WPŁYW ZMIAN KONSTRUKCYJNYCH OBWODU MAGNETYCZNEGO NA PARAMETRY ELEKTROMECHANICZNE PRZEŁĄCZALNEGO SILNIKA RELUKTANCYJNEGO (SRM)



Podobne dokumenty
WPŁYW SPOSOBU OPTYMALIZACJI NA POZIOM PULSACJI MOMENTU PRZEŁĄCZALNEGO SILNIKA RELUKTANCYJNEGO W PEŁNYM ZAKRESIE PRACY

BADANIA SYMULACYJNE SILNIKÓW RELUKTANCYJNYCH PRZEŁĄCZALNYCH PRZEZNACZONYCH DO NAPĘDU WYSOKOOBROTOWEGO

OBLICZENIA POLOWE SILNIKA PRZEŁĄCZALNEGO RELUKTANCYJNEGO (SRM) W CELU JEGO OPTYMALIZACJI

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji

BADANIE SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO (SRM) CZĘŚĆ 1 POMIARY MOMENTU STATYCZNEGO

BADANIA WYSOKOOBROTOWEGO DWUPASMOWEGO SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO

SILNIK RELUKTANCYJNY PRZEŁĄCZALNY PRZEZNACZONY DO NAPĘDU MAŁEGO MOBILNEGO POJAZDU ELEKTRYCZNEGO

WPŁYW EKSCENTRYCZNOŚCI STATYCZNEJ WIRNIKA I NIEJEDNAKOWEGO NAMAGNESOWANIA MAGNESÓW NA POSTAĆ DEFORMACJI STOJANA W SILNIKU BLDC

STANY AWARYJNE MASZYNY RELUKTANCYJNEJ PRZEŁĄCZALNEJ W ZAKRESIE PRACY GENERATOROWEJ

Silniki prądu stałego z komutacją bezstykową (elektroniczną)

Studium rozwiązań konstrukcyjnych wysokoobrotowych silników reluktancyjnych przełączalnych

ZASTOSOWANIE MAGNESÓW TRWAŁYCH W SILNIKU RELUKTANCYJNYM ZE STRUMIENIEM POPRZECZNYM

Z powyższej zależności wynikają prędkości synchroniczne n 0 podane niżej dla kilku wybranych wartości liczby par biegunów:

OGRANICZENIA PRACY SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO PRZY ZALEŻNYM STEROWANIU PRĄDOWYM

ANALIZA WPŁYWU WYBRANYCH PARAMETRÓW NA DYNAMIKĘ SILNIKA RELUKTANCYJNEGO

ANALIZA PORÓWNAWCZA RÓŻNYCH KONSTRUKCJI MASZYN RELUKTANCYJNYCH PRZEŁĄCZALNYCH PRZEZNACZONYCH DO NAPĘDU LEKKIEGO POJAZDU ELEKTRYCZNEGO

ANALIZA WŁAŚCIWOŚCI DWUPASMOWYCH SILNIKÓW RELUKTANCYJNYCH PRZEŁĄCZALNYCH O RÓŻNYCH ROZWIĄZANIACH KONSTRUKCYJNYCH WIRNIKÓW

BADANIA LABORATORYJNE DWUPASMOWEGO SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO PRZEZNACZONEGO DO NAPĘDU WYSOKOOBROTOWEGO

WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH MASZYN RELUKTANCYJNYCH PRZEŁĄCZALNYCH

DOBÓR PARAMETRÓW KONSTRUKCYJNYCH SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO ORAZ ICH WPŁYW NA CHARAKTERYSTYKI STATYCZNE MOMENTU

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

BADANIE WPŁYWU GRUBOŚCI SZCZELINY POWIETRZNEJ NA WŁAŚCIWOŚCI SILNIKÓW RELUKTANCYJNYCH PRZEŁĄCZALNYCH W OPARCIU O OBLICZENIA POLOWE

Optymalizacja obwodu magnetycznego dwumodułowego silnika reluktancyjnego ze strumieniem poprzecznym

TRÓJFAZOWE RELUKTANCYJNE SILNIKI PRZEŁĄCZALNE

Proceedings of XLI International Symposium on Electrical Machines SME 2005, June, Jarnołtówek, Poland

Zeszyty Problemowe Maszyny Elektryczne Nr 75/

BADANIE SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO (SRM) CZĘŚĆ 2 PRACA DYNAMICZNA SILNIKA

POLOWO - OBWODOWY MODEL BEZSZCZOTKOWEJ WZBUDNICY GENERATORA SYNCHRONICZNEGO

Studia i Materiały Nr

DOBÓR PARAMETRÓW KONSTRUKCYJNYCH SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO ORAZ ICH WPŁYW NA CHARAKTERYSTYKI STATYCZNE MOMENTU

SILNIK SYNCHRONICZNY ŚREDNIEJ MOCY Z MAGNESAMI TRWAŁYMI ZASILANY Z FALOWNIKA

SILNIK INDUKCYJNY KLATKOWY

Wykład 2 Silniki indukcyjne asynchroniczne

Badania maszyny reluktancyjnej przełączalnej, przeznaczonej do napędu lekkiego pojazdu elektrycznego

Oddziaływanie wirnika

PL B1. Sposób sterowania przełączalnego silnika reluktancyjnego i układ sterowania przełączalnego silnika reluktancyjnego

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/13

Silniki skokowe - cz. 1: budowa i zasada działania

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

Ćwiczenie: "Silnik indukcyjny"

BADANIA MASZYNY RELUKTANCYJNEJ PRZEŁĄCZALNEJ PRZEZNACZONEJ DO NAPĘDU LEKKIEGO POJAZDU ELEKTRYCZNEGO

Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny.

