Kent Academic Repository

Podobne dokumenty
GARCH Modeling of Austrian Stock Market Reactions on Dividend Announcement

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Sławczo DENCZEW. 1. Wprowadzenie. 1. Introduction

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

OpenPoland.net API Documentation

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

****/ZN/2012. if you are pregnant or breast-feeding.

Tychy, plan miasta: Skala 1: (Polish Edition)

The Diagrammatic Coaction

Helena Boguta, klasa 8W, rok szkolny 2018/2019

The Differentiation of Firm Survival Models in the Poviats of the Zachodniopomorskie Voivodeship

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Stargard Szczecinski i okolice (Polish Edition)

Few-fermion thermometry

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Articulated Body Motion Tracking by Combined Particle Swarm Optimization and Particle Filtering

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2


ANALIZA EKSPLOATACYJNA TRWAŁOŚCI ZESTAWÓW KOŁOWYCH TRAMWAJÓW

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Specjalność: Napędy hybrydowe

Revenue Maximization. Sept. 25, 2018

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Hard-Margin Support Vector Machines

Sławomir JUŚCIŃSKI Małgorzata SZCZEPANIK. 1. Introduction. 1. Wprowadzenie

FASCINATING RHYTHM. for S.A.B. voices and piano with optional SoundPax and SoundTrax CD* Preview Only. Got mp. E m/g B 7sus/F E m A 9 E 5 E m7/b

Please fill in the questionnaire below. Each person who was involved in (parts of) the project can respond.

deep learning for NLP (5 lectures)

European Crime Prevention Award (ECPA) Annex I - new version 2014

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS


Jazz EB207S is a slim, compact and outstanding looking SATA to USB 2.0 HDD enclosure. The case is

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Niepubliczne Przedszkole i Żłobek EPIONKOWO

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

SG-MICRO... SPRĘŻYNY GAZOWE P.103


Rachunek lambda, zima

Conditionals: 0, 1, 2, 3 - Zadania warunkowe. O Conditional. Kiedy używamy? Zdanie podrzędne Zdanie nadrzędne

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński

Employment. Number of employees employed on a contract of employment by gender in Company

Poland) Wydawnictwo "Gea" (Warsaw. Click here if your download doesn"t start automatically

Installation of EuroCert software for qualified electronic signature

Patients price acceptance SELECTED FINDINGS

Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

A. WAN1/WAN2 Interface and LAN NAT/Routing host. B. VPN Host and LAN NAT Host. C. An example using Part A and B

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu

Sargent Opens Sonairte Farmers' Market

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Key Info. Some white chocolates are taken out of the box. There are now 30 chocolates in the box. The number of white chocolates has halved.

Camspot 4.4 Camspot 4.5

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO MAJ 2012 POZIOM ROZSZERZONY CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

Robotic Arm Assembly Manual

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

TECHNOLOGIA BLUETOOTH: Wykaz telefonów przetestowanych i polecanych przez RENAULT. Szara linia: Gray line:

Key Info. Some white chocolates are taken out of the box. There are now 30 chocolates in the box. The number of white chocolates has halved.

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Cracow University of Economics Poland


/ / * ** ***

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Projekty Marie Curie Actions w praktyce: EGALITE (IAPP) i ArSInformatiCa (IOF)

U3000/U3100 Mini (Dla Komputera Eee na systemie operacyjnym Linux) Krótka Instrukcja

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers

Test sprawdzający znajomość języka angielskiego

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

03 April kwietnia 2015 r. Zmiana satelity dostarczającego sygnał Animal Planet HD. Change of Delivery Satellite for Animal Planet HD

miniature, low-voltage lighting system MIKRUS S

18. Przydatne zwroty podczas egzaminu ustnego. 19. Mo liwe pytania egzaminatora i przyk³adowe odpowiedzi egzaminowanego

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Inverse problems - Introduction - Probabilistic approach

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

PSB dla masazystow. Praca Zbiorowa. Click here if your download doesn"t start automatically

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T

The Overview of Civilian Applications of Airborne SAR Systems

Transkrypt:

