KSZTAŁTOWANIE PROFILU I GRUBOŚCI WARSTWY STOPOWEJ W BIMETALOWYCH WALCACH HUTNICZYCH

Podobne dokumenty
ZMIANA SKŁADU CHEMICZNEGO, TWARDOŚCI I MIKROSTRUKTURY NA PRZEKROJU POPRZECZNYM BIMETALOWYCH, ŻELIWNYCH WALCÓW HUTNICZYCH

ANALIZA ODDZIAŁYWANIA SYSTEMU ZARZĄDZANIA JAKOŚCIĄ NA STABILIZACJĘ WYBRANYCH WŁAŚCIWOŚCI WALCÓW HUTNICZYCH

KRYSTALIZACJA ŻELIWA SZAREGO I STOPOWEGO NA WALCE DWUWARSTWOWE

WPŁYW SZYBKOŚCI KRZEPNIĘCIA NA UDZIAŁ GRAFITU I CEMENTYTU ORAZ TWARDOŚĆ NA PRZEKROJU WALCA ŻELIWNEGO.

ZMĘCZENIE CIEPLNE STALIWA CHROMOWEGO I CHROMOWO-NIKLOWEGO

ŻELIWNE ŁOŻYSKA ŚLIZGOWE ODPORNE NA ZUŻYCIE ŚCIERNE

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY PODEUTEKTYCZNYCH STOPÓW UKŁADU Al-Si

ZASTOSOWANIE OCHŁADZALNIKA W CELU ROZDROBNIENIA STRUKTURY W ODLEWIE BIMETALICZNYM

ROZKŁAD TWARDOŚCI I MIKROTWARDOŚCI OSNOWY ŻELIWA CHROMOWEGO ODPORNEGO NA ŚCIERANIE NA PRZEKROJU MODELOWEGO ODLEWU

SKURCZ TERMICZNY ŻELIWA CHROMOWEGO

TEMPERATURY KRYSTALIZACJI ŻELIWA CHROMOWEGO W FUNKCJI SZYBKOŚCI STYGNIĘCIA ODLEWU

PARAMETRY EUTEKTYCZNOŚCI ŻELIWA CHROMOWEGO Z DODATKAMI STOPOWYMI Ni, Mo, V i B

BADANIA NAPRĘŻEŃ SKURCZOWYCH W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 6.9

KRZEPNIĘCIE KOMPOZYTÓW HYBRYDOWYCH AlMg10/SiC+C gr

WPŁYW SZYBKOŚCI STYGNIĘCIA NA PARAMETRY KRYSTALIZACJI ŻELIWA CHROMOWEGO

TWARDOŚĆ, UDARNOŚĆ I ZUŻYCIE EROZYJNE STALIWA CHROMOWEGO

WPŁYW WŁAŚCIWOŚCI TERMOFIZYCZNYCH TWORZYWA NADSTAWKI NADLEWU NA GEOMETRIĘ JAMY SKURCZOWEJ

WYKRESY FAZOWE ŻELIWA CHROMOWEGO Z DODATKAMI Ni, Mo, V i B W ZAKRESIE KRZEPNIĘCIA

LEJNOŚĆ KOMPOZYTÓW NA OSNOWIE STOPU AlMg10 Z CZĄSTKAMI SiC

EMPIRYCZNE WYZNACZENIE PRAWDOPODOBIEŃSTW POWSTAWANIA WARSTWY KOMPOZYTOWEJ

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY STOPÓW Al-Si

MODYFIKACJA STOPU AK64

OBRÓBKA CIEPLNA SILUMINU AK132

OCENA KRYSTALIZACJI STALIWA METODĄ ATD

WPŁYW TEMPERATURY ODLEWANIA NA INTENSYWNOŚĆ PRZEPŁYWU STOPÓW Al-Si W KANALE PRÓBY SPIRALNEJ BINCZYK F., PIĄTKOWSKI J., SMOLIŃSKI A.

