EGZAMIN MATURALNY POZIOM ROZSZERZONY. Miejsce MAJ ROK Czas pracy 180 minut. dysleksja MPO-R1_1P tuszem/atramentem i 7.

Podobne dokumenty
EGZAMIN MATURALNY Z JĘZYKA POLSKIEGO

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z JĘZYKA ROSYJSKIEGO POZIOM ROZSZERZONY MAJ 2011 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z J 1 7ZYKA ROSYJSKIEGO POZIOM ROZSZERZONY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

Sprawozdanie z egzaminu maturalnego w roku 2009

EGZAMIN MATURALNY Z JĘZYKA NIEMIECKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

EGZAMIN MATURALNY Z MATEMATYKI

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI. 10 maja 2017 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I

EGZAMIN MATURALNY Z INFORMATYKI 11 MAJA 2018 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

PRÓBNY EGZAMIN MATURALNY Z HISTORII SZTUKI

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2010 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2014 POZIOM ROZSZERZONY CZĘŚĆ I WYBRANE: Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z JĘZYKA FRANCUSKIEGO

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z INFORMATYKI WYBRANE: ... (system operacyjny) ... (program użytkowy) ... (środowisko programistyczne)

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z INFORMATYKI 13 MAJA 2019 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z JZYKA ROSYJSKIEGO POZIOM PODSTAWOWY MAJ Czas pracy: 120 minut. Liczba punkt¾w do uzyskania: 50 WPISUJE ZDAJCY

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z HISTORII SZTUKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 2 CZERWCA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z HISTORII MUZYKI

EGZAMIN MATURALNY Z INFORMATYKI 13 MAJA 2019 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 9 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 3 CZERWCA Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z INFORMATYKI WYBRANE: ... (system operacyjny) ... (program użytkowy) ... (środowisko programistyczne)

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z JĘZYKA FRANCUSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2013 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z JĘZYKA NIEMIECKIEGO MAJ 2014 POZIOM ROZSZERZONY CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z JĘZYKA HISZPAŃSKIEGO POZIOM ROZSZERZONY MAJ 2014 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY










Transkrypt:

ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE Miejsce dysleksja MPO-R1_1P-092 EGZAMIN MATURALNY MAJ ROK 2009 POZIOM ROZSZERZONY Czas pracy 180 minut 1. stron. u 2. 3. tuszem/atramentem. 4. 5. nie. 6. i 7. dla egzaminatora. 50 punktów 10 pkt 40 pkt przed KOD

2 rozumienie pisanego tekstu tylko na podstawie tekstu i tylko Sztuka jako schody ruchome 1. raczej nastawionego I od Ryszarda Wagnera do opery Tannhäuser. 2. Sprawa na Tannhäusera niepo na moja 3. W sobie kolejne tomy Chimery szych czasopism, wydawanych kiedykolwiek po polsku. Chimera, redagowana, jak wiadomo, przez Zenona Przesmyckiego te do w Warszawie, jak w wielu innych miastach zaboru ro Na redaktor Miriam nie i 4. i. A jednak po 1989 nowego -lustr

3 -tamtego polityczni? 5. Tannhäusera uchwalaniu ustawy o szkolnictwie 6. Przypominam sobie to wszystko w Wielbiciel Tannhäusera i Chimery z jednej strony, a niegdysiejszy strajkowicz i publicysta z ja do 7. osobliwego, otwartego na nowe znaczenia komunikatu. Pozbawione u swoich podstaw w nie zawsze usprawiedliwione reakcje nerwowe na to, co wzburza i 8. na i sama a medialno- ruchomych, na -Z na plac Zamkowy, 9. na rozumianej jako troska o doczesne dobro wspólne na poziom. 10. na aktual czy na w zawrotnym 11. Tannhäusera poz Jerzy Sosnowski, Sztuka jako schody ruchome,

4 Zadanie 1. (1 pkt) Zadanie 2. (1 pkt) W jaki sposób muzy Zadanie 3. (1 pkt) P symboliczne znaczenie: góra: opozycja symboliczne znaczenie: Zadanie 4. (1 pkt)

5 Zadanie 5. (1 pkt) wy Zadanie 6. (2 pkt) Podaj pr Konkret:... Uogólnienie: Zadanie 7. (1 pkt) Zadanie 8. (2 pkt) Co, zdaniem autora, jest z

6 czonym w arkuszu. Temat 1. Na podstawie i Trenu IX budowania poetyckiej refleksji. leko mija. Mnie, smutnego, ten dowcip nie ratuje, 1 Jan Kochanowski, Warszawa 1982 Tren IX K 2 3 Ty wszytki rzeczy ludzkie m 4 stoisz. Ale dosytem mierzysz i przyrodzonymi Potrzebami. Ty okiem swym nieuchronionym 5 e! Terazem nagle z stopniów ostatnich zrzucony Jan Kochanowski, Treny, 1 ten dowcip nie ratuje nie mam tego talentu 2 3 tylko nie 4 5 nieuchroniony

7 Temat 2. przedstaw metaforyczne znaczenia drogi. (fragment) I z i z bo nie od za pole przy drodze, rowie i po nie z nie

8 i w a niejeden i najgorszych, bo idziesz I na od swojego przeznaczenia i autem nie ucieknie., Kraków 2008 WYPRACOWANIE na temat nr...

9

10

11

12

13

14 BRUDNOPIS (nie podlega ocenie)