WPŁYW DYSPERSYJNEJ FAZY CERAMICZNEJ NA WŁAŚCIWOŚCI NIKLOWYCH WARSTW KOMPOZYTOWYCH



Podobne dokumenty
STRUKTURA WARSTW KOMPOZYTOWYCH Ni-P/Si3N4 WYTWARZANYCH METODĄ CHEMICZNĄ

ZUŻYCIE TRIBOLOGICZNE POWŁOK KOMPOZYTOWYCH Ni-P-Al 2 O 3 WYTWORZONYCH METODĄ REDUKCJI CHEMICZNEJ

ODPORNOŚĆ KOROZYJNA WARSTW KOMPOZYTOWYCH Z OSNOWĄ NIKLOWĄ I DYSPERSYJNĄ FAZĄ CERAMICZNĄ

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW Ni/Si3N4

PL B1. Elektrolityczna, nanostrukturalna powłoka kompozytowa o małym współczynniku tarcia, zużyciu ściernym i korozji

WARSTWY NANOKOMPOZYTOWE Ni-P/Si3N4 WYTWARZANE METODĄ REDUKCJI CHEMICZNEJ NA STOPIE ALUMINIUM AA 7075

A. PATEJUK 1 Instytut Materiałoznawstwa i Mechaniki Technicznej WAT Warszawa ul. S. Kaliskiego 2, Warszawa

WARSTWY WĘGLIKOWE WYTWARZANE W PROCESIE CHROMOWANIA PRÓŻNIOWEGO NA POWIERZCHNI STALI POKRYTEJ STOPAMI NIKLU Z PIERWIASTKAMI WĘGLIKOTWÓRCZYMI

OTRZYMYWANIE KOMPOZYTÓW METALOWO-CERAMICZNYCH METODAMI PLAZMOWYMI

MIKROSTRUKTURA I WŁAŚCIWOŚCI WARSTW MIĘDZYMETALICZNYCH NA STOPIE Ti-6Al-4V

ZUŻYCIE TRYBOLOGICZNE KOMPOZYTU NA OSNOWIE ZGARU STOPU AK132 UMACNIANEGO CZĄSTKAMI SiC

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW DUPLEX WYTWARZANYCH W PROCESIE TYTANOWANIA PRÓŻNIOWEGO NA STALI NARZĘDZIOWEJ POKRYTEJ STOPEM NIKLU

NANOKRYSTALICZNE WARSTWY KOMPOZYTOWE Ni-Al2O3 - WYTWARZANIE I STRUKTURA

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK ELEKTROLITYCZNYCH ZE STOPÓW NIKLU PO OBRÓBCE CIEPLNEJ

Własności mechaniczne kompozytów odlewanych na osnowie stopu Al-Si zbrojonych fazami międzymetalicznymi

STRUKTURA GEOMETRYCZNA POWIERZCHNI KOMPOZYTÓW ODLEWNICZYCH TYPU FeAl-Al 2 O 3 PO PRÓBACH TARCIA

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH TYPU CrC+(Ni-Mo)+CrN

KRZEPNIĘCIE KOMPOZYTÓW HYBRYDOWYCH AlMg10/SiC+C gr

WPŁYW ODKSZTAŁCENIA WZGLĘDNEGO NA WSKAŹNIK ZMNIEJSZENIA CHROPOWATOŚCI I STOPIEŃ UMOCNIENIA WARSTWY POWIERZCHNIOWEJ PO OBRÓBCE NAGNIATANEM

ROZSZERZALNOŚĆ CIEPLNA KOMPOZYTÓW NA OSNOWIE STOPU AlSi13Cu2 WYTWARZANYCH METODĄ SQUEEZE CASTING

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH TYPU CRC+CRN WYTWARZANYCH PRZEZ POŁĄCZENIE PROCESU CHROMOWANIA PRÓŻNIOWEGO Z OBRÓBKĄ PVD

ROZKŁAD TWARDOŚCI I MIKROTWARDOŚCI OSNOWY ŻELIWA CHROMOWEGO ODPORNEGO NA ŚCIERANIE NA PRZEKROJU MODELOWEGO ODLEWU

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska

ANTYŚCIERNE I ANTYKOROZYJNE WARSTWY NOWEJ GENERACJI WYTWARZANE W PROCESIE TYTANOWANIA PRÓŻNIOWEGO NA STALI NARZĘDZIOWEJ

CHARAKTERYSTYKA ELEKTROLITYCZNYCH WARSTW KOMPOZYTOWYCH ZAWIERAJĄCYCH KOBALT I TLENEK NIKLU W AMORFICZNEJ OSNOWIE STOPOWEJ Ni-P