FOTOELEKTRYCZNA REJESTRACJA ENERGII PROMIENIOWANIA KRZEPNĄCEGO STOPU

ZASTOSOWANIE METODY ATD DO JAKOŚCIOWEJ OCENY STALIWA CHROMOWEGO PRZEZNACZONEGO NA WYKŁADZINY MŁYNÓW CEMENTOWYCH

ROZKŁAD WIELKOŚCI WYDZIELEŃ GRAFITU W GRUBYM ODLEWIE ŻELIWNYM

WPŁYW CHROPOWATOŚCI POWIERZCHNI MATERIAŁU NA GRUBOŚĆ POWŁOKI PO ALFINOWANIU

ANALIZA ODLEWANIA ŻELIWA CHROMOWEGO W FORMIE PIASKOWEJ - FIZYCZNE MODELOWANIE STYGNIĘCIA

BADANIA ŻELIWA CHROMOWEGO NA DYLATOMETRZE ODLEWNICZYM DO-01/P.Śl.

IDENTYFIKACJA CHARAKTERYSTYCZNYCH TEMPERATUR KRZEPNIĘCIA ŻELIWA CHROMOWEGO

BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 5.4

TECHNOLOGIA WYTWARZANIA ŁOŻYSK ŚLIZGOWYCH PRZENOŚNIKÓW KUBEŁKOWYCH

KONTROLA STALIWA GXCrNi72-32 METODĄ ATD

OKREŚLENIE TEMPERATURY I ENTALPII PRZEMIAN FAZOWYCH W STOPACH Al-Si

BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 6.9

WPŁYW OBRÓBKI CIEPLNEJ NA WYBRANE WŁASNOŚCI STALIWA CHROMOWEGO ODPORNEGO NA ŚCIERANIE

WPŁYW SZYBKOŚCI WYPEŁNIANIA WNĘKI FORMY NA STRUKTURĘ ŻELIWA CHROMOWEGO

WYZNACZANIE MINIMALNEJ GRUBOŚCI WLEWU DOPROWADZAJĄCEGO

OKREŚLENIE WŁASNOŚCI MECHANICZNYCH ŻELIWA SFEROIDALNEGO METODĄ ATD

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

MODYFIKACJA BRĄZU SPIŻOWEGO CuSn4Zn7Pb6

OPTYMALIZACJA PROCESU ZALEWANIA DUŻEGO WLEWKA Fe-Si-Mg W CELU UJEDNORODNIENIA JEGO SKŁADU CHEMICZNEGO

BADANIE PROCESU KRYSTALIZACJI ODLEWNICZYCH MATERIAŁÓW ODPORNYCH NA ŚCIERANIE

KRZEPNIĘCIE STRUGI SILUMINU AK7 W PIASKOWYCH I METALOWYCH KANAŁACH FORM ODLEWNICZYCH

OKREŚLENIE METODĄ KALORYMETRII SKANINGOWEJ ENTALPII PRZEMIAN FAZOWYCH W ŻELIWIE SZARYM

KOMPUTEROWA SYMULACJA POLA TWARDOŚCI W ODLEWACH HARTOWANYCH

ASSESSMENT OF ANALYTICAL MATHODS OF SOLIDIFICATION PROCESS AND INGOT FEEDHEAD SIZE DETERMINATION

OKREŚLANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK20 NA PODSTAWIE METODY ATND

WPŁYW DOBORU ZASTĘPCZEJ POJEMNOŚCI CIEPLNEJ ŻELIWA NA WYNIKI OBLICZEŃ NUMERYCZNYCH

WPŁYW RODZAJU OSNOWY I GRAFITU NA WŁAŚCIWOŚCI TRYBOLOGICZNE ŻELIWA SZAREGO

OKREŚLENIE WŁAŚCIWOŚCI MECHANICZNYCH SILUMINU AK132 NA PODSTAWIE METODY ATND.

OPTYMALIZACJA PARAMETRÓW OBRÓBKI CIEPLNEJ SILUMINU ALSi17

Odlewnicze procesy technologiczne Kod przedmiotu

OCENA JAKOŚCI ŻELIWA SFEROIDALNEGO METODĄ ATD

WPŁYW WIRUJĄCEGO REWERSYJNEGO POLA MAGNETYCZNEGO NA SEGREGACJĘ W ODLEWACH WYKONANYCH ZE STOPU BAg-3

EKSPERYMENTALNE MODELOWANIE STYGNIĘCIA ODLEWU W FORMIE

Techniki wytwarzania - odlewnictwo

MONITOROWANIE PRODUKCJI I KONTROLA JAKOŚCI STALIWA ZA POMOCĄ PROGRAMU KOMPUTEROWEGO

MODYFIKACJA SILUMINÓW AK7 i AK9. F. ROMANKIEWICZ 1 Uniwersytet Zielonogórski, ul. Podgórna 50, Zielona Góra