Ken Academc Reposory Full ex documen (pdf) Caon for publshed verson Du, Hongyan and Chen, Lwen and Wu, Shaomn (27) Generalzed negraed mporance measure for sysem performance evaluaon: applcaon o a propeller plane sysem Manenance and Relably, 9 (2) pp 279-286 ISS 57-27 DOI hps://doorg/753/en2726 Lnk o record n KAR hp://karkenacuk/6549/ Documen Verson Publsher pdf Copyrgh & reuse Conen n he Ken Academc Reposory s made avalable for research purposes Unless oherwse saed all conen s proeced by copyrgh and n he absence of an open lcence (eg Creave Commons), permssons for furher reuse of conen should be sough from he publsher, auhor or oher copyrgh holder Versons of research The verson n he Ken Academc Reposory may dffer from he fnal publshed verson Users are advsed o check hp://karkenacuk for he saus of he paper Users should always ce he publshed verson of record Enqures For any furher enqures regardng he lcence saus of hs documen, please conac: researchsuppor@kenacuk If you beleve hs documen nfrnges copyrgh hen please conac he KAR admn eam wh he ake-down nformaon provded a hp://karkenacuk/conachml

Arcle caon nfo: DUI H, CHE L, WU S Generalzed negraed mporance measure for sysem performance evaluaon: applcaon o a propeller plane sysem Eksploaacja ezawodnosc Manenance and Relably 27; 9 (2): 279 286, hp://dxdoorg/753/en2726 Hongyan DUI Lwe CHE Shaomn WU Generalzed negraed mporance measure for sysem performance evaluaon: applcaon o a propeller plane sysem uogólnona mara znegrowanej ważnośc komponenów jako narzędze oceny wydajnośc sysemu: zasosowane w odnesenu do układu śmgłowca The negraed mporance measure (IIM) evaluaes he rae of sysem performance change due o a componen changng from one sae o anoher The IIM smply consders he scenaros where he ranson rae of a componen from one sae o anoher s consan Ths may conradc he assumpon of he degradaon, based on whch sysem performance s degradng and herefore he ranson rae may be ncreasng over me The Webull dsrbuon descrbes he lfe of a componen, whch has been used n many dfferen engneerng applcaons o model complex daa ses Ths paper exends he IIM o a new mporance measure ha consders he scenaros where he ranson rae of a componen degradng from one sae o anoher s a me-dependen funcon under he Webull dsrbuon I consders he condonal probably dsrbuon of a componen sojournng a a sae s he Webull dsrbuon, gven he nex sae ha componen wll jump o The research on he new mporance measure can denfy he mos mporan componen durng hree dfferen me perods of he sysem lfeme, whch s correspondng o he characerscs of Webull dsrbuons For llusraon, he paper hen derves some probablsc properes and apples he exended mporance measure o a real-world example (e, a propeller plane sysem) Keywords: sysem performance, mporance measure, Webull dsrbuon, ranson rae Mara znegrowanej ważnośc (IIM) pozwala ocenać szybkość zman wydajnośc sysemu powsałych w wynku przejśca elemenu sysemu z jednego sanu do drugego IIM pozwala rozważać scenarusze, w kórych szybkość przejśca elemenu z jednego sanu do drugego jes sała Jes o jednak sprzeczne z założenem degradacj, zgodne z kórym wydajność sysemu obnża sę, w zwązku z czym, szybkość przejśca może z upływem czasu ulegać zwększenu Rozkład Webulla opsuje żywoność danego elemenu, co wykorzysuje sę w welu różnych zasosowanach echncznych do modelowana złożonych zborów danych W przedsawonej pracy, rozszerzono IIM uzyskując nową marę ważnośc, kóra pozwala rozważać scenarusze, w kórych szybkość przejśca elemenu z jednego sanu do drugego w wynku degradacj jes zależną od czasu funkcją rozkładu Webulla Przyjęo, że warunkowy rozkład prawdopodobeńswa elemenu przebywającego w pewnym sane jes rozkładem Webulla, gdze dany jes kolejny san do kórego ma przejść dany elemen Badana nad nową marą ważnośc umożlwają denykację najważnejszych elemenów podczas rzech różnych okresów czasu życa sysemu, co odpowada charakerysyce rozkładów Webulla Dla lusracj, wyprowadzono pewne właścwośc probablsyczne zasosowano rozszerzoną marę ważnośc do analzy przykładu rzeczywsego układu śmgłowca Słowa kluczowe: wydajność sysemu, mara ważnośc, rozkład Webulla, szybkość przejśca oaon x () sae of componen a me, x( ) =,,2,, M X () ( x( ), x2( ),, xn( )) : sae vecor of he componens a me Φ ( X( )) sysem srucure funcon a me and range {,,, M}, Φ ( X ( )) =Φ( x( ), x2( ),, xn( )) (, X( )) ( x( ),, x ( ),, x+ ( ),, xn( )) P, ml () Pr( x( ) = l x() = m) Pm, () Pr( x ( ) = m) b, ml ranson rae of componen from sae m o sae l c j manenance cos of mprovng he sysem from sae j o sae M { } ρ m, () Pr x ( ) < m ρ ml, () Pr { x ( ) < l x () = m} EKS P L O A T A C J A I I E Z A W O D O S C MA I T E A C E A D RELIABILITY VO L9, O 2, 27 279