LEJNOŚĆ KOMPOZYTÓW NA OSNOWIE STOPU AlMg10 Z CZĄSTKAMI SiC

PL B1. Uniwersytet Śląski w Katowicach,Katowice,PL BUP 20/05. Andrzej Posmyk,Katowice,PL WUP 11/09 RZECZPOSPOLITA POLSKA

43 edycja SIM Paulina Koszla

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

CHARAKTERYSTYKA STRUKTURY ELEKTROLITYCZNYCH WARSTW KOMPOZYTOWYCH NA OSNOWIE AMORFICZNEGO NIKLU, ZAWIERAJĄCYCH SKŁADNIK TLENKOWY I METALICZNY

ALUMINIOWE KOMPOZYTY Z HYBRYDOWYM UMOCNIENIEM FAZ MIĘDZYMETALICZNYCH I CERAMICZNYCH

BADANIE MATERIAŁÓW KOMPOZYTOWYCH NA OSNOWIE ALUMINIUM ZBROJONYCH CZĄSTKAMI SiO 2

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

SILUMIN OKOŁOEUTEKTYCZNY Z DODATKAMI Cr, Mo, W i Co

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY POWIERZCHNIOWEJ CRN W WARUNKACH TARCIA MIESZANEGO

WYBRANE WŁASNOŚCI KOMPOZYTU ALUMINIUM-CZĄSTKI WĘGLIKA KRZEMU OTRZYMANEGO PRZEZ WYCISKANIE WYPRASEK Z PROSZKU

WPŁYW OBRÓBKI CIEPLNEJ NA WYBRANE WŁASNOŚCI STALIWA CHROMOWEGO ODPORNEGO NA ŚCIERANIE

WŁAŚCIWOŚCI POWIERZCHNIOWYCH WARSTW KOMPOZYTOWYCH Ni/PTFE

STRUCTURE AND PROPERTIES OF Ni-P/PTFE COMPOSITE COATINGS PRODUCED BY CHEMICAL REDUCTION METHOD

WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTÓW AlSi13Cu2- WŁÓKNA WĘGLOWE WYTWARZANYCH METODĄ ODLEWANIA CIŚNIENIOWEGO

MODYFIKACJA STOPU AK64

LABORATORIUM NAUKI O MATERIAŁACH

Kompozyty Ceramiczne. Materiały Kompozytowe. kompozyty. ziarniste. strukturalne. z włóknami

WŁAŚCIWOŚCI WARSTW AZOTOWANYCH JARZENIOWO, WYTWORZONYCH NA STALI 316L

NANOKOMPOZYTOWE WARSTWY NIKIEL/NANORURKI WĘGLOWE WYTWARZANE METODĄ REDUKCJI ELEKTROCHEMICZNEJ

MATERIAŁY NA OSNOWIE FAZY MIĘDZYMETALICZNEJ FeAl Z DODATKIEM 2 I 10% OBJ. Al2O3

32/42 NA ŚCIERANIE POWIERZCHNI STALI EUTEKTYCZNEJ WPŁ YW OBRÓBKI LASEROWEJ NA ODPORNOŚĆ

σ c wytrzymałość mechaniczna, tzn. krytyczna wartość naprężenia, zapoczątkowująca pękanie

WĘGLOAZOTOWANIE JAKO ELEMENT OBRÓBKI CIEPLNEJ DLA ŻELIWA ADI

WYBRANE WŁAŚCIWOŚCI KOMPOZYTU ZAWIESINOWEGO AlSi11/CZĄSTKI 1H18N9T

SILUMIN NADEUTEKTYCZNY Z DODATKAMI Cr, Mo, W i Co

MODYFIKACJA SILUMINÓW AK7 i AK9. F. ROMANKIEWICZ 1 Uniwersytet Zielonogórski, ul. Podgórna 50, Zielona Góra