WPŁYW MODYFIKACJI NA PRZEBIEG KRYSTALIZACJI, STRUKTURĘ I WŁAŚCIWOŚCI MECHANICZNE BRĄZU CYNOWO-FOSFOROWEGO CuSn10P

MODYFIKACJA SILUMINU AK20. F. ROMANKIEWICZ 1 Politechnika Zielonogórska,

PROJEKT - ODLEWNICTWO

SYMULACJA NUMERYCZNA KRZEPNIĘCIA KIEROWANEGO OCHŁADZALNIKAMI ZEWNĘTRZNYMI I WEWNĘTRZNYMI

SPEKTRALNE CIEPŁO KRYSTALIZACJI ŻELIWA SZAREGO

WPŁYW MODYFIKACJI NA STRUKTURĘ I MORFOLOGIĘ PRZEŁOMÓW SILUMINU AK132

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE

ANALIZA KRYSTALIZACJI STOPU AlMg (AG 51) METODĄ ATND

PARAMETRY STEREOLOGICZNE WĘGLIKÓW W ŻELIWIE CHROMOWYM W STANIE SUROWYM I AUSTENITYZOWANYM

MODYFIKACJA SILUMINU AK20 DODATKAMI ZŁOŻONYMI

TECHNOLOGICZNE ASPEKTY STREFY PRZEWILŻONEJ W IŁOWYCH MASACH FORMIERS KICH

WYZNACZANIE CIEPŁA KRYSTALIZACJI FAZ W ŻELIWIE EN-GJS NA PODSTAWIE METODY ATD

ODDZIAŁYWANIE ZASYPKI IZOLACYJNEJ NA STRUKTURĘ I WŁAŚCIWOŚCI PRÓBEK PRZYLANYCH DO WLEWNIC. B. DUDZIK 1 KRAKODLEW S.A., ul. Ujastek 1, Kraków

IDENTYFIKACJA FAZ W MODYFIKOWANYCH CYRKONEM ŻAROWYTRZYMAŁYCH ODLEWNICZYCH STOPACH KOBALTU METODĄ DEBYEA-SCHERRERA

ANALIZA WPŁYWU PARAMETRÓW TECHNOLOGICZNYCH ODLEWANIA NA TRWAŁOŚĆ PŁYT PODWLEWNICOWYCH

STRUKTURA ŻELIWA EN-GJS W ZALEŻNOŚCI OD MATERIAŁÓW WSADOWYCH

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

OCENA PROCESU ODLEWANIA I OBRÓBKI CIEPLNEJ STOPOWEGO STALIWA KONSTRUKCYJNEGO METODĄ ANALIZY TERMICZNEJ I DERYWACYJNEJ

FILTRACJA STOPU AlSi9Mg (AK9) M. DUDYK 1 Wydział Budowy Maszyn i Informatyki Akademia Techniczno - Humanistyczna ul. Willowa 2, Bielsko-Biała.

WPŁYW OBRÓBKI CIEPLNEJ NA WŁAŚCIWOŚCI MECHANICZNE SILUMINU AlSi17Cu3Mg

WPŁYW WIELKOŚCI WYDZIELEŃ GRAFITU NA WYTRZYMAŁOŚĆ ŻELIWA SFEROIDALNEGO NA ROZCIĄGANIE

Zadanie egzaminacyjne

WPL YW SPOSOBU DOPROW ADZENIA CIEKLEGO MET ALU DO FORMY MET AL OWEJ NA ELIMINACJĘ POROWATOŚCI TESTOWYCH ODLEWÓW

ANALIZA ZAKRESU KRYSTALIZACJI STOPU AlSi7Mg PO OBRÓBCE MIESZANKAMI CHEMICZNYMI WEWNĄTRZ FORMY ODLEWNICZEJ

SZACOWANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK9 NA PODSTAWIE METODY ATND

OCENA PŁYNIĘCIA CIEKŁEGO STOPU AlMg10 W SPIRALNEJ PRÓBIE LEJNOŚCI

WPŁYW MODYFIKACJI NA STRUKTURĘ I MORFOLOGIĘ PRZEŁOMÓW SILUMINU AlSi7

MODYFIKACJA BRĄZU CuSn8 I JEJ WPŁYW NA SEGREGACJĘ CYNY

KONTROLA STALIWA NIESTOPOWEGO METODĄ ATD

Krzepnięcie Metali i Stopów, Nr 26, 1996 P Ai'l - Oddział Katowice PL ISSN POCICA-FILIPOWICZ Anna, NOWAK Andrzej

