclear shielding. They are utilized in geologging, pipe-line gamma inspection, industrial radiography, homeland security and border control as well as radiation shielding used in cancer treatment. For specific applications, the magnetic properties of WHA are important. Non-magnetic materials have to be used whenever the magnetic fields cannot be perturbed in radiation equipment or when shielding is positioned near electrical sensors. MATERIAL AND EXPERIMENTAL PROCEDURE The weight percentage compositions of the composites used in this examination were: (I) W9.3Ni7Fe.7Co, (II) W9Ni4FeMo4 and (III) W93Ni5Cu. The materials were examined in an assintered condition. The microstructures of the composites were examined by means of scanning electron microscopy (SEM HITACHI S-35N equipped with Thermonoran EDS). The investigations included observations of the materials structure and measurements of the chemical composition of the matrixes. The registered pictures (at magnification 5x) were analysed by the image analysis programme Micrometer [3]. The measured parameters included the mean tungsten grain size E(d) and the fraction of tungsten particles V V. Additionally, Rockwell hardness measurements were conducted. Magnetic measurements of the studied materials were done in two stages. First, the dependency between the magnetic field and magnetization (hysteresis loop) was measured using a loop tracer [4]. A magnetic field in the range of +7 A/m to 7 A/m was produced inside a wired coil, where the sample was inserted. The response of the sample was studied on the basis of a signal received from the pick-up coils, situated close to the investigated materials. The whole unit was controlled by a computer. All data were collected using designated software. Secondly, magnetic induction versus temperature measurements were carried out. Those measurements were done with a constant field of 8 A/m and in the temperature range between 8 and 7 K. This investigation was conducted by means of the Physical Property Measurement System by Quantum Design (San Diego) with a VSM Module. The samples were placed inside a superconducting coil. The temperature was controlled on the basis of equilibrium between the cold vapours of helium and energy given by a heater situated close to the measured material. RESULTS The SEM images of the investigated composites microstructures are presented in Figure. The data obtained from the image analyses, measurements of the chemical composition of the matrixes and hardness measurements are given in Tables -3, respectively. A quantitative description of the microstructures given in Table shows that the grain size in the examined materials differs significantly. The smallest tungsten grains were present in the composite with the molybdenum addition [E(d) ~ µm], whereas the largest grain size, [E(d) ~5 µm] was revealed in the sample with copper as the alloying element. The volume fraction of tungsten particles depends on the tungsten content and alloying elements. As expected, the highest volume of tungsten particles (.87) was revealed in the sample with the highest tungsten content - W93Ni5Cu. The lowest fraction of tungsten (.78) particles was in sample I, with tungsten content 9.3%. A little surprising was the fact that in sample II with a relatively low tungsten content (9%), the fraction of tungsten particles was high -.86. The measurements of the chemical composition of both tungsten particles and the matrix revealed that in sample II most of the molybdenum, added as an alloying element, dissolved in the tungsten particles, thus reducing the matrix volume. The tung- Kompozyty : 3 () All rights reserved

7 J.J. Bucki, E. Fortuna-Zaleśna, M. Kowalczyk, Z. Ludyński sten particles contained molybdenum, whereas its concentration in the matrix was low. The hardness of all the samples was at a similar level, around 4 HRC. TABLE 3. Results of Rockwell hardness measurements TABELA 3. Wyniki pomiarów twardości metodą Rockwella Sample Hardness [HRC] I 4 ± II 5 ± III 4 ± The measured hysteresis loops are presented in Figure, whereas the diagrams of magnetic induction plotted against temperature are shown in Figure 3. a) 8 4-4 - 4-4 -8 b) 8 4-4 - 4-4 -8 Fig.. SEM images of cross sections of: a) W9.3Ni7Fe.7Co, b) W9Ni4FeMo4, c) W93Ni5Cu composites Rys.. Obrazy mikrostruktury kompozytów: a) W9.3Ni7Fe.7Co, b) W9Ni4FeMo4, c) W93Ni5Cu TABLE. Data obtained from image analyses (average tungsten grain size E(d) and volume fraction of tungsten particles V V ) TABELA. Dane uzyskane z analizy obrazu (średnia średnica cząstek wolframowych E(d) i udział objętościowy cząstek wolframowych V V ) Sample E(d) [µm] Vv I 9.9 ±.5.78 II.9 ±..86 III 5.3 ±.9.87 TABLE. Results of measurements of chemical composition of matrixes TABELA. Wyniki pomiarów składu chemicznego osnowy badanych stopów Sample Chemical composition [wt. %] W Fe Ni Co Cu Mo I 48..5 36. 