ZMIANY MIKROSTRUKTURY I WYDZIELEŃ WĘGLIKÓW W STALIWIE Cr-Ni PO DŁUGOTRWAŁEJ EKSPLOATACJI

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

ODPORNOŚĆ NA ZUŻYCIE CIERNE KOMPOZYTÓW WARSTWOWYCH NA BAZIE STOPÓW ŻELAZA

Odporność korozyjna wybranych powłok nakładanych metodą tamponową

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE

MODYFIKACJA SILUMINU AK20. F. ROMANKIEWICZ 1 Politechnika Zielonogórska,

WPŁYW ALUMINIUM NA NIEKTÓRE WŁAŚCIWOŚCI I STRUKTURĘ STALIWA

PL B1. POLITECHNIKA ŁÓDZKA, Łódź, PL

ODPORNOŚĆ STALIWA NA ZUŻYCIE EROZYJNE CZĘŚĆ II. ANALIZA WYNIKÓW BADAŃ

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH WYTWARZANYCH W PROCESACH CHROMOWANIA DYFUZYJNEGO POŁĄCZONYCH Z OBRÓBKĄ PVD

WPŁYW WIELKOŚCI I UDZIAŁU ZBROJENIA NA WŁAŚCIWOŚCI KOMPOZYTÓW AK12-WĘGIEL SZKLISTY

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Zakład Metaloznawstwa i Odlewnictwa

KOMPOZYTY Ti3Al-ZrO2

OCENA WŁAŚCIWOŚCI TRIBOLOGICZNYCH POWŁOK UZYSKANYCH DROGĄ METALIZACJI NATRYSKOWEJ

OBRÓBKA CIEPLNO-CHEMICZNA WARSTW KOMPOZYTOWYCH ZAWIERAJĄCYCH TYTAN

KOMPOZYTY Al2O3-Si3N4w

NATRYSKIWANE CIEPLNIE PŁOMIENIOWO KOMPOZYTOWE POWŁOKI ZAWIERAJĄCE WĘGLIKI CHROMU, TYTANU I WOLFRAMU

ZUŻYCIE ŚCIERNE STOPU AK7 PO OBRÓBCE MODYFIKATOREM HOMOGENICZNYM

MATERIAŁY KOMPOZYTOWE

BADANIA STRUKTURY MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

CHARAKTERYSTYKA WARSTW KOMPOZYTOWYCH Ni/Al 2 O 3 WYTWORZONYCH METOD ELEKTROCHEMICZN NA ALUMINIUM

ZNACZENIE POWŁOKI W INŻYNIERII POWIERZCHNI

CIENKOŚCIENNE KONSTRUKCJE METALOWE

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym

ZASTOSOWANIE NAŚWIETLANIA LASEROWEGO DO BLOKADY PROPAGACJI PĘKNIĘĆ ZMĘCZENIOWYCH

MODYFIKACJA BRĄZU SPIŻOWEGO CuSn4Zn7Pb6

WPŁYW WYBRANYCH SMAROWYCH PREPARATÓW EKSPLOATACYJNYCH NA WŁAŚCIWOŚCI TRIBOLOGICZNE MATERIAŁÓW POLIMEROWYCH PODCZAS TARCIA ZE STALĄ

ZMIANA SKŁADU CHEMICZNEGO, TWARDOŚCI I MIKROSTRUKTURY NA PRZEKROJU POPRZECZNYM BIMETALOWYCH, ŻELIWNYCH WALCÓW HUTNICZYCH

Politechnika Politechnika Koszalińska

Rok akademicki: 2017/2018 Kod: NIM MM-s Punkty ECTS: 5. Kierunek: Inżynieria Materiałowa Specjalność: Materiałoznawstwo metali nieżelaznych

WPŁYW CHROPOWATOŚCI POWIERZCHNI MATERIAŁU NA GRUBOŚĆ POWŁOKI PO ALFINOWANIU

WYBRANE WŁASNOŚCI KOMPOZYTÓW ALUMINIUM-CZĄSTKI WĘGLIKA KRZEMU OTRZYMANYCH Z PROSZKÓW W PROCESIE KUCIA NA GORĄCO I PO ODKSZTAŁCANIU NA ZIMNO