FILTRACJA STALIWA SYMULACJA PROCESU NA PRZYKŁADZIE ODLEWU O MASIE 700 KG. S. PYSZ 1, J. STACHAŃCZYK 2 Instytut Odlewnictwa w Krakowie

1. Wprowadzenie: dt q = - λ dx. q = lim F

OKREŚLANIE ZALEŻNOŚCI POMIĘDZY CZASEM KRYSTALIZACJI EUTEKTYCZNEJ A ZABIELANIEM ŻELIWA. Z. JURA 1 Katedra Mechaniki Teoretycznej Politechniki Śląskiej

POLE TEMPERA TUR W TECHNOLOGII WYKONANIA ODLEWÓW WARSTWOWYCH

WPŁYW PRĘDKOŚCI KRYSTALIZACJI KIERUNKOWEJ NA ODLEGŁOŚĆ MIĘDZYPŁYTKOWĄ EUTEKTYKI W STOPIE Al-Ag-Cu

UDARNOŚĆ STALIWA L15G W TEMPERATURZE -40 C. RONATOSKI Jacek, ABB Zamech Elbląg, GŁOWNIA Jan, AGH Kraków

WPŁYW PRZECHŁODZENIA STOPU AlMg10 NA KRZEPNIĘCIE PODCZAS PŁYNIĘCIA

GRANICZNA ROZPUSZCZALNOŚĆ WĘGLA W CIEKŁYM ŻELIWIE Ni-Mn-Cu

OKREŚLENIE CIEPŁA WŁAŚCIWEGO MASY FORMIERSKIEJ METODĄ KALORYMETRII SKANINGOWEJ

Transkrypt:

3/9 Archives of Foundry, Year 2003, Volume 3, 9 Archiwum Odlewnictwa, Rok 2003, Rocznik 3, Nr 9 PAN Katowice PL ISSN 642-5308 KSZTAŁTOWANIE PROFILU I GRUBOŚCI WARSTWY STOPOWEJ W BIMETALOWYCH WALCACH HUTNICZYCH F. BINCZYK, J. SITKO 2 Katedra Technologii Stopów Metali i Kompozytów, Politechnika Śląska, ul. Krasińskiego 8, 40-09 Katowice 2 Katedra Zarządzania Jakością Procesów i Produktów, Politechnika Śląska, Zabrze, ul. Roosevelta 26, 4-800 Zabrze STRESZCZENIE W pracy przedstawiono wyniki pomiarów i obliczeń profilu i grubości zewnętrznej warstwy żeliwa stopowego w bimetalowych walcach hutniczych. Proces ten składa się z etapu krystalizacji warstwy żeliwa stopowego na ściankach metalowej wlewnicy oraz etapu jej nadtapiania podczas przelewania formy żeliwem szarym. Efektem obu tych procesów jest warstwa zewnętrzna, której profil i grubość na długości beczki walca zależy od wielu czynników. Najważniejsze to temperatura odlewania obu rodzajów żeliwa, czasy i szybkość poszczególnych etapów procesu przelewania formy żeliwem szarym, warunki odprowadzania ciepła z odlewu do formy oraz sposób przepływu ciekłego żeliwa. Key words: sleeved roll, temperature, solidification, mould, layer.wstęp Walce hutnicze należą do elementów pracujących w wyjątkowo trudnych warunkach. Podczas pracy walec jest poddawany zmiennym naprężeniom ściskającym, rozciągającym oraz naprężeniom skręcającym powstającym w wyniku przenoszenia momentu obrotowego. Dodatkowo powierzchnia robocza beczki walca poddawana jest silnemu działaniu ścierającemu. Powierzchniowa część robocza walca winna zatem cechować się znaczną odpornością na zmęczenie cieplne i zużycie ścierane w warunkach zmiennych obciążeń i podwyższonej temperatury. Tworzywo części dr hab. inż. prof. Pol. Śl. 2 dr inż.