4.4 - - II 33.7 9.5 4. - - 6.7 III 4. - 47. -. - c) 6 4-4 - - 4-4 -6 Fig.. Magnetic induction vs. applied field for: a) W9.3Ni7Fe.7Co, b) W9Ni4FeMo4, c) W93Ni5Cu Rys.. Zależność indukcji magnetycznej od natężenia pola magnetycznego dla stopów: a) W9.3Ni7Fe.7Co, b) W9Ni4FeMo4, c) W93Ni5Cu The linear dependence between applied field H and magnetic induction B proves that at room temperature, the composite with the copper addition is paramagnetic. For composite I and II hysteresis loops were registered. In the range of the applied field, the materials designated as I and II did not saturate/were not saturated (although they were close to the saturation state). The low (small values of B) hysteresis loops prove that at room temperature, the materials are close to ferro/paramagnetic transition. At room temperature, the materials exhibit weak ferromagnetic properties typical for the temperature range close to the Curie temperature. The materials are still in a ferromagnetic state, but Kompozyty : 3 () All rights reserved

Magnetic properties of tungsten composites 7 an increase of temperature induces ferro/paramagnetic transformation. Magnetization measured at room temperature for the field 7 A/m for composites I and II is equal to 7 and 69 Gs, respectively. For comparison, in the same conditions, iron would be saturated with a magnetization of.7 T (7 Gs). The shape of the registered loops, as well as the low values of magnetic induction, indicate that the examined materials are very low magnetic. The composites are also difficult to saturate. a) b),5,5,5 Magnetization [emu/g] T [K] 5 5 3 375 45 55 6 675 75,5,5,5 Magnetization [emu/g] T [K] 5 5 3 375 45 55 6 675 75 Fig. 3. Plots of (mass)magnetization [emu/g] vs. temperature [K] for: a) W9.3Ni7Fe.7Co, b) W9Ni4FeMo4 Fig. 3. Wykresy indukcji magnetycznej [emu/g] w funkcji temperatury [K] dla: a) W9.3Ni7Fe.7Co, b) W9Ni4FeMo4 w przeliczeniu na gram The registered values of (mass)magnetization for composite III, with a copper addition were in the range of.6 to.68 emu/g. Such low magnetization values prove that in the measured range of temperatures, the material is in the paramagnetic state. In the case of the composite with molybdenum, the estimated Curie temperature is 46 K and the material is in the ferromagnetic state at room temperature. In the case of composite I, the estimated Curie temperature is 3 K. This composite at room temperature is already in the transition region. The curves registered for composites I and II are very broad, which indicates that the ferro/paramagnetic transition for these composites is not sharp. At room temperature, for the applied field 8 A/m, the measured (mass)magnetization values were equal to.4,.38 and.6 emu/g, for composites I, II and III, respectively (for this field, materials are not saturated). For comparison, the (mass)magnetizations for Fe, Co and Ni are equal to 8, 6 and 53.4 emu/g, respectively [5]. DISCUSSION Tungsten composites are fabricated from non magnetic materials like tungsten and copper and ferromagnetic materials like iron, cobalt and nickel. In literature there is very little information concerning the magnetic properties of tungsten heavy alloys. Usually, their description is limited to the statement that the magnetic properties of particular grades are nil in the case of W-Ni-Cu composites or slightly magnetic for W-Ni-Fe(Co, Mo) composites. Since it is commonly known that the mechanical properties of W-Ni-Fe grades are superior in comparison to W-Ni-Cu ones, it is important to know if in specific applications these slightly magnetic properties could disturb the proper functioning of equipment. This was the reason to examine the magnetic properties of composites produced in Poland and planned to be