Inroducon In relably engneerng, a bulk of research has been devoed o evaluae he conrbuon of componens o sysem relably and performance [4 For example, Yang e al [26 provded a mehod of smulang he relably of degradaon usng Mone Carlo prncple and cloud heory Cheng e al [6 proposed an approach o analyze he relably evaluaon based on fas Markov chan smulaons Leurondo e al [2 presened a model o evaluae he sysem performance wh localzed damage Werbńska-Wojcechowska and Zając [2 used a delay-me concep o analyze he sysem manenance performance The semnal work of relably mporance measure s creded o Brnbaum, who nroduce he well-known Brnbaum mporance n 969 [ Snce hen, a wde range of dfferen mporance measures have been nroduced For example, Wu and Chan [22 proposed he uly mporance of componen saes n mul-sae sysems Levn e al [3 generalzed he mporance measures for mul-sae elemens based on performance level resrcons Wu and Coolen [24 exended he Brnbaum mporance o a cos-based mporance measure Borgonovo e al [2, 3 proposed dfferenal mporance measure, and me-ndependen relably mporance for he rsk evaluaon Zha e al [27 presened a momen-ndependen mporance o evaluae he safey probably Tyrvänen [2 presened rsk mporance measures o analyze he dynamc relably Wu e al [23 proposed a componen manenance prory mporance o mprove he sysem performance Duu and Rauzy [9 exended he mporance measures o complex componens Kuo and Zhu [, 28 summarzed he conceps of mporance measures and her applcaon n relably and mahemacal programmng S, Du e al [7, 8 proposed he negraed mporance measure (IIM) of componen saes, whch evaluaes how he ranson of componen saes affecs he sysem performance n mul-sae sysems S, Du e al [9 suded he IIM from componen saes o he componen, whch can denfy he mos mporan componen for mprovng he sysem performance Du e al [7, 8 suded he IIM n sysem lfeme and sem-markov process o evaluae he change of he sysem performance, respecvely The IIM evaluaes he rae of sysem performance change due o a componen changng from one sae o anoher The IIM smply consders he scenaros when he ranson rae of a componen from one sae o anoher s consan Ths may conradc he assumpon of he degradaon, based on whch sysem performance s degradng and herefore he ranson rae may be ncreasng over me On he oher hand, he Webull dsrbuon s one of he mos commonly used lfeme dsrbuons n relably modelng and lfeme esng [25 I has been used n many dfferen engneerng applcaons o model complex daa ses, such as lfe ess [5, faul dagnoss [4, 5, oral rrgaors [6, e al The Webull dsrbuon and s varans can accommodae ncreasng, consan or decreasng falure raes [ Thus, one may exend he IIM o a new mporance measure ha consders he scenaros where he ranson rae of a componen changng from one sae o anoher as a me-dependen funcon Typcally, one may consder he condonal probably dsrbuon of a componen sojournng n a sae s he Webull dsrbuon, gven he nex sae ha he componen wll jump o On he bass of such consderaon, hs paper proposes a new mporance measure The research on he new mporance measure can denfy he mos mporan componen durng hree dfferen me perods of he sysem lfeme, whch s correspondng o he characerscs of Webull dsrbuons The paper hen derves some probablsc properes I also analyzes he properes of he proposed mporance measure of he parallel-seres sysems and he seres-parallel sysems, respecvely A real-world example s borrowed o llusrae he proposed mporance measure The res of he paper s as follows Secon 2 exends he IIM The correspondng properes of IIM n he Webull dsrbuon are analyzed for ypcal parallel-seres sysem and seres-parallel sysem srucures n Secon 3 An applcaon s presened o llusrae he proposed mehod n Secon 4 Secon 5 gves he concluson of hs paper 2 The exended IIM for sysem performance under Webull dsrbuons In hs paper, he sae space of componen s {,,, M } and he sae space of he sysem s{,,, M} Sae represens he complee falure sae and sae M (M ) s he perfec funconng sae The saes are ordered from he complee falure sae o he perfec funconng sae We assume ha he levels of manenance cos and he sysem saes ( c c c c = ) are nversely proporonal The M M expeced manenance cos s M M C = cjpr( Φ ( X) = j) = ( cj cj+ Pr( Φ( X) j) S, Du e al [7 gave he followng IIM, as n Equaon ( IIM ml, Pm, bml, c j c j m X j l X j ( ) = ( ) ( + ) Pr ( Φ( ( ), ( )) ) Pr ( Φ( ( ), ( )) ) ( ) Pr ( ( ( ), ( )) ) Pr ( ( ( ), ( )) ), = Pm, bml, cj Φ m X = j Φ l X = j m< l Then IIM,ml () descrbes he rae of manenance cos loss due o a componen mprovng from sae m o sae l a me In Equaon (, b, ml, whch s he ranson rae of componen from sae m o sae l, s a quany ndependen of me Inuvely, b, ml may be a me-dependen quany as he componen s a deerorang/ageng un Hence, he IIM defned n Equaon ( s oo resrcve In order o arac wder applcaons, one may exend he IIM by nroducng he followng mporance measure Defnon The exended negraed mporance measure (EIIM) s gven by: EIIM ml, (, y)= P, m( ) b, ml ( y) cj Pr ( Φ( m(), X( )) = j) Pr ( Φ ( l (), X( )) = j), m< l In Equaon (2), b, ml ( y ) s a funcon of he sojourn me y An neresng queson s wha form of funcon b, ml ( y ) should be In he followng, we consder he case when he Webull dsrbuon s adoped Le he wo-parameer Webull dsrbuon W( ; θ, ) be denoed by: ( (2) W( ; θ, )= exp ( / θ), θ, >, (3) where θ and are he scale and shape parameers, respecvely We can hen oban he dsrbuon funcon of he sojourn me n sae m and he ranson rae for componen Denoe θ ml, he scale param- 28 EKS P L O A T A C J A I I E Z A W O D O S C MA I T E A C E A D RELIABILITY VO L9, O 2, 27