Wpływ kąta przesunięcia segmentów magnesów trwałych na parametry silnika BLDC małej mocy

ANALIZA KONSTRUKCJI TRÓJPASMOWEJ SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO 6/4 O NIESYMETRYCZNYM OBWODZIE STOJANA WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH

WPŁYW PARAMETRÓW KONSTRUKCYJNYCH NA TĘTNIENIA MOMENTU CZTEROPASMOWEGO SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO

POLOWO OBWODOWY MODEL DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO WERYFIKACJA POMIAROWA

DWUPASMOWY SILNIK RELUKTANCYJNY PRZEŁĄCZALNY PRZEZNACZONY DO NAPĘDU ROBOTA KUCHENNEGO

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 04/13

PL B1. Sposób sterowania przełączalnego silnika reluktancyjnego i układ do sterowania przełączalnego silnika reluktancyjnego

PL B1. POLITECHNIKA BIAŁOSTOCKA, Białystok, PL BUP 14/11. ADAM PIŁAT, Kraków, PL ZDZISŁAW GOSIEWSKI, Opacz-Kolonia, PL

DWUKIERUNKOWY JEDNOFAZOWY SILNIK SYNCHRONICZNY Z MAGNESAMI TRWAŁYMI

ZASTOSOWANIE SKOSU STOJANA W JEDNOFAZOWYM SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 13/13

Autoreferat rozprawy doktorskiej

BEZCZUJNIKOWA DETEKCJA KĄTA POŁOŻENIA NIERUCHOMEGO WIRNIKA SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO

SILNIK BEZSZCZOTKOWY O WIRNIKU KUBKOWYM

Napędy urządzeń mechatronicznych

ANALIZA WŁAŚCIWOŚCI SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO Z NIESYMETRYCZNYM OBWODEM MAGNETYCZNYM

BADANIE SILNIKA SKOKOWEGO

WPŁYW DANYCH NAWOJOWYCH NA WŁAŚCIWOŚCI EKSPLOATACYJNE SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO O BUDOWIE NIESYMETRYCZNEJ

WYKORZYSTANIE OPROGRAMOWANIA MAXWELL DO OPTYMALIZACJI KONSTRUKCJI OBWODU ELEKTROMAGNETYCZNEGO SILNIKÓW TARCZOWYCH

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.

Rys. 1. Krzywe mocy i momentu: a) w obcowzbudnym silniku prądu stałego, b) w odwzbudzanym silniku synchronicznym z magnesem trwałym

ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

SPOSÓB MINIMALIZACJI MOMENTU ZACZEPOWEGO W WIELOBIEGUNOWEJ MASZYNIE Z MAGNESAMI TRWAŁYMI

PORÓWNANIE JEDNOFAZOWEGO SILNIKA INDUKCYJNEGO I JEDNOFAZOWEGO SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI. BADANIA EKSPERYMENTALNE

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

WPŁYW WARUNKÓW BRZEGOWYCH NA FORMĘ ODKSZTAŁCEŃ DRGAŃ WŁASNYCH I WYMUSZONYCH STOJANA SILNIKA BLDC ANALIZA NUMERYCZNA

ROZRUCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI

Przegląd koncepcji maszyn wzbudzanych hybrydowo do zastosowania w napędzie samochodów

Analiza wpływu klasycznych metod sterowania na zakres pracy ze stałą mocą czteropasmowego silnika reluktancyjnego przełączalnego 16/12

Zeszyty Problemowe Maszyny Elektryczne Nr 80/

WPŁYW ROZMIESZCZENIA MAGNESÓW NA WŁAŚCIWOŚCI EKSPOATACYJNE SILNIKA TYPU LSPMSM

ANALIZA WŁASNOŚCI SILNIKA INDUKCYJNEGO SYNCHRONIZOWANEGO (LSPMSM) METODĄ OBLICZEŃ POLOWYCH.

SILNIK INDUKCYJNY KLATKOWY

BADANIA LABORATORYJNE RELUKTANCYJNEJ MASZYNY PRZEŁĄCZALNEJ PRACUJĄCEJ W ZAKRESIE PRACY GENERATOROWEJ

MOMENT W SILNIKU RELUKTANCYJNYM PRZEŁĄCZALNYM Z TOCZĄCYM SIĘ NIECYLINDRYCZNYM WIRNIKIEM.

Badanie napędu z silnikiem bezszczotkowym prądu stałego

Ćwiczenie: "Silnik prądu stałego"

Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD)

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

WERYFIKACJA METOD OBLICZENIOWYCH SILNIKÓW TARCZOWYCH Z MAGNESAMI TRWAŁYMI

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA

WPŁYW KSZTAŁTU SZCZELINY POWIETRZNEJ NA WŁAŚCIWOŚCI SILNIKA SYNCHRONICZNEGO WZBUDZANEGO MAGNESAMI TRWAŁYMI

ROZRUCH SILNIKÓW SYNCHRONICZNYCH DUŻEJ MOCY PRZY CZĘŚCIOWYM ZASILANIU UZWOJENIA STOJANA

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i

Sposób rozruchu i sterowania przełączalnego silnika reluktancyjnego i układ do rozruchu i sterowania przełączalnego silnika reluktancyjnego

ANALIZA STANÓW DYNAMICZNYCH MASZYNY RELUKTANCYJNEJ PRZEŁĄCZALNEJ PRZEZNACZONEJ DLA LEKKIEGO POJAZDU ELEKTRYCZNEGO

Detekcja asymetrii szczeliny powietrznej w generatorze ze wzbudzeniem od magnesów trwałych, bazująca na analizie częstotliwościowej prądu

MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1. Zbigniew Krzemiński, MMB Drives sp. z o.o.

Maszyny elektryczne specjalne Special electrical machines

Właściwości silnika bezszczotkowego prądu stałego z magnesami trwałymi o różnych rozpiętościach uzwojeń stojana

ANALIZA BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO Z MAGNESAMI NdFeB

METODA DIAGNOSTYKI USZKODZEŃ ELEKTRYCZNYCH SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO

ANALIZA WŁAŚCIWOŚCI WYSOKOOBROTOWEGO NAPĘDU Z DWUPASMOWYM SILNIKIEM RELUKTANCYJNYM PRZEŁĄCZALNYM

Silniki prądu stałego

WENTYLATOR DO PIECA NA PALIWA STAŁE

Transkrypt:

POLITECHNIKA OPOLSKA WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI mgr inż. Krzysztof Wróbel Autoreferat rozprawy doktorskiej WPŁYW ZMIAN KONSTRUKCYJNYCH OBWODU MAGNETYCZNEGO NA PARAMETRY ELEKTROMECHANICZNE PRZEŁĄCZALNEGO SILNIKA RELUKTANCYJNEGO (SRM) promotor: Prof. dr hab. inż. Piotr Wach Opole 26 1

