Prepared for submsson to JHEP BRX-TH-6642 arxv:1906.05970v3 [hep-th] 22 Aug 2019 Bt threads and holographc entanglement of purfcaton Jonathan Harper and Matthew Headrck Martn Fsher School of Physcs, Brandes Unversty, Waltham, Massachusetts 02453, USA E-mal: jharper@brandes.edu, headrck@brandes.edu Abstract: Generalzng the bt thread formalsm, we use convex dualty to derve dual flow programs to the bpartte and multpartte holographc entanglement of purfcaton proposals and then prove several nequaltes usng these constructons. In the multpartte case we fnd the flows exhbt novel behavor whch allows for a constraned flux on the boundary of the homology regon. We show ths flux can be made dstnct from bpartte terms and reflects the truly multpartte porton of the holographc entanglement of purfcaton.
Contents 1 Introducton 2 2 Bpartte entanglement of purfcaton 6 2.1 Flows and relatve homology 6 2.2 Flow formulaton 8 2.3 Relaxaton of the homology regon 8 2.4 Addng constrants 10 2.5 Condtonal EOP 10 2.6 Bounds 11 1 2.6.1 2 I(A : B) E w(a : B) mn[s(a), S(B)] 11 2.6.2 E w (A : BC) E w (A : B) 13 2.6.3 E w (AÃ : B B) E w (A : B) + E w (Ã : B) 13 2.6.4 E w (A : BC) 1 2 I(A : B) + 1 2I(A : C) 14 2.6.5 If ABC s pure E w (A : B) + E w (A : C) E w (A : BC) 15 3 Multpartte entanglement of purfcaton 15 3.1 Dervaton 17 3.1.1 Convex and nteger relaxaton 17 3.1.2 Dualzaton 18 3.2 Flow decomposton 20 3.2.1 Forcng α 0 21 3.2.2 Mnmzng flux on O 22 3.3 V flows 23 3.4 U and w vector felds 25 3.5 The bpartte case 26 3.6 Weak dualty 29 3.7 The flow from O s truly multpartte 29 3.8 Thread orentaton 30 3.9 Bounds 31 4 Future drectons 33 A Multflows 35 B The nteger relaxaton 36 C Multpartte surfaces wth bulk ntersecton 39 1
D Squashed entanglement 41 1 Introducton The study of geometry has been key to our current understandng of quantum gravty. Ths s most strongly evdenced by the Ryu-Takayanag (RT) formula, whch allows one to calculate the entanglement entropy as the area of a bulk mnmal surface for systems wth holographc duals (n statc states or states wth tme-reflecton symmetry). The entanglement entropy s the canoncal measure of entanglement for pure states. Recent work has attempted to defne a smlar measure of entanglement for a mxed state on a bpartte regon AB as the cross secton E w (A : B) of the jont homology regon r(ab), the bulk regon bounded by AB and ts RT surface m(ab) (see fg. 1). 1 More precsely, E w (A : B) s the area of the mnmal surface n r(ab) homologous to A relatve to m(ab); we wll denote ths surface b p (A : B). m(ab) <latext sha1_base64="3mslkamrw40sfxn3atkw6uykzcc=">aaab7hcbvbntwixej3fl8qv1koxrmkcf7kljnpevxjexaus2jbu6ujd2920xroy4td48aaxxv1b3vw3ftdg+z5ow9mczmcxpothhdb6ewtr6xuvxclu3s7u0fla+pwjpofae+xmsohwldnjfcmmp51eusxcttvh+g7mt5+o0ywj2as0edgowqri9hyyrfvm9vzfrn1tw50crxclkbhm1++as3ekqqdsey627npuyimpkmmlptnrlnu0wgemh7voqsaa6yobhttgzvqyoputadbc/t2ryah1ris2u2az0svetpzp66ymug4yjppuuekw6kuixoj2edowbqlhk8swuqxeysi6wwmtafkg3bw355lbtqne+vn+4rdtcpi4nmapvmgdk2japttbbwimnuev3hzpvdjvzsetedkm8fwb87nd6lrjd8=</latext> A b p (A : B) B Fgure 1. Illustraton of the homology-regon cross secton E w (A : B), conjectured to be dual to the entanglement of purfcaton (1.1). The AB homology regon r(ab) s shown n blue. E w (A : B) s defned as the area of the mnmal surface b p (A : B) n r(ab) homologous to A relatve to m(ab). Ths geometrc quantty s conjectured to be dual to a certan measure of quantum and classcal correlatons n the boundary theory, namely the entanglement of purfcaton (EOP) [1, 2]. 