eer of componen n sae m, gven ha he nex sae s l, and he shape parameer of componen Then he ranson rae b, ml ( y ) s bml, ( y) / θml, y / θ, ml = ( )( ) Accordng o Equaon (2), he expresson of he EIIM under he Webull dsrbuon s as followng: Defnon 2 The EIIM under he Webull dsrbuon s gven by: EIIMml, ( y, )= P, m()( / θml, )( y/ θ, ml ) ( cj cj+ Pr ( Φ( m (), X( )) j) Pr ( Φ( l ( ), X()) j) Pm, = () ( )( ) = / θ ml, y/ θ, ml c j Pr ( Φ( m (), X( )) j) Pr ( Φ( l ( ), X()) = j) (4) I s known ha wh dfferen shape parameers, he Webull dsrbuon becomes dfferen dsrbuons, such as he exponenal dsrbuon, he Raylegh dsrbuon, he normal dsrbuon Thus, wh dfferen shape parameers, Equaon (4) can be convered no dfferen expressons under dfferen dsrbuons When M =, he mul-sae sysem reduces o a bnary sysem Equaon (4) can be convered no: EIIM, y, P, / θ, y/ θ, c Pr ( Φ( (), X( )) = ) Pr ( Φ ( ( ), X()) = ) (5) ( )= ()( )( ) I s obvous ha he las erm n he rgh hand sde of Equaon (5) s he Brnbaum mporance measure (BM) of componen, as n Equaon (6): BM()= Pr ( Φ( ( ), X ()) = ) Pr ( Φ( (), X( )) = ) (6) From Equaons (5) and 6, he EIIM of componen s a generalzaon of BM based on he sysem performance We wll dscuss he dfference beween BM and EIIM for he change of dfferen parameers n secon 4 3 Characerscs of EIIM for ypcal sysem srucures We now dscuss he properes of he EIIM for parallel-seres sysem and seres-parallel sysem srucures Fg gves he srucure of a ypcal parallel-seres sysem, where [j represens he componen ha s locaed n row and column j The correspondng srucure funcon of he sysem s Φ( X( )) max mn X[ j () j = { } Fg A parallel-seres sysem The srucure of a ypcal seres-parallel sysem s as n Fg 2, where [j represens he componen whch s locaed n column and row j The correspondng srucure funcon of he sysem s Φ( X( )) mn max X () = { [ j } j Fg 2 A seres-parallel sysem Assume ha he lfeme dsrbuon funcon of componen [j follows Webull dsrbuon W ; θ j ml, j proposons: ( [, [ ) We can oban he followng EKS P L O A T A C J A I I E Z A W O D O S C MA I T E A C E A D RELIABILITY VO L9, O 2, 27 28