32 środkowej walca oraz czopów winno cechować się dużą udarnością, dobrymi właściwościami ślizgowymi oraz dobrą skrawalnością []. Możliwość taka istnieje w walcach bimetalowych[,2]. Beczka walca wykonana jest z tworzywa o wysokiej twardości i odporności na ścieranie natomiast rdzeń i czopy z tworzywa o dobrej udarności i obrabialności. Walce są odlewane w formach metalowych. Najpierw odlewa się płaszcz walca przez wypełnienie formy wysokostopowym żeliwem do wysokości 00 mm ponad górną krawędź beczki walca. Wówczas przerywa się zalewanie formy i w wyniku dużej intensywności odprowadzania ciepła przez wlewnicę, krzepnie warstwa powierzchniowa z żeliwa stopowego. Następnie wlewa się do formy żeliwo na rdzeń walca. Żeliwo stopowe wypełniające rdzeń walca zostaje wypchnięte i wypływa rynienką do podstawionej wlewnicy. 2. PROBLEM BADAWCZY Przedmiotem badań były żeliwne bimetalowe walce hutnicze typu poler stosowane w klatkach wykańczających walcowni ciągłych blach walcowanych na gorąco oraz klatkach wygładzających walcowni blach metali nieżelaznych[2]. W walcach bimetalowych, pomiędzy warstwą wierzchnią a rdzeniem walca powinna występować warstwa przejściowa tworząca gradientową makrostrukturę, łagodzącą naprężenia, co jest wynikiem stopniowego obniżania twardości. Zbyt szeroka warstwa przejściowa obniża grubość warstwy powierzchniowej, co spowodowane jest to zbyt intensywnym nadtopieniem warstwy żeliwa stopowego przez wypełniające przestrzeń wewnętrzną żeliwo szare. Mała grubość tej warstwy wpływa na gwałtowne obniżenie twardości, co jest przyczyną silnego gradientu naprężeń, powodującego pękanie i odwarstwienia warstwy wierzchniej podczas eksploatacji walców. Warstwa żeliwa stopowego powinna mieć grubość około 70mm i twardość od 56 d0 60 HRC Twardość rdzenia walca powinna wynosić około 260 HB. Co do grubości i twardości warstwy przejściowej nie ustalono określonych wymagań..w praktyce właściwości te są bardzo zróżnicowane co potwierdziły wyniki badań na obiektach rzeczywistych oraz analiza danych zapisywanych w kartach wytopów. Szczególnie istotne są różnice w twardości beczki walca w górnych i dolnych obszarach (pozycja przy odlewaniu) oraz różna grubość warstwy żeliwa stopowego na wysokości tej beczki. Schematycznie przedstawia to rys..

33 Grubość 3080 mm Grubość 040 mm 60 HRC 54 HRC 40 HRC 30 HRC 290 HB 20 HB Warstwa wierzchnia żeliwa stopowego (martenzyt, bainit, ledeburyt) Warstwa przejściowa (bainit, perlit, ledeburyt, grafit) Czopy i rdzeń (perlit, ferryt grafit) góra dół wysokość w pozycji odlewania Rys.. Rzeczywisty rozkład właściwości warstwy wierzchniej i przejściowej bimetalowych walców typu poler Fig.. Real schedule of propriety of layer and temporary bimetal sleeved roll of type poler" 3. BADANIA WŁASNE W celu określenia prawdopodobnego mechanizmu kształtowania się profilu i grubości zewnętrznej warstwy żeliwa stopowego przeprowadzono następujące pomiary i obliczenia: analiza składu chemicznego na przekroju poprzecznym warstwy zewnętrznej w próbkach (pierścieniach) pobranych w górnej, w połowie i dolnej części walców, obliczenie temperatury likwidus T L i solidus T S w obszarach pomiaru składu chemicznego w oparciu o wyprowadzone zależności empiryczne, obliczenie kinetyki krystalizacji warstwy zewnętrznej na podstawie wyprowadzonej zależności z bilansu ciepła w układzie ciecz warstwa forma, obliczenie kinetyki nadtapiania zewnętrznej warstwy żeliwa stopowego podczas przelewania objętości formy żeliwem szarym. Wyniki analizy składu chemicznego w obszarach warstwy zewnętrznej jednego z walców w jego górnej części (pozycja zalewania) przedstawiono na rys. 2.