1. Teza i cele pracy Przełączalne silniki reluktancyjne (SRM) należą do grupy silników bezszczotkowych. Ich integralną częścią jest komutujący układ elektroniczny. Generuje on sygnały zasilające, które umożliwiają zachowanie stałego znaku średniej wartości momentu elektromagnetycznego. Silniki SRM są to maszyny jawnobiegunowe, najczęściej o parzystej liczbie biegunów. Cechą charakterystyczną przełączalnych silników reluktancyjnych jest liczba par biegunów wirnika, która zazwyczaj jest różna od liczby par biegunów stojana. Budowane są również konstrukcje nietypowe jak tarczowy silnik SRM [2], silnik z toczącym się wirnikiem dyskowym [19], z odseparowanymi magnetycznie zębami wirnika [24] czy z laminowanym wirnikiem [7]. W literaturze wiele miejsca poświęca się problemom sterowania [6, 17, 25, 27, 29, 3] i zapewnienia warunków poprawnej pracy tego typu silników. Tego rodzaju badania wymagają opracowania dokładnych modeli matematycznych, które pozwalają także na stosowanie bezczujnikowych metod sterowania [1, 21, 28]. Opracowuje się również nowe układy oraz sposoby zasilania silników SRM [2, 9, 36]. Jawnobiegunowa konstrukcja silnika jest główną wadą silnika SRM i jest przyczyną pulsacji momentu elektromagnetycznego, które z kolei są źródłem drgań i hałasu [1, 4, 15, 18]. Dlatego wiele prac dotyczy minimalizacji drgań momentu elektromagnetycznego [37] czy redukcji drgań na drodze zarówno sterowania jak i zmian konstrukcji silnika [3, 8, 11, 14, 25] jak i również samym pomiarom drgań [13]. W pracy oprócz analizy wpływu kształtu obwodu magnetycznego na jego parametry całkowe, podjęto próbę poszukiwania takich kształtów obwodu magnetycznego, aby uzyskać określony przebieg wybranego parametru całkowego, na przykładzie momentu elektromagnetycznego. Teza pracy: Ukształtowanie obwodu magnetycznego przełączalnego silnika reluktancyjnego (SRM) ma decydujący wpływ na jego parametry elektromechaniczne. W poszukiwaniu optymalnych kształtów dla zadanego kryterium można w skuteczny sposób zastosować algorytmy ewolucyjne. Aby udowodnić tezę pracy sformułowano następujące cele pracy: analiza pola magnetycznego w silniku SRM w oparciu o jego model polowy, opracowanie sparametryzowanych, dwuwymiarowych modeli silników SRM pozwalających na obliczenia polowe w programie FEMM i wymianę danych z programem MATLAB, wykonanie obliczeń za pomocą wielokryterialnej funkcji do optymalizacji obwodu magnetycznego przy użyciu algorytmów genetycznych, weryfikacja pomiarowa prototypów silników SRM które powstały na podstawie obliczeń optymalizacyjnych. 2

2. Analiza dwupasmowych silników SRM Silnik dwupasmowy jest szczególnym przypadkiem wśród silników SRM. Silnik taki w swoim klasycznym kształcie, przedstawionym na rys.1, posiada taką charakterystykę momentu elektromagnetycznego w funkcji kąta obrotu wirnika (rys.2), że dla kątów º - 2º występuje tak zwana martwa strefa, w której moment elektromagnetyczny przyjmuje wartości równe lub bliskie zeru. Jeżeli wirnik w początkowej fazie rozruchu znajdzie się w takim przedziale kątowym, wirnik silnika nie zacznie się obracać. Ta cecha oraz bardzo duże pulsacje momentu, które są źródłem drgań i hałasu, powodują że silnik dwupasmowy w swoim klasycznym kształcie nie znajduje zastosowania w praktyce. Rys. 1. Przekrój poprzeczny dwupasmowego silnika 4/2. Kąt położenia wirnika =º. T e [Nm] 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 kąt położenia wirnika Rys.2. Moment elektromagnetyczny silnika dwupasmowego z rys. 3.18. w funkcji kąta obrotu wirnika, I = 1 A, s =,932, T e =1,2 Nm. 3

Już w latach 7-tych prowadzono badania dążące do zmniejszenia martwej strefy w zmienności momentu elektromagnetycznego. Pozytywne rozwiązania uzyskiwano przede wszystkim przez odpowiednie stopniowanie szczeliny powietrznej wirnika [3, 11, 14], dodanie magnesu trwałego [16], a w przypadku silników dwupasmowych 4/6 również przez wprowadzenie niesymetrii w obwodzie stojana. W publikacjach [6, 17, 27, 29, 3] uzyskano zmniejszenie pulsacji momentu przez zastosowanie rozbudowanych matematycznie sposobów sterowania silnika. Metody te często zwiększają koszt układów zasilających ze względu na konieczność zastosowania układów mikroprocesorowych. W pracy [14] przedstawiony został prosty sposób sterowania silnikiem dwupasmowym, który umożliwiał jego dwukierunkową pracę. Jednak silnik ten posiadał celowo dobraną konstrukcję. W pracach [4, 15] zamieszczono analizę wpływu kształtu przekroju poprzecznego silnika na poziom wibracji, a w pracy [37] podjęto próbę minimalizacji pulsacji na drodze kształtowania obwodu magnetycznego. Jednak w powyższych artykułach badania przeprowadzone zostały na przykładzie silników SRM o liczbie pasm większej niż dwa. Autor postawił przed sobą cel, aby tak ukształtować obwód magnetyczny silnika, by dla każdego kąta obrotu wirnika w przedziale kątów º - 9º wartość momentu elektromagnetycznego była jak najbardziej zbliżona do wartości średniej momentu elektromagnetycznego, czyli aby zmienność momentu w funkcji kąta obrotu była możliwie jak najmniejsza. Ze względu na postawiony cel, silnik dwupasmowy SRM jest najtrudniejszym, a przez to jak najbardziej właściwym obiektem do tego typu badań. Przedstawiony na rys.2 moment elektromagnetyczny w funkcji kąta obrotu wirnika, został ograniczony do zakresu º-9º kąta obrotu i tylko do tego zakresu kątowego w badaniach się ograniczono, ponieważ co 9º kąta obrotu wirnika następuje przełączenie pasm silnika, a tym samym stan równoważny mechanicznie i elektromagnetycznie. Aby ocenić jakość uzyskiwanych charakterystyk momentu elektromagnetycznego w wyniku kolejnych zmian konstrukcyjnych, wprowadzono kryterium ich oceny w postaci współczynnika odchylenia standardowego s określonego wzorem: s= 1 n n 1 i T e T ei 2, (1) gdzie: T e T ei - jest wartością średnią momentu elektromagnetycznego, - jest wartością momentu dla i-tej wartości kąta obrotu wirnika. Dla klasycznego, cylindrycznego kształtu wirnika pokazanego na rys.1 wartość odchylenia standardowego wynosi s =,932, a wartość średnia momentu T e =1,2 Nm. Pierwsze modele silników o skorygowanym kształcie wirnika powstały na drodze poszukiwań intuicyjnych. Z kilkunastu powstałych w ten sposób kształtów zaprezentowano na rys.3 model w którym uzyskano najmniejszą wartość współczynnika odchylenia standardowego s =,2. Model ten powstał przez dodanie do zęba wirnika dodatkowego 4