ZMIANY STRUKTURALNE WYSTĘPUJĄCE PODCZAS WYTWARZANIA KOMPOZYTÓW GRE3 - SiC P

KOROZYJNO - EROZYJNE ZACHOWANIE STALIWA Cr-Ni W ŚRODOWISKU SOLANKI

ODLEWNICZY STOP MAGNEZU ELEKTRON 21 STRUKTURA I WŁAŚCIWOŚCI W STANIE LANYM

Nanokompozytyna osnowie ze stopu aluminium zbrojone cząstkami AlN

MODYFIKACJA SILUMINU AK20 DODATKAMI ZŁOŻONYMI

PRZECIWZUŻYCIOWE POWŁOKI CERAMICZNO-METALOWE NANOSZONE NA ELEMENT SILNIKÓW SPALINOWYCH

WPŁYW MODYFIKACJI NA STRUKTURĘ I MORFOLOGIĘ PRZEŁOMÓW SILUMINU AlSi7

KOMPOZYTY O OSNOWIE METALOWEJ ZAWIERAJĄCE CZĄSTKI WĘGLA SZKLISTEGO WYKORZYSTANE DO PRACY W WARUNKACH TARCIA

WPŁYW RODZAJU MASY OSŁANIAJĄCEJ NA STRUKTURĘ, WŁAŚCIWOŚCI MECHANICZNE I ODLEWNICZE STOPU Remanium CSe

Odporność na zużycie erozyjno-korozyjne natryskiwanych naddźwiękowo powłok z węglikami chromu i wolframu

WPŁYW MODYFIKACJI NA STRUKTURĘ I MORFOLOGIĘ PRZEŁOMÓW SILUMINU AK132

NISKOTARCIOWE POWŁOKI NA BAZIE MOS 2 Z PODWARSTWAMI CHROMU NA ODLEWNICZYCH STOPACH ALUMINIUM

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

MIKROSKOPIA METALOGRAFICZNA

KONTROLA STALIWA GXCrNi72-32 METODĄ ATD

Transkrypt:

KOMPOZYTY (COMPOSITES) 4(24)9 Anna Wyszyńska 1, Maria Trzaska 2 Politechnika Warszawska, Wydział Inżynierii Materiałowej, ul. Wołoska 141, 2-57 Warszawa WPŁYW DYSPERSYJNEJ FAZY CERAMICZNEJ NA WŁAŚCIWOŚCI NIKLOWYCH WARSTW KOMPOZYTOWYCH Zbadano i oceniono wpływ dwóch różnych dyspersyjnych faz ceramicznych Si 3N 4 i Al 2O 3 na właściwości kompozytowych warstw niklowych wytworzonych metodą redukcji chemicznej. Przedstawiono wyniki analiz morfologicznej i rentgenowskiej proszków azotku krzemu i tlenku glinu stosowanych do wytwarzania warstw kompozytowych. Przedstawiono także topografię i morfologię powierzchni wytworzonych warstw Ni-P-Si 3N 4 i Ni-P-Al 2O 3 oraz ich strukturę w przekroju poprzecznym. Zaprezentowano wyniki badań twardości oraz odporności na zużycie przez tarcie materiału podłoża S235JR oraz warstw Ni-P, Ni-P- Si 3N 4, Ni-P-Al 2O 3. Analiza porównawcza wyników badań warstw Ni-P, Ni-P-Si 3N 4 oraz Ni-P-Al 2O 3 wykazała, że wbudowanie dyspersyjnej fazy ceramicznej w warstwę Ni-P powoduje istotne zwiększenie twardości oraz odporności na zużycie ścierne materiału warstwy kompozytowej. W przypadku badanych materiałów stwierdzono również taki sam wpływ zarówno tlenku glinu, jak i azotku krzemu na właściwości mechaniczne warstwy. Słowa kluczowe: warstwy kompozytowe, azotek krzemu, tlenek glinu, twardość, zużycie ścierne INFLUENCE OF A CERAMIC DISPERSIVE PHASE ON PROPERTIES OF COMPOSITE NICKEL COATINGS The paper is aimed on investigations of the influence of two kinds of ceramic dispersive phases i.e. Si 3N 4 and Al 2O 3 on properties of composite nickel coatings manufactured by the method of chemical reduction. Investigations of the morphology and phase composition of Si 3N 4 and Al 2O 3 powders are performed (Figs 1 and 2). Results of morphological examinations of the coating surfaces Ni-P, Ni-P-Si 3N 4 and Ni-P-Al 2O 3 are shown in Figure 3. Structures in cross sections of the composite coatings are shown in Figure 4. Effects of examinations of the wear resistance and hardness of the S235JR substrate and Ni-P, Ni-P-Si 3N 4 as well as Ni-P-Al 2O 3 coatings are reported (Fig. 5 and Tab. 1). Results of performed investigations of Ni-P- -Si 3N 4 coatings are compared with results of similar examinations of Ni-P-Al 2O 3 surface deposits. Results of investigations presented in this paper have showed that introducing ceramic phases into Ni-P coatings leads to important increase in wear resistance and hardness of the ceramic dispersive phase has influences on mechanical properties of the composite surface coatings. Key words: composite coatings, silikon nitride, aluminium oxide, hardness, abrasion properties WSTĘP Współczesne technologie w zakresie inżynierii powierzchni są głównie ukierunkowane na wytwarzanie funkcjonalnych warstw powierzchniowych, które spełniają specjalne wymagania techniczne i użytkowe. Obec- nie warstwy kompozytowe coraz częściej wypierają zwykłe powłoki metaliczne, gdyż wykazują one lepsze właściwości użytkowe, a koszt ich wytwarzania jest porównywalny z kosztem wytwarzania tradycyjnych powłok metalicznych. Metaliczne powłoki kompozytowe składają się z osnowy, którą mogą stanowić różne metale i stopy, oraz z fazy dyspersyjnej. Taka kombinacja, przy odpowiednim procesie technologicznym, pozwala uzyskać powłokę o żądanych właściwościach użytkowych. W warstwach kompozytowych metalem najczęściej stosowanym jako osnowa jest nikiel. Uwzględniając to, że nikiel może łatwo tworzyć związki z innymi pierwiast- kami, uzyskuje się dodatkowo możliwość polepszenia właściwości powłoki kompozytowej. Jako dyspersyjną fazę w powłokach kompozytowych stosuje się wysokorozdrobnione proszki materiałów ceramicznych, diamen- tu, grafitu, teflonu (PTFE). Wbudowanie w metalową osnowę twardej fazy dyspersyjnej ma na celu najczęś-ciej poprawę mechanicznych takich właściwości warstw, jak: twardość i odporność na zużycie przez tarcie. Przedmiotem badań objętych niniejszą pracą są warstwy kompozytowe Ni-P-Si 3 N 4 i Ni-P-Al 2 O 3 wytwarzane metodą redukcji chemicznej. Proces ten zajmuje istotne miejsce wśród innych procesów nanoszenia warstw, głównie ze względu na możliwość pokrywania materiałów nieprzewodzących prąd elektryczny oraz wyrobów 1 mgr inż., 2 prof. nadzw. dr hab. inż.