utilized as radiation shields. The authors have examined in the past the magnetic properties of W-Ni-Fe-Co alloys [6] in order to check if the measurements of the magnetic properties could be a method for on line testing or estimating the properties of produced heavy alloys which is routinely done in the case of cemented carbides. In that work, saturation, coercivity as well as the Curie temperature of several composites were determined. The results showed that the magnetic properties of the examined composites were low. In the case of some grades, the cold working did not influence the Curie temperature, for the other as-sintered composites, they showed lower magnetic properties. The measured Curie temperatures changes in the range of 55 to 45 o C. Interesting information is presented in Tungsten Products Tungsten heavy alloys design manual [7]. The magnetic properties of composites offered by the company are described by magnetic permeability. The grades with a magnetic permeability equal to µ are described as non magnetic, the grades with this parameter higher than one are classified as magnetic. Kompozyty : 3 () All rights reserved

7 J.J. Bucki, E. Fortuna-Zaleśna, M. Kowalczyk, Z. Ludyński What is interesting, the magnetic properties of grades produced by Tungsten Products depends on the Ni/Fe ratio. The 3Ni/Fe grades have magnetic permeability at the level of µ, whereas the 7Fe/Ni grades could have this value above 6 µ, depending on the tungsten content. This is in agreement with the results presented in [6]. The composites with a higher iron content had both higher coercivity and Curie temperature. CONCLUDING REMARKS In the present work, the magnetic properties of three grades of tungsten composites, namely: (I) W9.3Ni7Fe.7Co, (II) W9Ni4FeMo4 and (III) W93Ni5Cu were examined. The materials were examined in an as-sintered condition. Magnetic measurements were done in two stages. In the first step, the dependency between the magnetic field and magnetization (hysteresis loop) was measured. Secondly, magnetization versus temperature measurements were carried out in order to determine the Curie temperature. In the case of the W-Ni-Cu composite, no hysteresis loop was registered. The dependency between magnetic field and magnetization was linear. Additionally, the measured (mass)magnetizations were at a constant, extremely low level of.6 emu/g in the whole temperature range. The results obtained for this grade confirmed that the material in the examined range of temperatures, 8 7 K, was in a paramagnetic state. The results obtained for two other grades: W9.3Ni7Fe.7Co and W9Ni4FeMo4 confirmed that they were slightly magnetic. In the case of these materials, the magnetization measured for the field of 7 A/m was at the relatively low level of 7 Gs. Both materials were difficult to saturate. The character of the hysteresis loops prove that the materials are close to ferro/paramagnetic transition. The Curie temperature is approached from the ferromagnetic side, which is confirmed by the plots of magnetization versus temperature. The Curie temperatures for these grades were estimated as 3 and 46 K, respectively. Acknowledgements This work has been financially supported by the National Centre for Research and Development under contract NR5-5-/. REFERENCES [] Rabin B.H., Bose A., German R.M., Characteristic of liquid phase sintered tungsten heavy alloys, Int. J. of Powder Met. 989, 5, -7. [] Edmonds D. V., Structure/property relationship in sintered heavy alloys, Refractory Metals and Hard Materials 99,, 5-6. [3] Wejrzanowski T., Computer Assisted Quantitative Description of the Functionally Graded Materials, Master s Thesis, Warsaw University of Technology, Warsaw. [4] Kulik T, Savage H.T., Hernando A.J., A high performance hysteresis loop tracer, J. Appl. Phys. 993, 73, 6855-6857. [5] Cullity B.C., Graham D.C., Introduction to magnetic materials, second edition, John Wiley & Sons 9. [6] Bucki J.J., Ludynski Z., Karwata T., Testing of magnetic properties of tungsten heavy alloys, Proc. of European Conf. on Advanced Powder Metallurgy Materials, October 995, Birmingham, UK, 347-35. [7] Caldwell S.G., Tungsten Heavy Alloy Design Manual, Tungsten Products Company, http://www.hep.princeton.edu /~mcdonald/e66/walz/design%manual%wha %.doc Kompozyty : 3 () All rights reserved