segmentu. Uzyskuje się w ten sposób silnik z zestopniowaną grubością szczeliny powietrznej. Krawędź wirnika w tym przypadku składa się z trzech odrębnych łuków. Rys. 3. Przekrój poprzeczny skorygowanego kształtu wirnika. Położenie wirnika =º. T e [Nm] 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 kąt położenia wirnika Rys. 4. Moment elektromagnetyczny silnika o przekroju jak na rys.3, I = 1 A, s =,2, T e =,975 Nm. Ponieważ dążenie do uzyskania najlepszego kształtu wirnika metodą intuicyjną jest ograniczone tylko wyobraźnią i doświadczeniem prowadzącego badania, dobór odpowiedniej geometrii wirnika może być prowadzony bez końca. Dlatego dalsze poszukiwania optymalnych kształtów zdecydowano się sformalizować. 5

3. Środowisko obliczeniowe Aby poszukiwania odpowiedniego kształtu przeprowadzić metodą sformalizowaną, zdecydowano się, ze względu na pozytywne efekty uzyskane w pracach [22, 23], na zastosowanie algorytmów genetycznych. W publikacjach [5, 12, 26] przedstawiono próby optymalizacji kształtów silników SRM za pomocą algorytmów genetycznych. Przedstawione w nich badania dotyczą silników liczbie pasm o większej niż dwa, a obliczone przekroje tych silników opierają się na klasycznym, cylindrycznym kształcie. Do obliczeń zastosowano programy Matlab [39] oraz program do obliczeń polowych FEMM [38]. Do poprawnej współpracy programów konieczne jest stworzenie dla nich komunikacji w celu wymiany danych. Użyto do tego celu języka skryptowego LUA, w którym w ramach pracy stworzono sparametryzowne modele polowe silników SRM. Algorytm współdziałania programów FEMM i Matlab do optymalizacji metodą algorytmów ewolucyjnych jest następujący : w programie Matlab zostaje wygenerowana populacja o zadanej liczbie osobników, dane osobników zostają zapisane w pliku, na podstawie parametrów, które zawiera w sobie każdy osobnik, przy użyciu języka skryptowego LUA tworzony był pełny model polowy silnika, w programie FEMM zostają wyznaczone wszystkie wielkości potrzebne do obliczenia funkcji celu np. moment elektromagnetyczny, indukcję, pole powierzchni itp., na podstawie rezultatów obliczeń polowych prowadzonych w programie FEMM algorytm genetyczny wyznacza wartość funkcji celu dla danego osobnika, po wyznaczeniu funkcji celu dla wszystkich osobników powstaje populacja pośrednia, w wyniku zastosowania operacji: selekcji, krzyżowania i mutacji powstaje nowa populacja. Rys. 5. Schemat blokowy wymiany danych pomiędzy programami. 6

4. Zastosowanie algorytmów genetycznych do wyznaczania kształtu obwodu magnetycznego dwupasmowego silnika SRM Do postawionego zadania, które polega na wyznaczeniu takiego kształtu obwodu magnetycznego silnika SRM, aby zmienność momentu elektromagnetycznego w zakresie kątów =º 9º była jak najmniejsza, zdefiniowano następującą funkcję celu: f =k 1 T e k 2 s (2) gdzie: T e s k 1, k 2 - jest wartością średnią momentu elektromagnetycznego w przedziale kąta położenia wirnika od º do 9º, - odchylenie standardowe momentu elektromagnetycznego wyznaczane wg. wzoru (1), - współczynniki wagowe. Ponieważ zastosowany algorytm genetyczny realizuje zadanie maksymalizacji funkcji celu to: pierwszy człon funkcji celu będzie zmuszał algorytm genetyczny do uzyskania jak największej wartości średniej momentu elektromagnetycznego w badanym przedziale, drugi człon spowoduje dążenie do takich kształtów obwodu magnetycznego aby pulsacje momentu w badanym przedziale były jak najmniejsze. Rozpatrzono trzy różne warianty kształtu krawędzi bieguna wirnika. Pierwszy model skonstruowano w taki sposób, aby krawędź wirnika składała się z jednego łuku. Algorytm genetyczny zmieniał wartości dwóch zmiennych: wartość miary kątowej łuku na krawędzi wirnika (rys. 6 a), odległość punktu zaczepienia końca łuku od środka wirnika (rys. 6 b). a) b) Rys. 6. Przekrój poprzeczny silnika - pierwszy wariant modelu, objaśnienie zmiennych modelu. 7