Wpływ dyspersyjnej fazy ceramicznej na właściwości niklowych warstw kompozytowych 95 o skomplikowanym kształcie. Ponadto metoda redukcji chemicznej umożliwia wytwarzanie metalowych warstw powierzchniowych w stosunkowo niskich temperaturach (poniżej 1 C) oraz zapewnia tworzenie warstw o zaplanowanej, jednakowej grubości na całej pokrywanej powierzchni, jak również zapewnia dobrą ich adhezję do podłoża [1-6]. Celem niniejszej pracy było ustalenie wpływu wbudowania różnych materiałów ceramicznych na właściwości niklowych warstw kompozytowych. Do wytworzenia warstw kompozytowych o osnowie niklowej stosowano dwa różne materiały ceramiczne, a mianowicie azotek krzemu i tlenek glinu. Oba te materiały charakteryzują się wysoką twardością (HV dla Al 2 O 3-21 GPa, dla Si 3 N 4-17 GP, dobrą wytrzymałością i stabilnością przy stosunkowo wysokich temperaturach, jak również są one odporne na działanie czynników chemicznych [2, 6, 7]. CZĘŚĆ DOŚWIADCZALNA Warstwy, stanowiące przedmiot badań, wytwarzane były na podłożu stalowym (stal S235JR) metodą redukcji chemicznej w wieloskładnikowej kąpieli zawierającej diwodorofosforan(i) sodu, chlorek niklu(ii) i cytrynian sodu. Warstwy kompozytowe Ni-P-Si 3 N 4 i Ni-P- -Al 2 O 3 wytwarzane były w kąpieli zawierającej dodatkowo polidyspersyjny proszek, odpowiednio, azotku krzemu lub tlenku glinu w ilości 5 g/dm 3 kąpieli. Temperatura kąpieli podczas procesu nakładania warstw wynosiła 9 C. Czas osadzania warstw był taki sam i wynosił 3 h. Aby uniknąć sedymentacji proszku oraz zapewnić podczas nakładania warstw kompozytowych jednorodność stężeń wszystkich składników w całej objętości kąpieli, była ona mieszana mieszadłem mechanicznym z szybkością 4 obr/min. Wymiar ziarn stosowanych proszków Si 3 N 4 i Al 2 O 3 oraz ich zróżnicowanie określono metodą dyfrakcji wiązki promieniowania laserowego za pomocą analizatora Mastersizer firmy Malvern Instruments. Identyfikację składu fazowego obu stosowanych proszków ceramicznych przeprowadzono za pomocą dyfraktometru rentgenowskiego firmy PHILIPS PW-183. Topografię wytworzonych warstw niklowych i kompozytowych oraz zróżnicowanie ich morfologii badano za pomocą elektronowego mikroskopu skaningowego typu HITACHI S- 35N. Rozkład fazy ceramicznej w objętości warstw kompozytowych oceniano za pomocą elektronowego mikroskopu skaningowego w oparciu o badania metalograficzne na trawionych zgładach poprzecznych. Pomiary mikrotwardości materiału warstw przeprowadzono na zgładach metalograficznych metodą Vickersa przy obciążeniu 2 G (HV,2) za pomocą mikroskopu NEOPHOT-1 z przystawką Hanemanna. Badania zużycia materiału warstw przez tarcie realizowano metodą trzy wałeczki - stożek na testerze typu T-4, wyposażonym w komputerowy układ sterowania i przetwarzania danych. W próbach stosowano stały nacisk jednostkowy wynoszący 5 MPa oraz smarowanie zanurzeniowe w oleju SAF 3, wypełniającym gniazdo mocujące badane elementy próbne. Przeciwpróbkę wykonano ze stali 45 ulepszanej cieplnie do twardości 3HRC. Całkowity czas próby tarcia wynosił 1 minut. W celach porównawczych przeprowadzono również badania dla warstw niklowych Ni-P oraz dla materiału podłoża. WYNIKI BADAŃ I ICH ANALIZA Z porównania wykresów przedstawionych na rysunku 1 wynika, że wymiary cząstek stosowanych proszków Si 3 N 4 i Al 2 O 3 są zbliżone do siebie. Także udziały objętościowe poszczególnych klas wymiarowych ziarn w obu stosowanych proszkach są porównywalne. W przypadku obu proszków zasadniczą część, wynoszącą ok. 8% objętości, stanowiły ziarna o wymiarach od,1 do 1, μm. V [%] V [%] 14 12 1 8 6 4 2,1,1 1 1 1 d [μm] 14 12 1 8 6 4 2,1,1 1 1 1 d [μm] Rys. 1. Rozkład udziału objętościowego danej klasy wymiarowej ziarn proszku: Si 3N 4, Al 2O 3 Fig. 1. Distribution of the volumic quotient in the given class of dimensions for the powder particles: Si 3N 4, Al 2O 3 Proszek Si 3 N 4 zawierał obie odmiany krystaliczne i β, przy czym dominująca była odmiana (rys. 2. Natomiast proszek Al 2 O 3 był jednofazowy i składał się w całości z odmiany zwanej korundem (rys. 2.