Proposon In a parallel-seres sysem, assume =, hen EIIM (, y) EIIM ( y, ) only when P[ j, m() / θ[ j, m( m+ αm( )( ρ[ j, m( )) [ j ( ) [ j [ 2j2 [ 2 j2 P[ j, m() / θ [ 2j2, m( m+ αm( 2)( ρ[ j, m()) [ j, mm ( + [ 2j2, mm ( + Proof Accordng o he srucure funcon n he parallel-seres sysems and Equaon (4), he rgh hand sde of Equaon (4) can be convered no: ( cj cj+ Pr ( Φ( m ( ), X ()) j) = ( cj cj+ Pr(max{ mn { X[ h ( )},, mn { X[( h ()}, h h mn{ X[ (),, X[ ( j (), m, X[ ( j+ (),, X[ ()}, mn { X [( + h ( )},, h + mn { X[ h ()}) j h = ( cj cj+ Pr( mn { X[ h ( )} j,, mn { X[( h ()} j, h h mn{ X[ ( ),, X[( j ( ), mx, [( j+ ( ),, X[ ( )} j, mn { X[( + h ( )} j,, h mn { X[ h ()} j) h + For k {, 2,, }, k, j {,,, }, we can oban: Pr( mn { X[ kh ( )} j) = Pr( mn { X[ kh ()} > j) h h k k = Pr( X[ k ( ) > j,, X[ k ( ) > j) = ( [ kh, j( )) k ρ k mn{ X[ ( ),, X[ ( j ( ), m, X[ ( j+ ( ),, X[ ( )} m, so for k =, j { m,, }, we have : Pr(mn{ X[ ( ),, X[ ( j ( ), m, X[ ( j+ ( ),, X[ ( )} j) =, and for k =, j {,, m }, we have: Pr(mn{ X[ ( ),, X[( j ( ), mx, [( j+ ( ),, X[ ( )} j) = Pr(mn{ X[ ( ),, X[( j ( ), mx, [( j+ ( ),, X[ ()} > j) = Pr( X[ ( ) > j,, X[( j ( ) > j, X[( j+ () > j,, X[ j () > ) k = ( ρ[ h, j ( )), j So we can ge: ( cj cj+ Pr Φ( m ( ), X ()) j ( ) m k k = ( cj cj+ [ ( ρ [ kh, j ()) [ ( ρ [ h, j ()) + ( cj cj+ [ ( ρ[ kh, j ()) k=, k, j m k=, k Then he rgh hand sde of Equaon (4) s: ( cj cj + Pr ( Φ( m( ), X()) j) Pr ( Φ( l(), X( )) j) l k l k = ( cj cj+ ) [ ( ρ[ kh, j ()) ( cj c j+ [ ( ρ[ kh, j( )) [ ( ρ[ h, j ( )) m k=, k m k=, k, j l k = ( cj cj+ [ ( ρ[ kh, j ()) ( ρ[ h, j ( )) m k=, k, j 282 EKS P L O A T A C J A I I E Z A W O D O S C MA I T E A C E A D RELIABILITY VO L9, O 2, 27

A las, we can oban: EIIM[ j, mm ( (, y) P[, j, m [ j / θ[ j, ml y / θ[ j, ml + = ()( ) [ j ( ) k ( cm cm+ ( ρ[ kh, m( )) ( ρ[ h ( )),, m k=, k, j EIIM[ j, mm ( (, y) P[, j, m [ j / θ[ j, ml y / θ[ j, ml + = ()( ) [ j ( ) k ( cm cm+ ( ρ[ kh, m( )) ( ρ[ h ( )), m k=, k, j Then we have: EIIM[ j, mm ( )(, y) EIIM[ j, mm ( )( y, ) + + [ j [ j 2 P[, j, m ()( [ j / θ[ j, ml )( y/ θ[ j, ml ) ( ρ[ h, m( )) P [, j, m()( [ j / θ[ j, ml)( y / θ [ 2j2, ml ) ( ρ[ h ( )) 2, m 2 ( ρ[ h, m( )) ( ρ[ j, m( )) ( ( )) ( ρ[ h, 2 m ρ[ j, m()) [ j [ j P[, j, m [ j / θ[ j, ml y / θ ()( )( [ j, ml ) P[ j m() j / 2, 2, ( [ θ [ j, ml y / θ )( [ 2j2, ml ) αm( )( ρ[ j, m( )) α ( )( ρ m 2 [ j, m( )) [ j = [ 2 j2 [ j [ 2j2 P[, j, m() ( / θ [ j, m( m+ ) P[, j, m() / ( θ[ 2j2, m( m+ ) αm( )( ρ[ j, m( )) m 2 α ( )( ρ [ j m( )), Snce he parallel sysem and he seres sysem are dual sysems, accordng o Proposon, we can oban Proposon 2 Proposon 2 In a seres-parallel sysem, assume =, hen P[ j, m() / θ[ j, m( m+ βm( ) ρ[ j, m() [ j P[ j, m() / θ [ 2j2, m( m+ βm( 2) ρ[ j, m() [ j [ 2j2 [ 2 j2 EIIM (, y) EIIM (, y) [ j, mm ( + [ 2j2, mm ( + only when Proof Smlarly o Proposon, he proof can be esablshed In Proposon, f we consder he suaon ha here s only one row, he parallel-seres sysem reduces a seres sysem In Proposon 2, f we consder he suaon ha here s only one column, he seres-parallel sysem reduces a parallel sysem Accordng o Proposons and 2, we have Corollares and 2 Corollary In a parallel-seres sysem, assume =, hen [ j [ j2 EIIM (, y) EIIM (, y) only when [ j, m( m+ [ j2, m( m+ P[ j, m() / θ[ j, m( m+ ρ[ j, m() [ j ( ) P[ j, m( ) / θ 2 [ j2, mm ( + ρ[ j, m() 2 [ j2 Proof Smlarly o Proposon, he proof can be esablshed EKS P L O A T A C J A I I E Z A W O D O S C MA I T E A C E A D RELIABILITY VO L9, O 2, 27 283