Korzystając z wiedzy zdobytej przy konstruowaniu modeli przy podejściu intuicyjnym, w celu zmniejszenia kosztów obliczeń, zdecydowano się na ograniczenie informacji o danym osobniku. Wartości momentu elektromagnetycznego były wyznaczane tylko dla czterech wartości kątów obrotu wirnika dla: 4º i 8º, aby uzyskać informację o wartości momentu na końcach przedziału, 42º i 48º, ze względu na uzyskane we wcześniejszych modelach duże zmiany momentu elektromagnetycznego (rys.4), w okolicy tych wartości kąta obrotu wirnika. Czas wyznaczenia rozkładu pola dla jednej wartości kąta obrotu wirnika wynosi 12 s. Czas obliczeń dla 1 generacji, z 4 osobnikami w których znajdowała się informacja o 4 punktach z charakterystyki wynosi około 54 godzin. W czasie obliczeń wartość współczynnika k 1 była stała. Wyznaczone charakterystyki przedstawiono na rys.7, a wartości uzyskanych współczynników odchylenia standardowego umieszczono w Tabeli 1. Uzyskane wartości współczynników s są mniejsze niż dla najlepszego przypadku, który powstał przy podejściu intuicyjnym. Tabela 1. Wartości współczynnika odchylenia standardowego oraz wartość średnia momentu elektromagnetycznego dla wyników obliczeń wariantu pierwszego kształtu krawędzi wirnika, przy różnych współczynnikach k 2 oraz przy stałym współczynniku k 1 =1. k 2 s T e [Nm] 1,15,772 2,143,794 3,142,753 2.5 T e [Nm] 2 k 2 =1 k 2 =2 k 2 =3 1.5 1.5 1 2 3 4 5 6 7 8 9 kąt położenia wirnika Rys. 7. Moment elektromagnetyczny w funkcji kąta położenia wirnika dla trzech przypadków pierwszego wariantu modelu, w zależności od współczynników wagi, prąd zasilający pasmo I = 1 A. W drugim wariancie zaprezentowanym na rysunku 8, krawędź wirnika składała się z trzech 8

łuków. Poszukiwane były wartości sześciu zmiennych: miary kątowe trzech łuków rozpiętych na krawędzi wirnika: α 1, α 2, α 3, odległości trzech punktów na których łuki te są zaczepione R 1, R 2, R 3. Ponieważ najmniejszą wartość współczynnika s w wariancie pierwszym modelu otrzymano dla k 1 =1 i k 2 =3, dlatego w drugim wariancie modelu zastosowano takie same wartości wag. Dla drugiego wariantu modelu po kilku obliczeniach najniższa wyznaczona wartość odchylenia standardowego wyniosła s =,9. Uzyskana wartość była niższa od wartości uzyskanych w poprzednim modelu. Zdecydowano się na zwiększenie informacji o osobnikach wprowadzając piąty punkt pomiarowy dla kąta położenia wirnika wynoszącego =54º. W wyborze tym kierowano się wyznaczonym kształtem charakterystyki przedstawionej na rys.9. Czas obliczeń w stosunku do poprzedniego modelu wzrósł o 25%. W wyniku obliczeń współczynnik odchylenia standardowego zmniejszył się do s =,79, a wartość średnia momentu wyniosła T e =,787 Nm. Rys. 8. Przekrój poprzeczny silnika, objaśnienie zmiennych drugiego wariantu modelu. 9

2.5 T e [Nm] 2 1.5 1.5 1 2 3 4 5 6 7 8 9 kąt położenia wirnika [º] Rys. 9. Moment elektromagnetyczny w funkcji kąta położenia wirnika dla drugiego wariantu modelu, przy obliczaniu momentu elektromagnetycznego dla czterech wartości kąta obrotu wirnika, I = 1 A, s =,9, T e =,78 Nm. 2.5 T e [Nm] 2 1.5 1.5 1 2 3 4 5 6 7 8 9 kąt położenia wirnika [º] Rys. 1. Moment elektromagnetyczny w funkcji kąta położenia wirnika dla drugiego wariantu modelu, przy obliczaniu momentu elektromagnetycznego dla pięciu wartości kąta obrotu wirnika, I = 1 A, s =,79, T e =,787 Nm. 1

Trzeci wariant poszerzono do modelu, który uwzględniał 19 zmiennych, a krawędź wirnika w tym przypadku składała się z 15 łuków. Na przekroju poprzecznym silnika przedstawionym na rys. 11 zostały pokazane zmienne, które kolejno oznaczają: A wartość miary kątowej każdego z 15-tu łuków z których składa się wydatny biegun wirnika, wartość ta była taka sama dla wszystkich łuków, B szerokość jarzma stojana, C 1..C 15 odległości punktów zaczepienia łuków od środka wirnika, D szerokość zęba stojana, E odległość krawędzi wirnika od osi silnika. Rys. 11. Przekrój poprzeczny silnika objaśnienie zmiennych stosowanych do trzeciego modelu optymalizacji konstrukcji silnika. Dla tego przypadku zmodyfikowano także funkcję przystosowania tak, aby uwzględniała średnią wartość indukcji magnetycznej w biegunie i jarzmie stojana oraz masę silnika: f =k 1 T e k 2 s k 3 A s P 1 P 2 (3) gdzie: A S powierzchnia żelaza w przekroju poprzecznym silnika, P 1 funkcja kary związana z wartością średnią indukcji magnetycznej w jarzmie stojana, P 2 funkcja kary związana z wartością średnią indukcji magnetycznej w zębie stojana. W wyrażeniu (3) człon k 3 A s powoduje, że algorytm genetyczny dąży do zmniejszenia powierzchni żelaza w przekroju poprzecznym silnika czyli do zmniejszenia jego masy. Większa wartość wagi k 3 może jednak doprowadzić do nadmiernego zmniejszenia grubości jarzma i zębów stojana. Aby temu zapobiec wprowadzono dwie funkcje kary P 1 i P 2, które 11