2 (For recent progress n the context of the surface/state correspondence [6] see [7, 8], and n terms of bt threads see [9].) The EOP s defned as follows [10]: E p (ρ AB ) = mn ψ AA BB : ψ AB =ρ AB S(ψ AA ) ; (1.1) 1 For ths paper we wll only be workng wth the statc or tme reflecton-symmetrc spacetmes, where our slce s a moment of tme symmetry. The homology regon r(ab) s a slce of the entanglement wedge E W [AB]. As we wll brefly dscuss n sec. 4, the conjecture has a natural generalzaton to the covarant case. 2 Several competng conjectures have also appeared n the lterature. In [3] the homology-regon cross secton was calculated to be equal to the reflected entropy: half the entanglement entropy of a canoncal purfcaton whose dual geometry s a wormhole formed by glung two copes of the homology regon. In [4] the logarthmc negatvty was proposed as a dual to the homology regon cross secton and n [5] the odd entanglement entropy. 2
here the mnmzaton s over purfcatons ψ AA BB of ρ AB, where A, B are auxlary systems. In general ths s a very dffcult quantty to calculate, especally n QFTs (see e.g. [2, 11 13]). Despte ths dffculty several general bounds are know for the EOP [14]: 1 2 I(A : B) E p(a : B) mn[s(a), S(B)] E p (A : BC) E p (A : B) E p (A : BC) 1 2 I(A : B) + 1 2I(A : C) If ABC s pure then E p (A : B) + E p (A : C) E p (A : BC) It has been shown va geometrc proofs usng surfaces that the mnmal homology regon cross secton E w (A : B) too satsfes these condtons lendng credblty to the conjecture E p (A : B) = E w (A : B). (1.2) Addtonally, t was shown that the mnmal homology regon cross secton satsfes the superaddtvty condton E w (AÃ : B B) E w (A : B) + E w (Ã : B) whch E p does not always satsfy. If the conjecture holds, then ths nequalty would be a necessary crteron for a system to have a holographc dual; ths s smlar to how the holographc entanglement entropy always satsfes monogamy of mutual nformaton (MMI), even though general quantum systems may volate MMI [15, 16]. In ths paper we take a complementary approach to the holographc surface proposals: usng the full power of convex dualty and the max flow-mn cut theorem (MFMC), we derve the dual convex flow program E w (A : B) := max h n v v A such that v = 0, v 1, n v m(ab) = 0, (1.3) whch works by explctly forcng any flow to reman nsde the homology regon r(ab). Ths result was antcpated by [2, 4, 7, 17 19]. Usng ths constructon we reprove the above bounds and nterpret the result n terms of bt threads. 3