Corollary 2 In a seres-parallel sysem, assume [ j = [ j, hen [ j, m( m+ [ j2, m( m+ 2 EIIM (, y) EIIM (, y) only when P[ j, m() / θ[ j, m( m+ ρ[ j, m() [ j P[ j, m() 2 ρ ( / θ[ j2, mm ( + ) [ j2, m () [ j2 Proof Smlarly o Proposon 2, he proof can be esablshed From Proposons, 2 and Corollares, 2, n a parallel-seres sysem or seres-parallel sysem, f he ranson rae funcon of componen from sae m o an adjacen sae s larger han ha of componen j, hen he effec of componen on he sysem performance s larger han ha of componen j Ths also means ha we can denfy he mos mporan componen n he sysem when consderng he effecs of mprovemen beween adjacen saes of a componen on sysem performance, a me If wo componens are n he same degradng sae, hen he componen wh larger mporance value should be mananed frs n he operaon of a parallel-seres sysem or seres-parallel sysem o ge he larger mprovemen of sysem performance 4 Applcaon o a propeller plane sysem Fg 3 A propeller plane sysem In hs secon, we use a real-world example o llusrae he applcaon of he EIIM A propeller plane manly consss of engnes, 2, 3, 4 (componens, 2, 3, 4), conrol panel (componen 5), and wngs, 2 (componens 6, 7), as shown n Fg 3 The four componens (e, engnes) consues a 2-ou-of-4: G sysem Tha s, n order o ensure safey flgh, a leas wo engnes mus be workng We assume ha when he propeller plane sysem fals, he manenance cos s mllon CY In order o analyze he dfference beween BM and EIIM, we assume ha he lfeme of all he componens follow he Webull dsrbuon wh he same scale parameers and dfferen shape parameers =, =, = 3, and θ, = Fg 4 llusraes he dfference beween BM and EIIM of engnes and oher componens for dfferen shape parameers From Fg 4, we have he followng fndngs If he shape parameer of a componen s less han, he ranson rae decreases wh me, he BM of a componen s bgger han s EIIM If he shape parameer of a componen s equal o, he ranson rae s b, ( y) = / θ, = based on Proposon 2, and ( )= () () whch s ndependen of he so- IIM, y, P, BM journ me If he shape parameer of a componen s more han, he ranson rae ncreases wh me, and componen EIIM s also hgher han s BM When fxng y= and θ, =, we can oban he BM and EIIM of engnes wh he change of shape parameer as n Fg 5, whch s correspondng o Fgs 4 (a), (c), and (e) for =, =, = 3 When he shape parameer becomes bgger, he value of EIIM also be- (a) Imporance of engnes when = (b) Imporance of oher componens when = and oher componens (c) Imporance of engnes when = (d) Imporance of oher componens when = and oher componens (e) Imporance of engnes when = 3 and oher componens (f) Imporance of oher componens when = 3 and oher componens Fg 4 Dfference beween BM and EIIM of engnes and oher componens 284 EKS P L O A T A C J A I I E Z A W O D O S C MA I T E A C E A D RELIABILITY VO L9, O 2, 27