mają za zadanie odpowiednio korygować wartość funkcji przystosowania, jeżeli średnia wartość indukcji magnetycznej będzie większa niż 1,6 T. Funkcje kary określone są w sposób przedstawiony na rys.12. 4 P 1, P 2 3.5 3 2.5 2 1.5 1.5.5 1 1.5 2 2.5 3 Srednia wartosc indukcji [T] Rys. 12. Przyjęta zależność funkcji kar: P 1 od średniej wartości indukcji magnetycznej w jarzmie stojana, P 2 od średniej wartości indukcji magnetycznej w zębie stojana. Aby ustalić wartości wag wykonano wstępne obliczenia na 1 pokoleniach, w których każda populacja liczyła 4 osobników. W wyniku obliczeń przy k 1, k 2, k 3 =1, uzyskano następujące wartości: T e =,6 Nm, s=,3, A s =,8 m 2. Ponieważ w badaniach położono główny nacisk na obniżenie pulsacji przy jednoczesnym zachowaniu wysokiej wartości średniej momentu elektromagnetycznego, udział procentowy tych członów w funkcji celu powinien być większy od pozostałych członów. Ostatecznie do obliczeń zastosowano wagi o wartościach: k 1 =1, k 2 =5, k 3 =5. Wyniki uzyskane na podstawie obliczeń na 1 pokoleniach, w których każda populacja składała się z 4 osobników są następujące: T e =,71 Nm, s =,39, A s =,92 m 2. Ponieważ kształt wirnika w tym wariancie modelu jest dość skomplikowany, konieczne było zbieranie informacji dla większej liczby kątów obrotu wirnika tak, aby kontrolować położenie wszystkich punktów na krawędzi wirnika. W tym modelu wyznaczano wartości dla 16 kątów obrotu wirnika od º do 88,5º co 5,9º. Sumaryczny czas obliczeń w tym przypadku wyniósł około 214 godzin. 12

Rys.13. Uzyskany kształt wirnika dla modelu z 19 parametrami. 2.5 T e [Nm] 2 1.5 1.5 1 2 3 4 5 6 7 8 9 kąt położenia wirnika Rys. 14. Charakterystyka momentu elektromagnetycznego uzyskana w wyniku zastosowania trzeciego wariantu optymalizacyjnego przy wartościach wag: k 1 =1, k 2 =5, k 3 =5, I=1A. 13

Krzywa momentu elektromagnetycznego w funkcji kąta obrotu dla ostatniego modelu jest prawie płaska, można zatem uznać że postawiony cel został spełniony. Z silnika o bardzo niekorzystnej charakterystyce (rys.2), która właściwie dyskwalifikuje go z większości zastosowań z powodu występowania martwej strefy oraz wysokiego poziomu pulsacji momentu elektromagnetycznego, w wyniku obliczeń optymalizacyjnych, uzyskano silnik o charakterystyce prawie pozbawionej tętnień momentu. Porównanie charakterystyk tych dwóch wariantów silników zamieszczono na rys. 15. T e [Nm] 2.5 przed optymalizacja po optymalizacji 2 1.5 1.5 1 2 3 4 5 6 7 8 9 kąt położenia wirnika Rys.15. Porównanie krzywych momentów elektromagnetycznych silników dwupasmowych: o podstawowej, klasycznej konstrukcji ( T e = 1,2 Nm, s =,932) z silnikiem po optymalizacji według wariantu trzeciego ( T e =,71 Nm, s =,39). Autor współtworzył system umożliwiający zastosowanie obliczeń rozproszonych do rozwiązania przedstawionego w pracy problemu. Przeprowadzono udane próby obliczeń na klastrze złożonym z połączonych ze sobą siecią internetową pięciu komputerów. Dodanie czterech dodatkowych komputerów pozwoliło na zmniejszenie czasu obliczeń jednej populacji (trzeci wariant modelu) z ponad dwóch godzin do około 3 minut. 14

5. Zastosowanie algorytmów genetycznych do wyznaczania kształtu obwodu magnetycznego oscylacyjnego silnika SRM Kolejnym z optymalizowanych silników jest silnik oscylacyjny. Zaproponowany model takiego silnika posiada cztery bieguny w stojanie i jeden szeroki ząb na wirniku. Środek ciężkości wirnika znajduje się poza jego środkiem obrotu skutkiem czego przy obrocie wirnika powstaje siła odśrodkowa, która przenosząc się przez łożyska powoduje ruch oscylacyjny całego silnika. W stosunku do standardowych rozwiązań silników oscylacyjnych o ruchu okrężnym opartych na zastosowaniu mimośrodu, obydwa łożyska w takim silniku są obciążone równomiernie. Ponieważ elementem wywołujący ruch oscylacyjny jest wirnik, który może być jednocześnie mechanicznym enkoderem służącym do sterowania silnika, maszyna taka może być całkowicie wodo- i pyłoszczelna dzięki np. zalaniu jej masą plastyczną. Na zewnątrz silnika w takim przypadku wyprowadzone są tylko przewody zasilające. Prezentowany silnik może być zastosowany do napędów: szlifierek oscylacyjnych, wstrząsarek do produkcji pustaków, stołów wibracyjnych itp. [31, 32, 33, 34]. Koncepcja takiego silnika została zgłoszona do urzędu patentowego [35] i znajduje się w toku rozpatrywania. Silnik oscylacyjny jest wykonany jako silnik czteropasmowy, na każdym biegunie stojana znajduje się niezależne uzwojenie. W trakcie pracy są zasilone zawsze dwa uzwojenia silnika, a ich przełączanie następuje w cyklu co 9º kąta obrotu wirnika. Po załączeniu sąsiednich pasm silnika 1 i 2 (rys.16), ząb wirnika zostaje przyciągnięty do biegunów stojana na których znajdują się zasilone pasma. Po osiągnięciu określonej pozycji wirnika następuje przełączenie: pasmo 1 zostaje wyłączone, a pasmo 3 zasilone. 1 2 4 3 Rys. 16. Przekrój poprzeczny silnika oscylacyjnego. 15