96 A. Wyszyńska, M. Trzaska Stwierdzono, że na powierzchni warstw kompozytowych zarówno Ni-P-Si 3 N 4, jak i Ni-P-Al 2 O 3 wyraźnie widoczne są cząstki fazy ceramicznej, które nie są całkowicie zabudowane, lecz są one mocno zakotwiczone w niklowej osnowie (rys. 3). na całej pokrywanej powierzchni. Nie stwierdzono również w ich strukturze jakichkolwiek nieciągłości. Uzyskane wyniki pomiaru mikrotwardości (tab. 1) wskazują wyraźnie, że wbudowanie zarówno proszku azotku krzemu, jak i tlenku glinu w osnowę Ni-P spowodowało zwiększenie mikrotwardości materiału warstwy. Pomimo tego że proszek Si 3 N 4 charakteryzuje się mniejszą twardością (HV 17 GP w porównaniu z proszkiem Al 2 O 3 (HV 21 GP, to jednak warstwa kompozytowa Ni-P-Si 3 N 4 (65HV,2) wykazuje nieznacznie większą twardość w stosunku do warstwy Ni- P-Al 2 O 3 (62HV,2). Prawdopodobnie jest to wynikiem wbudowania się większej liczby cząstek proszku azotku krzemu w materiał warstwy w porównaniu z liczbą wbudowanych cząstek tlenku glinu oraz bardziej równomiernego rozmieszczenia cząstek proszku Si 3 N 4 w niklowej osnowie. Na mikrotwardość warstw kompozytowych zarówno Ni-P-Si 3 N 4, jak i Ni-P-Al 2 O 3 ma również wpływ materiał osnowy, którą stanowi roztwór stały fosforu w niklu. Intensity 45 4 35 3 25 2 15 1 5 4 6 8 1 12 2 Theta Rys. 2. Dyfraktogram proszku: Si 3N 4, Al 2O 3 Fig. 2. Diffraction pattern of the powder: Si 3N 4, Al 2O 3 Warstwa Ni-P-Si3N4 (rys. 4 charakteryzuje się rów- nomiernym rozmieszczeniem cząstek fazy ceramicznej w osnowie Ni-P. Natomiast w przypadku warstwy Ni-P- -Al 2 O 3 (rys. 4, pomimo że cząstki fazy ceramicznej występują w całej objętości warstw, to jednak wbudowały się one w niklową osnowę mniej równomiernie. W objętości warstwy występują pewne obszary o większym zagęszczeniu cząstek ceramicznych. Warstwy kompozytowe Ni-P-Si 3 N 4 charakteryzują się mniejszą grubością oraz większym udziałem fazy ceramicznej w materiale kompozytowym w porównaniu z warstwą Ni-P-Al 2 O 3. Wbudowywanie większej liczby cząstek fazy dyspersyjnej powoduje zmniejszenie szybkości osadzania warstwy kompozytowej. Jest to konsekwencją efektu zmniejszania się powierzchni katalizatora procesu redukcji jonów niklu Ni +2 w wyniku blokowania jej przez osadzane cząstki fazy ceramicznej. Obie warstwy kompozytowe charakteryzują się równomierną grubością