relables of all engnes are he same So BM of all engnes are he same when =, as n Fg 6(a) When θ, = and y=3, he value of EIIM of engnes ncreases wh he ncremen of shape parameers, whch s correspondng o Fg 6(b) Fg 5 Imporance of engnes wh he change of shape parameer 5 Conclusons and fuure work Ths paper exends he negraed mporance measure o a new measure and sudes he proposons of he new measure The resuls are useful for manenance managers o evaluae whch componen sae generaes he mos mprovemen n provdng he sysem performance I ypcally consders he condonal probably dsrbuon of a componen sojournng a a sae s he Webull dsrbuon, gven he nex sae ha componen wll jump o Then he dfference beween he Brnbaum mporance and he negraed mporance measure of a componen wh dfferen shape parameers s dscussed If he shape parameer s smaller han, he ranson rae decreases wh me, and he Brnbaum mporance measure of a componen s bgger han s exended negraed mporance measure If he shape parameer of a componen equals o, he ranson rae s consan, (a) BM of engnes Fg 6 Dfference of mporance among engnes (b) EIIM of engnes comes bgger han BM more and more Ths s because ha / θ, becomes bgger, and he EIIM s relaed o shape parameers As dscussed above, he four engnes consue a 2-ou-of-4: G sysem In case all he four engnes follow dfferen Webull dsrbuons, how do he engnes affec he sysem performance? To fnd he answer, we wll analyze he dfference of mporance among engnes We assume θ, =, y = 3, 5 = 6 = 7 = 3, and for he shape parameer of engnes, = 3, 2 = 2, 3 =, 4 = The dfference beween he BM and he IIM among engnes s shown n Fg 6 From Fg 6, he order of BM and EIIM of four engnes s engne > engne 2 > engne 3 > engne 4 When θ, = and =, accordng o Equaon (3), W( ; θ,, )= exp ( / θ, e = Tha s o say ha he whch s ndependen of he sojourn me of a componen n a sae If he shape parameer of a componen s greaer han, he ranson rae ncreases wh me, and componen exended negraed mporance measure s hgher han s BM In he fuure work, we wll dscuss he oher dsrbuons when componen manenance cos changes wh he falure rae and me The cos can ake dfferen ypes no consderaon, such as he consran of oher resources (fnance, exernal facor), opporuny cos, and so on Acknowledgemens The auhors graefully acknowledge he fnancal suppors for hs research from he aonal aural Youh Scence Foundaon of Chna (os 7573, 6443, 75768) References Brnbaum Z W On he mporance of dfferen componens n a mul-componen sysem, n Mulvarae Analyss II ew York: Academc Press 969: 58-592 2 Borgonovo E Dfferenal, crcaly and Brnbaum mporance measures: An applcaon o basc even, groups and SSCs n even rees and bnary decson dagrams Relably Engneerng & Sysem Safey 27; 92: 458-467, hps://doorg/6/jress26923 EKS P L O A T A C J A I I E Z A W O D O S C MA I T E A C E A D RELIABILITY VO L9, O 2, 27 285