Ponieważ silnik o przekroju poprzecznym takim jak na rys.16 ma bardzo niekorzystną charakterystykę momentu elektromagnetycznego w funkcji kąta obrotu wirnika (rys.17), a dla kątów powyżej 5 stopni moment elektromagnetyczny przyjmuje nawet wartości ujemne, również w tym przypadku konieczna jest optymalizacja kształtu obwodu magnetycznego silnika. Dla silnika oscylacyjnego zdecydowano się zastosować odmienne podejście niż w przypadku silnika dwupasmowego. Zamiast kształtować krawędź wirnika, uformowano odpowiedni otwór w wirniku. Na rys.18 przedstawiono objaśnienie zmiennych jakie zastosowano od obliczeń optymalizacyjnych. W tym modelu algorytm genetyczny przetwarzał sześć zmiennych: po dwie zmienne dla dokładnego określenia miejsca położenia punktów x 1 i x 2, zmienna α x, która określa miarę kątową łuku opartego na punktach x 1 i x 2. Drugą krawędzią otworu był promień wewnętrzny wirnika, dzięki temu szerokość otworu była ponad dziesięciokrotnie większa od szerokości szczeliny powietrznej. W pierwszych podejściach otwór w wirniku był otwarty. Jednak ze względu na możliwość wystąpienia dźwiękowego efektu syrenowego oraz odkształcenia zewnętrznej krawędzi wirnika przez siły naciągu magnetycznego, zdecydowano się połączyć zewnętrzną krawędź wirnika zworą z jego krawędzią wewnętrzną. Na rys.18 połączenie to zaznaczono kolorem czerwonym. 1.2 Te [Nm] 1.8.6.4.2 -.2 1 2 3 4 5 6 7 8 9 kąt położenia wirnika Rys. 17. Wykres momentu elektromagnetycznego w silniku oscylacyjnym o kształcie wirnika przedstawionym na rys.3.45. 16

Rys.18. Objaśnienie zmiennych modelu do optymalizacji kształtu wirnika silnika oscylacyjnego. 1.2 Te [Nm] 1 przed optymalizcja po optymalizacji.8.6.4.2 1 2 3 4 5 6 7 8 9 kąt położenia wirnika Rys. 19. Momentu elektromagnetyczny w silniku oscylacyjnym przed i po optymalizacji w funkcji kąta położenia wirnika. 17

Do optymalizacji zdefiniowano następującą funkcję celu: f =k 1 T e k 2 s (4) Obliczenia wykonano przy wartościach wag wynoszących k 1 =1 i k 2 =2, liczba osobników w populacji była równa 4, a obliczenia prowadzono dla 5 generacji. Moment elektromagnetyczny wyznaczano w pięciu punktach, dla º, 2º, 4º, 6º i 8º kąta obrotu wirnika. Czas obliczeń wynosił około 34 godzin. W wyniku obliczeń uzyskano taki kształt wirnika, dla którego: moment elektromagnetyczny ma wartości dodatnie w zakresie kątów obrotu wirnika od º do 9º (rys.19), wartość współczynnika odchylenia standardowego zmniejszyła się o połowę z,454 do,226, średnia wartość momentu elektromagnetycznego zmniejszyła się tylko o 3,7%. Tabela 2. Porównanie wartości optymalizowanych przez algorytm genetyczny parametrów przed i po dokonaniu optymalizacji silnika oscylacyjnego. przed optymalizacją po optymalizacji funkcja celu f -,46 -,2 średni moment T e w przedziale kąta położenia wirnika º 9º,45,44 Odchylenie standardowe momentu s,45,23 6. Prototypy silników Na podstawie wyników uzyskanych z obliczeń optymalizacyjnych zostały wykonane dwa silniki: silnik dwupasmowy (rys.2) oraz silnik oscylacyjny (rys.21). Silnik dwupasmowy został wykonany według drugiego wariantu modelu (rys. 8), w którym krawędź wirnika składa się z trzech łuków. Uzyskano możliwość wykonania takiego typu silnika w momencie kiedy badania optymalizacyjne były jeszcze prowadzone, dlatego zaprezentowany prototyp nie jest żadną z wersji końcowych, przedstawionych w pracy kształtów wirników. Silnik ten posiada wstępnie zoptymalizowaną charakterystykę momentu elektromagnetycznego i nadaje się do weryfikacji obliczeń. Kształt przekroju poprzecznego silnika oscylacyjnego jest dokładnie taki sam, jaki został wyznaczony w trakcie obliczeń optymalizacyjnych, dla którego charakterystyka momentu elektromechanicznego jest zamieszczona na rys.19. Omawiany silnik został zamocowany sprężyście do podstawy, aby w czasie pracy umożliwić mu ruch oscylacyjny (rys.21) 18

Rys.2. Widok stanowiska pomiarowego z silnikiem dwupasmowym. Rys.21. Zdjęcie silnika oscylacyjnego wraz z mocowaniem. 19

Na rysunku 23 przedstawiono wyniki pomiarów ruchowych silnika dwupasmowego przy stałej prędkości obrotowej silnika. W przypadku przebiegów na rys. 23a widoczne są duże oscylacje momentu elektromagnetycznego. Spowodowane jest to brakiem możliwości zwrotu energii do układu zasilania oraz wolnym narastaniem i opadaniem prądu. W przypadku gdy prąd jeszcze płynie dla kątów obrotu wirnika powyżej 93º, silnik wchodzi w strefę pracy generatorowej rys.22. Na rysunku 23b przedstawiono wyniki pomiarów przy napięciu zasilającym równym 5 V. Ponieważ prędkość w tym przypadku jest o wiele mniejsza niż przy zasilaniu napięciem 24V, czas narastania i opadania prądów stanowi małą część całkowitego czasu przewodzenia pasma. Ponieważ prąd płynący w czasie przewodzenia pasma ma prawie stałą wartość, można zaobserwować, że przebiegi momentu również są prawie pozbawione pulsacji, jedynie w czasie komutacji wartość momentu zmniejsza się. T e [Nm] 1.5 -.5-1 -1.5-2 2 4 6 8 9 1 12 14 16 18 kąt położenia wirnika Rys. 22. Moment elektromagnetyczny silnika dwupasmowego dla kątów położenia wirnika od º do 18º. 2

1 I [A] T e [Nm] 8 prad 1 prad 2 moment *1 6 4 2.1.2.3.4.5 a) zasilanie napięciem 24 V czas [s] I [A] T e [Nm] 12 1 8 6 prad 1 prad 2 moment*1 4 2-2.5.1.15.2.25.3 b) zasilanie napięciem 5 V czas [s] Rys. 23. Przebieg prądów w pasmach silnika oraz momentu elektromagnetycznego. 21