Wpływ dyspersyjnej fazy ceramicznej na właściwości niklowych warstw kompozytowych 97 c) wielkości cząstek, jak również twardości materiału osnowy [2, 8-1]. 45 4 35 S235JR Zuzycie [um] 3 25 2 15 1 5 Ni-P-Si 3N 4 Ni-P Ni-P-Al 2O 3 Rys. 3. Mikrostruktura powierzchni warstw: Ni-P, Ni-P-Si 3N 4, c) Ni-P-Al 2O 3 Fig. 3. Microstructure of the surface layer: Ni-P, Ni-P-Si 3N 4, c) Ni-P-Al 2O 3 Rys. 4. Mikrostruktura w przekroju poprzecznym warstw kompozytowych: Ni-P-Si 3N 4, Ni-P-Al 2O 3 Fig. 4. Microstructure of the composite layer over its cross-section Ni--P-Si 3N 4, Ni-P-Al 2O 3 TABELA 1. TABLE 1. Materiał Wartość średnia pomiarów HV,2 S235JR 16 Ni-P 55 Ni-P-Si 3N 4 65 Ni-P-Al 2O 3 62 Chociaż w literaturze dotyczącej badań tribologicznych często pojawia się odwrotnie proporcjonalna zależność zużycia ściernego materiałów od ich twardości, to jednak jednoznaczne określenie takiej korelacji w przypadku materiałów kompozytowych bywa zazwyczaj bardzo trudne. Można to uzasadnić tym, że zużycie w wyniku tarcia powłok z materiałów kompozytowych zależy zarówno od rodzaju i ilości fazy dyspersyjnej, 1 2 3 4 5 6 7 8 9 1 Czas [min] Rys. 5. Zużycie ścierne materiałów: S235JR, Ni-P, Ni-P-Si 3N 4, Ni-P-Al 2O 3 Fig. 5. The abrasion wear of materials: S235JR, Ni-P, Ni-P-Si 3N 4, Ni-P- -Al 2O 3 Zużycie ścierne badanych próbek (rys. 5) zwiększa się monotonicznie w funkcji czasu trwania procesu. Przebieg zużycia warstw kompozytowych Ni-P-Si 3 N 4 i Ni-P-Al 2 O 3 jest niemal identyczny pomimo różnych twardości obu materiałów ceramicznych; zużycie warstw kompozytowych znacznie różni się od zużycia materiału podłoża i warstwy Ni-P. W przypadku warstw kompozytowych Ni-P-Si 3 N 4 i Ni-P-Al 2 O 3 zużycie materiału jest ponad 2,5 razy mniejsze w porównaniu z warstwą Ni-P. Cząstki fazy ceramicznej zarówno azotku krzemu, jak i tlenku glinu, zawarte w materiale warstw powierzchniowych, w istotny sposób wpływają na zmniejszenie jego zużycia ściernego. Podczas próby tarcia wciskanie twardych cząstek Al 2 O 3 (HV 21 GP i Si 3 N 4 (HV 17 GP w plastyczną osnowę (55HV,2), wywołane dość znacznym obciążeniem lokalnym powierzchni, może dodatkowo powodować umocnienie materiału poprzez odkształcenie plastyczne w mikroobszarach otaczających cząstki proszku. Na wynik tego badania również w istotny sposób wpływa ilość i równomierność wbudowanej fazy ceramicznej w materiał warstwy kompozytowej. PODSUMOWANIE Przeprowadzone badania wykazały, że wbudowanie dyspersyjnej twardej fazy ceramicznej zarówno Al 2 O 3, jak i Si 3 N 4 w niklową osnowę Ni-P powoduje kilkunastoprocentowe zwiększenie twardości materiału warstwy oraz ponad 2,5-krotne zwiększenie jego odporności na zużycie w wyniku tarcia. Warstwy kompozytowe Ni-P- -Si 3 N 4 oraz Ni-P-Al 2 O 3 o zbliżonej zawartości fazy cera- micznej i podobnej charakterystyce wymiarowej cząstek ceramicznych wykazują taką samą twardość i odporność na zużycie ścierne. Istotny wpływ w tym zakresie ma ilość i równomierność rozkładu wbudowanej fazy cera-micznej w materiale wytworzonej warstwy kompozytowej.