3 Borgonovo E, Alee H, Glaß M, Tech J A new me-ndependen relably mporance measure European Journal of Operaonal Research 26; 254: 427-442, hps://doorg/6/jejor26354 4 Ca B, Lu Y, Fan Q, e al Mul-source nformaon fuson based faul dagnoss of ground-source hea pump usng Bayesan nework Appled Energy 24; 4: -9, hps://doorg/6/japenergy23943 5 Ca B, Zhao Y, Lu H, Xe M A Daa-Drven Faul Dagnoss Mehodology n Three-Phase Inverers for PMSM Drve Sysems IEEE Transacons on Power Elecroncs 26; 99: -, hps://doorg/9/pel26268842 6 Cheng Q, Sun B, Zhao Y, Gu P A mehod o analyze he machnng accuracy relably sensvy of machne ools based on Fas Markov Chan smulaon Eksploaacja ezawodnosc - Manenance and Relably 26; 8: 552-564, hps://doorg/753/en264 7 Du H, S S, Cu L, Ca Z, Sun S Componen mporance for mul-sae sysem lfemes wh renewal funcons IEEE Transacons on Relably 24; 63: 5-7, hps://doorg/9/tr24229932 8 Du H, S S, Zuo M, Sun S Sem-Markov process-based negraed mporance measure for mul-sae sysems IEEE Transacons on Relably 25; 64: 754-765, hps://doorg/9/tr252433 9 Duu Y, Rauzy A On he exenson of Imporance Measures o complex componens Relably Engneerng & Sysem Safey 25; 42: 6-68, hps://doorg/6/jress2546 Jang R A new bahub curve model wh a ne suppor Relably Engneerng & Sysem Safey 23; 9: 44-5, hps://doorg/6/j ress2359 Kuo W, Zhu X Imporance Measures n Relably, Rsk, and Opmzaon: Prncples and Applcaons UK: Wley, 22, hps://do org/2/978834593 2 Leurondo U, Salgado O, Galar D Mul-body modellng of rollng elemen bearngs and performance evaluaon wh localzed damage Eksploaacja ezawodnosc - Manenance and Relably 26; 8: 638-648, hps://doorg/753/en2642 3 Levn G, Podolln L, Zo E Generalsed mporance measures for mul-sae elemens based on performance level resrcons Relably Engneerng & Sysem Safey 23; 82: 287-298, hps://doorg/6/s95-832(3)7-6 4 Lu Y, Ln P, L Y, Huang H Bayesan relably and performance assessmen for mul-sae sysems IEEE Transacons on Relably 25; 64: 394-49, hps://doorg/9/tr242366292 5 Musleh R M, Helu A Esmaon of he nverse Webull dsrbuon based on progressvely censored daa: Comparave sudy Relably Engneerng & Sysem Safey 24; 3: 26-227, hps://doorg/6/jress2476 6 Prabhakar Murhy D, Xe M, Jang R Webull models, John Wley &Sons, Inc, Hoboken, ew Jersey, 24 7 S S, Du H, Ca Z, Sun S The negraed mporance measure of mul-sae coheren sysems for manenance processes IEEE Transacons on Relably 22; 6: 266-273, hps://doorg/9/tr222927 8 S S, Du H, Zhao X, Zhang S, Sun S Inegraed mporance measure of componen saes based on loss of sysem performance IEEE Transacons on Relably 22; 6: 92-22, hps://doorg/9/tr2282394 9 S S, Levn G, Du H, Sun S Componen sae-based negraed mporance measure for mul-sae sysems Relably Engneerng & Sysem Safey 23; 6: 75-83, hps://doorg/6/jress23223 2 Tyrvänen T Rsk mporance measures n he dynamc lowgraph mehodology Relably Engneerng & Sysem Safey 23; 8: 35-5, hps://doorg/6/jress2343 2 Werbńska-Wojcechowska S, Zając P Use of delay-me concep n modellng process of echncal and logscs sysems manenance performance: Case sudy Eksploaacja ezawodnosc - Manenance and Relably 25; 7: 74-85, hps://doorg/753/ en2522 22 Wu S, Chan L Performance uly-analyss of mul-sae sysems IEEE Transacons on Relably 23; 52: 4-2, hps://doorg/9/ TR2285783 23 Wu S, Chen Y, Wu Q, Wang Z Lnkng componen mporance o opmsaon of prevenve manenance polcy Relably Engneerng & Sysem Safey 26; 46: 26-32, hps://doorg/6/jress258 24 Wu S, Coolen Frank P A A cos-based mporance measure for sysem componens: An exenson of he Brnbaum mporance European Journal of Operaonal Research 23; 225: 89-95, hps://doorg/6/jejor22934 25 Xe M, Tang Y, Goh T A moded webull exenson wh bahub-shaped falure rae funcon Relably Engneerng & Sysem Safey 22; 76: 279-285, hps://doorg/6/s95-832(2)22-4 26 Yang H, Xu G, Fan X A relably analyss mehod of cloud heory - Mone Carlo based on performance degradaon daa Eksploaacja ezawodnosc - Manenance and Relably 25; 7: 435-442, hps://doorg/753/en2535 27 Zha Q, Yang J, Xe M, Zhao Y Generalzed momen-ndependen mporance measures based on Mnkowsk dsance European Journal of Operaonal Research 24; 239: 449-455, hps://doorg/6/jejor2452 28 Zhu X, Kuo W Imporance measures n relably and mahemacal programmng Annals of Operaons Research 24; 22: 24-267, hps://doorg/7/s479-2-27- Hongyan dua School of Managemen Engneerng, Zhengzhou Unversy, Zhengzhou 45, Chna lwe chenb School of Elecrcal Engneerng, Zhengzhou Unversy, Zhengzhou 45, Chna shaomn wuc Ken Busness School, Unversy of Ken, Canerbury, Ken CT2 7PE, Uned Kngdom Emals: duhongyan@zzueducn, clwe@zzueducn, smwu@kenacuk 286 EKS P L O A T A C J A I I E Z A W O D O S C MA I T E A C E A D RELIABILITY VO L9, O 2, 27