7. Podsumowanie i wnioski Przeprowadzone badania potwierdziły tezę pracy, a jej cele zostały osiągnięte: W pracy przeprowadzono analizę pola magnetycznego w silniku SRM w oparciu o jego model polowy, analiza ta została wykorzystana od obliczeń optymalizacyjnych przy użyciu algorytmów genetycznych. Opracowano sparametryzowane, polowe modele silników SRM w języku skryptowym LUA, modele te zawierały od 2 do 19 zmiennych i umożliwiały wykorzystanie programów Matlab i FEMM do obliczeń zautomatyzowanych, przy użyciu algorytmów genetycznych. Wykonano obliczenia przy użyciu wielokryterialnych funkcji do optymalizacji obwodów magnetycznych przy użyciu algorytmów genetycznych. W ramach niniejszej pracy przeprowadzono obliczenia dla kilku różnych typów silników w tym dwa silniki zaprojektowano i wykonano pomiary weryfikujące obliczenia. Zaprezentowano dwa różne podejścia do optymalizacji konstrukcji obwodu magnetycznego wirnika silnika SRM: przez zmianę geometrii krawędzi wirnika oraz zmianę kształtu otworu w wirniku. Zostały przeprowadzone udane próby uruchomienia systemu umożliwiającego zastosowanie obliczeń rozproszonych. System ten, składający się z pięciu komputerów, umożliwił wykonanie obliczeń optymalizacyjnych za pomocą algorytmów genetycznych, w czasie krótszym, niż w przypadku zastosowania tylko jednego komputera. Do istotnych wniosków należą: Odejście od cylindrycznego kształtu wirnika pozwala na uzyskanie silnika SRM o parametrach nieosiągalnych w jego klasycznej konstrukcji. Dotyczy to szczególnie silnika dwupasmowego. Obliczenia optymalizacyjne doboru parametrów konstrukcyjnych przy użyciu algorytmów genetycznych dla nieliniowych obiektów jakimi są silniki SRM dają dobre rezultaty. Już w fazie projektowania można tak ukształtować obwód magnetyczny silnika aby uzyskać konstrukcję charakteryzującą się mniejszą pulsacją momentu elektromagnetycznego, nawet w niekorzystnej konstrukcji jaką jest silnik dwupasmowy. Mimo, że czas trwania obliczeń przy użyciu metod polowych i algorytmów genetycznych jest liczony w dniach, są one wykonywane jednorazowo przed wykonaniem silnika, a koszt wykonania matrycy do wycinania blach silnika pozostaje praktycznie taki sam, niezależnie od złożoności kształtu obwodu magnetycznego. Zmniejszenie wartości średniej momentu elektromagnetycznego przy optymalizacji kształtu obwodu magnetycznego wirnika dwupasmowego silnika SRM jest spowodowane zwiększeniem szerokości szczeliny powietrznej silnika. W silniku oscylacyjnym charakterystykę momentu elektromagnetycznego ukształtowano przez wykonanie otworu w wirniku. W takiej konstrukcji odpowiednie wykonanie otworu pozwala na określenie obszaru w którym występuje kontrolowane nasycanie stali wirnika. Szerokość szczeliny jest 22

taka sama jak przed procesem optymalizacji, przez co średnia wartość momentu elektromagnetycznego zmniejszyła się tylko o 3,7%. Silnik SRM i jego układ zasilania stanowią integralny układ. Zaproponowany sposób kształtowania zmienności momentu elektromagnetycznego w funkcji kąta obrotu wirnika pozwoli na uproszczenia układu zasilającego do źródła prądowego, a tym samym ograniczenie kosztów układu zasilania, który nie musi być wyposażony w układy mikroprocesorowe. Najistotniejszym i zarazem najciekawszym efektem tej pracy jest zdaniem autora uzyskanie takiej konstrukcji silnika dwupasmowego, dla której wykres momentu elektromagnetycznego przedstawiono na rys. 14, to znaczy silnika o charakterystyce momentu prawie niezależnej od kąta położenia wirnika w zakresie =º 9º. 8. Literatura [1] Ben-Hail N., Rabinovici R.: Vibrations of Switched Reluctance Machines, ICEM 24, Kraków, artykuł nr. 86 z płyty konferencyjnej. [2] Blanqué B., Perat J.I., Andrada P.: Low Cost Digital Controller for Switched Reluctance Motor, ICEM 24, Kraków, artykuł nr. 454 z płyty konferencyjnej. [3] Byrne J.V, Lacy J.G: Characteristics of saturable stepper and reluctance motors, IEE Conf. Publ. No.136, Small Electrical Machines, pp.93-96. [4] Cai W., Pillay P.: Resonant frequencies and Mode Shapes of Switched Reluctance Motors, IEEE Transactions on Energy Conversion, Vol 16, No.1, March 21, pp. 43-48. [5] Chai K.S., Pollock C.: Using genetic algorithms in design optimisation of the flux switching motor, IEE 22 Power Electronics, Machines and Drives. [6] Choi Ch., Kim S., Kim Y., Park K.: A New Torque Control Method of a Switched reluctance motor Using a Torque-Sharing Function, IEEE Transactions on Magnetics, Vol. 38, No. 5, September 22, s. 3288-329. [7] Cruickshank A.J.O., Menzies R.W., Anderson A.F.: Theory and performance of reluctance motors with axially laminated rotors, Proc. IEE, 1971, 118, pp. 887-894. [8] D'hulster F., Stockman K.: Optimal Switched Reluctance Motor Control Strategy for Wide Voltage Range Operation, ICEM 24, Kraków, artykuł nr. 547 z płyty konferencyjnej. [9] da Silva W.M., Goldemberg C., Van den Bossche A.: New ''C-Dump'' topologies for switched reluctance motor drives, ICEM 24, Kraków, artykuł nr. 674 z płyty konferencyjnej. [1] Dragu C.S., Belmans R.: Sensorless control of switched reluctance motor, ICEM 22, Brugge, Belgium, artykuł nr. 413 z płyty konferencyjnej. [11] El-Khazender M.A., Stephenson J.M.: Analysis and optimization of the 2-phase selfstarting reluctance motor, ICEM, Munich,1986, pp.131-134. [12] El-Wakeel A., Smith A.C.: Optimal design of Switched Reluctance Motors Using Genetic Algorithms, ICEM 22, Brugge, Belgium, artykuł nr. 25 z płyty konferencyjnej. 23