34 a) b) Rys. 2. Rozkład pierwiastków na przekroju poprzecznym próbki: a)- C i Ni, b)- Si i Cr Fig. 2. Results of measurements chemical composition on sleeved roll: a)-c and Ni, b)-si and Cr Wartości temperatury T L i T S w wybranych obszarach warstwy zewnętrznej obliczono z zależności empirycznych [3]: T L = 576,23-92,49C-20,52Si-7,5Ni (4,), C () T S = 23,7-26,3C-37,06Mn+9,23Cr-3,57Ni+4,36Mo (,8), C (2) Wyniki tych obliczeń przedstawiono na rys. 3. Jak wynika z rys. 2, w warstwie przejściowej obserwuje się segregację C i Si, co wpływa na zauważalne obniżenie w tym obszarze temperatury T L i T S. Stąd też obszary te mogą ulec topieniu w pierwszej kolejności podczas przelewania objętości formy żeliwem szarym. Kinetykę krystalizacji (narastania) warstwy zewnętrznej żeliwa stopowego obliczono w oparciu o dokonany bilans ciepła, przepływającego z ciekłego żeliwa, p oprzez skrystalizowaną warstewkę żeliwa stopowego oraz ciepła akumulowanego przez formę metalową [4, 5, 6].

temperatura, C temperatura, oc 35 240 220 200 80 60 40 20 TL TS 00 0 20 30 40 50 60 Rys. 3. Rozkład temperatury T L i T S na przekroju poprzecznym próbki Fig. 3. Results of measurements temperature T L and T S on sleeved roll Po przyjęciu określonych założeń oraz po dokonaniu przekształceń, uzyskano zależność na czas krzepnięcia, w funkcji grubości warstwy : K Lp 2 2 2 a odległość od powierzchni, mm 3 K Lp 3 3 x (3) a, czas krzepnięcia warstwy zewnętrznej, s, :, grubość warstwy zewnętrznej, m a - współczynnik przewodzenia temperatury,m 2 /s, c K Lp L c T c ' kr Tp = (T odl T L), C kr = (T S -T ot), C p, współczynnik bezwymiarowy współczynnik przewodnictwa ciepła żeliwa stopowego równy 45 W/(m o C) c - ciepło właściwe żeliwa a stanie ciekłym, 730, J/(kgC) C ciepło właściwe żeliwa w stanie stałym, 850, J/(kgC) gęstość żeliwa stopowego, 7000, kg/m 3 L ciepło krzepnięcia żeliwa stopowego, 240,5, kj/kg x wymiar charakterystyczny odlewu równy d/2 0,325 m

36 T S obliczona temperatura solidus żeliwa na granicy warstwa żeliwo, = 30 o C T odl temperatura odlewania żeliwa (pomiar) 300C T L - obliczona temperatura początku krzepnięcia 200C T ot temperatura otoczenia, 80C Wyniki obliczeń grubości warstwy zakrzepłej żeliwa stopowego w funkcji czasu, przedstawiono na rys. 4 Rys. 4. Kinetyka narastania warstwy żeliwa stopowego w funkcji czasu Fig. 4. Kinetics of crystallization of outer layer of alloy cast iron Aby nie doszło do zakrzepnięcia żeliwa szarego w układzie wlewowym podczas przelewania jego temperatura musi być znacznie wyższa od temperatury żeliwa stopowego (T L ). Wg zaleceń technologicznych temperatura odlewania żeliwa szarego powinna wynosić od 320 do 330C. Często jednak żeliwo szare jest odlewane ze znacznie wyższej temperatury, nawet 375C. W takim przypadku dochodzi do intensywnego topienia wcześniej skrystalizowanej warstwy żeliwa stopowego. Potwierdzają wyniki pomiarów tej warstwy oraz dane zawarte w kartach technologicznych wytopu. Zjawisku nadtapiania sprzyja zaobserwowana również segregacja pierwiastków (C i Si) na granicy warstwa żeliwo szare, obniżająca temperatury topnienia w tych obszarach. Na podstawie założenia, że nadtapianie zachodzić będzie w przypadku gdy ciepło przegrzania żeliwa szarego (T odl T L ), będzie większe od sumy ciepła zakumulowanego w wewnętrznej zakrzepłej warstwie żeliwa stopowego oraz ciepła topnienia warstewki o masie m i grubości 0. Po odpowiednich przekształceniach uzyskano równanie na grubość topionej warstwy 0 : 0 < 5,50-4 ( T odl T L ) (4) gdzie: 0 - grubości topionej warstwy żeliwa stopowego,