98 A. Wyszyńska, M. Trzaska LITERATURA [1] Duda L.L., Turkiewicz-Głęboki A., Bezprądowe wydzielanie powłok kompozytowych typu NiP-ZrO 2, Kompozyty (Composites) 23, 3, 6, 35-38. [2] Bielińska A., Bieliński J., Kontrola analityczna procesu bezprądowego osadzania Ni-P, Inżynieria Powierzchni 21, 4, 14-21. [3] Straffelini G., Colombo D., Molinari A., Surface durability of electroless Ni-P composite deposits, Wear 1999, 236, 179- -188. [4] Skopintsev V.D., Karelin A.V., Kotov I.O., Klinski G.D., Physico-mechanical and corroson characteristics of electroless composite coatings, Galvanotechnika i obrabotka poverchnosti 1998, 3, 29-34. [5] Balaraju J.N., Sankara Narayanan T.S.N., Seshadri S.K., Evaluation of the corrosion resistance of electroless Ni-P and Ni-P composite coatings by electrochemical impedance spectroscopy, Journal of Solid State Electrochemistry 21, 5, 334-338. [6] Marshall G.W., Lewis D.B., Clayton D., Blake K., Dodds B., The electrodeposition of Ni-P-Al 2O 3 deposits, Surface and Coatings Technology 1997, 96, 353-358. [7] Trzaska M., Wyszyńska A., Ocena wpływu fazy ceramicznej na właściwości tribologiczne warstw kompozytowych Ni-P- -Si 3N 4, Inżynieria Powierzchni 21, 4, 35-41. [8] Moonir-Vaghefi S.M., Saatchi A., Hedjazi J., Tribological behaviour of electroless Ni-P-MoS 2 composite coatings, Z. Metallkd. 1997, 88, 6, 498-51. [9] Braszczyńska K., Bochenek A., Właściwości trybologiczne kompozytów na bazie miedzi umacnianych cząstkami SiC, Inżynieria Materiałowa 1997, 1, 21-26. [1] Trzaska M., Właściwości trybologiczne warstw kompozytowych Ni-P-Al 2O 3, Inżynieria Materiałowa 1999, 5, 489- -491. Recenzent Eugeniusz Łągiewka