37 T odl - średnia temperatura we wnętrzu formy po wymieszaniu żeliwa szarego i stopowego (pomiar temperatur na początku i końcu przelewania), T L - temperatura likwidus żeliwa stopowego (obliczana na podstawie analizy składu chemicznego obszarów warstwy przejściowej). W zależności od temperatury odlewania żeliwa szarego, średnie wartościt odl wynoszą: dla T odl 320C, dla T odl 340C, dla T odl 360C, T odl = 265C T odl = 275C T odl = 285C Wyniki przeprowadzonych obliczeń w odniesieniu od czasu 300s. dla którego grubość 6 wynosi 0,08m, przedstawiono na rys. 5. Rys. 5. Zależność grubości warstwy zewnętrznej żeliwa stopowego 5 = 6-0 od średniej temperatury odlewania żeliwa Fig. 5. Dependence of thickness layer of alloy cast iron from temperature of grey cast iron 4. PODSUMOWANIE Proces przelewania żeliwa szarego (do momentu wypłynięcia żeliwa z formy) trwa około 300s. Obliczono, że w tym czasie skrystalizowana warstwa żeliwa stopowego może uzyskać grubość 80mm. Od tego momentu (po wymieszaniu żeliwa) założono, że zachodzić będzie nadtapianie zewnętrznej warstwy żeliwa stopowego przez żeliwo

38 szare. Uzyskane wyniki obliczeń dość dobrze pokrywają się z pomiarami rzeczywistej grubości warstwy stopowej. Okazuje się, że oceniana i mierzona wizualnie grubość warstwy żeliwa stopowego, jest mniejsza o grubość warstwy przejściowej, tj. o około 20 do 30 mm. Przy zachowaniu parametrów technologicznych, tj. temperatury odlewania na poziomie 320C, czasu przelewania i przerw pomiędzy nimi oraz unikania gwałtownego zalewania, uzyskana grubość warstwy stopowej wynosi najczęściej od 60 do 80mm. Znaczne przekroczenia temperatury odlewania często prowadzą do całkowitego stopienia zewnętrznej warstwy żeliwa stopowego. Takie przypadki są potwierdzone w kartach wytopów. W pracy tej nie przedstawiono wpływu na kształtowanie się warstwy stopowej, szczeliny powstałej (w przypadku skurczu odlewniczego) oraz ruchów ciekłego żeliwa wewnątrz formy. Pełne wyniki tych badań zostały zawarte w pracy [3]. LITERATURA [] Raczyński B., Wachełko T.: Walce żeliwne, Wyd. Śląsk, Katowice 976. [2] Zakładowa Norma Huty Buczek S.A. ZN-HB-003; Walce żeliwne hutnicze 999. [3] Sitko J.: Praca doktorska Czynniki technologiczne kształtujące profil i właściwości warstwy zewnętrznej bimetalowych żeliwnych walców hutniczych, Katowice 2002. [4] Wiejnik A. J.: Rasczot otliwki, Izd. Maszynostrojenie, Moskwa 968 r. [5] Longa W., Urbanik E., Kapturkiewicz W.: Stygnięcie i krzepnięcie odlewów. Laboratorium, skrypt AGH, nr 623, Kraków 978 r. [6] Longa W., Urbanik E., Kapturkiewicz W.: Stygnięcie i krzepnięcie odlewów. Laboratorium, skrypt AGH, nr 623, Kraków 978 r. [7] Longa W., Urbanik E., Kapturkiewicz W.: Teoria procesów odlewniczych. Laboratorium, cz., wyd. 2, AGH, skrypt nr 388, Kraków 974 r. MECHANIS M OF SHAPING PROFILE OF ALLOY LAYER ON SLEEVED ROLL SUMMARY In this work the results of measurements and calculation, basis on the mechanism of shaping profile of outer layer with alloy cast iron in sleeved roll. The process consists of two stapes: layer crystallization offer pouring of alloy cast iron into mould and remelting of that layer during filling of mould by liquid lost iron. Profile of outer layer depends an many factors, especially pouring temperature both of cast iron, segregation of elements in the front of crystallization, heat flow from liquid method trough solidification layer to the mould and kind of liquid cost iron. Recenzował Prof. Adam Gierek