<latext sha1_base64="fta+jsq9dypxf+ouaobvehtluoa=">aaab7xcbvbnswmxej34wetx1aoxybe9ld0q6lhxwmf+whturjpto3njkusfcrs/+dfgyje/t/e/dem7r609cha470zzuafedget43wlldw9/ylgwvt3d29/zlb4dno1jnwymqoxq7jiyjllndctyo9gmxkfgrxb0o/vbt0wbrusdhscsmla8ohtyp3uvoll/ussvyp7fw8gvez8njqhr71x+ur2fu1jj0vxjo7yu2yi2nao2kxztwxjcr2taoo5kejmtzlnrj/jukx0cke1kwjxtf09kjdzmhieumyz2aba9qff10ltdb1kxcapzzlof0wpwfbh6eu4zzwjvowdivrzdyumq6ijts6gogvbx3x5mtsrff+ur2/lneqerwfoiytoacfrqagd1chblb4hgd4htek0at6rx/z1hwuzxzbh6dph9pdjpo=</latext> A01 <latext sha1_base64="ga0ca1bwnd011xbfmqs+kfotsl0=">aaab7xcbvbnswmxej2tx7v+vt16crbru9ndcnqsepfywx5au5rsmm1js8msziwy9d948aciv/+pn/+nabshbx0w8hhvhpl5yckznq777rtw1jc2t4rbpz3dvf2d8ufrs8tuedokkkvvcbgmnananmxw2kkuxxhiatsc38789hnvmknxycyjdwi8fcxbbsrtw76mt8975crbtwda60slycvynhol796a0nsmapdona667mjctksdcoctku9vnmekzee0q6lasdub9n82k6s8oarvlzegbn1d8tgy61nssh7yyxgellbyb+53vte10hgrnjaqgg0vrypgrapy6gjbfeetszbrzn6kyagrtiwnqgrd8jzfxutv+rvqv79zaxu53eu4qro4qi8uii63eedmkdgez7hfd4c6bw4787horxg5dph8afo5w/b446b</latext> A02 A2 A1 bp(a1) <latext sha1_base64="ga0ca1bwnd011xbfmqs+kfotsl0=">aaab7xcbvbnswmxej2tx7v+vt16crbru9ndcnqsepfywx5au5rsmm1js8msziwy9d948aciv/+pn/+nabshbx0w8hhvhpl5yckznq777rtw1jc2t4rbpz3dvf2d8ufrs8tuedokkkvvcbgmnananmxw2kkuxxhiatsc38789hnvmknxycyjdwi8fcxbbsrtw76mt8975crbtwda60slycvynhol796a0nsmapdona667mjctksdcoctku9vnmekzee0q6lasdub9n82k6s8oarvlzegbn1d8tgy61nssh7yyxgellbyb+53vte10hgrnjaqgg0vrypgrapy6gjbfeetszbrzn6kyagrtiwnqgrd8jzfxutv+rvqv79zaxu53eu4qro4qi8uii63eedmkdgez7hfd4c6bw4787horxg5dph8afo5w/b446b</latext> A02 <latext sha1_base64="umqmdzj24uu/tm6ccieeotuxfq=">aaab7xcbvdlsgnbeoynrxhfuy9ebopgkexgqy8blx4jmgcks5dzczj5rhmzaphyt948aciv//hm3/jjnmdjhy0ffxddhdfcwfg+v63v1hb39jckm6xdnb39g/kh0cto1jnajmornqnwozyjmntmstpj9eu4jtdjs+mfntj6onu/lbthiacjyulgyewye1evdskhc/xpgr/hxolqq5qucorr/81rsokgoqlehymg7gjzbmslamcdot9vjde0zgee7jkosqamz+bvtdoauayqvdutmqu/jzisjjmiyhukbedm2zuj/3nd1mbxyczkkloqywjrnhjkfzq9jgzmu2l5xbfmnho3ijlcghpraq5eilll1djq1ynlqq1u8tk3c/jkmijnmi5bhafdbfbjsbwcm8wyu8ecp78d69j0vrwctnjuepvm8fz0oo9q==</latext> <latext sha1_base64="ze8q2pzvlpzly1ursm4hpif8cua=">aaab7xcbvbnswmxej2tx7v+vt16crbru9ltbt1wvhsyd+gxuo2zbax2wrjskjz+h+8efdeq//hm//gblshbx0w8hhvhpl5qcyznq777rtw1jc2t4rbpz3dvf2d8ufrw8teedokkvvdbcmnanamsxw2o0vxvhaasey3gz+54kqzar4mnoy+heecryygo2v2jedtd47h5qrbtwda60slycvynecll/6q0msapdona657mx8vosdcoczkr9rnmykwke0z6lakdu++n82hk6s8oqhvlzegbn1d8tky60nkab7yywgetllxp/83qjca/9lik4mvsqxaiw4chill2ohkxryvjuekwus7cmsyke2mdktkqvowxv0m7vvxq1dr9zavry+mowgmcwgv4caunuimmtidaizzdk7w50nlx3p2prwvbyweo4q+czx/day6c</latext> <latext sha1_base64="fta+jsq9dypxf+ouaobvehtluoa=">aaab7xcbvbnswmxej34wetx1aoxybe9ld0q6lhxwmf+whturjpto3njkusfcrs/+dfgyje/t/e/dem7r609cha470zzuafedget43wlldw9/ylgwvt3d29/zlb4dno1jnwymqoxq7jiyjllndctyo9gmxkfgrxb0o/vbt0wbrusdhscsmla8ohtyp3uvoll/ussvyp7fw8gvez8njqhr71x+ur2fu1jj0vxjo7yu2yi2nao2kxztwxjcr2taoo5kejmtzlnrj/jukx0cke1kwjxtf09kjdzmhieumyz2aba9qff10ltdb1kxcapzzlof0wpwfbh6eu4zzwjvowdivrzdyumq6ijts6gogvbx3x5mtsrff+ur2/lneqerwfoiytoacfrqagd1chblb4hgd4htek0at6rx/z1hwuzxzbh6dph9pdjpo=</latext> A03 A01 <latext sha1_base64="ze8q2pzvlpzly1ursm4hpif8cua=">aaab7xcbvbnswmxej2tx7v+vt16crbru9ltbt1wvhsyd+gxuo2zbax2wrjskjz+h+8efdeq//hm//gblshbx0w8hhvhpl5qcyznq777rtw1jc2t4rbpz3dvf2d8ufrw8teedokkvvdbcmnanamsxw2o0vxvhaasey3gz+54kqzar4mnoy+heecryygo2v2jedtd47h5qrbtwda60slycvynecll/6q0msapdona657mx8vosdcoczkr9rnmykwke0z6lakdu++n82hk6s8oqhvlzegbn1d8tky60nkab7yywgetllxp/83qjca/9lik4mvsqxaiw4chill2ohkxryvjuekwus7cmsyke2mdktkqvowxv0m7vvxq1dr9zavry+mowgmcwgv4caunuimmtidaizzdk7w50nlx3p2prwvbyweo4q+czx/day6c</latext> A03 A3 Fgure 2. The holographc multpartte EOP proposal of [20], llustrated for the case of three regons. The jont RT surface O := m(a) s shown n red. Ths s parttoned nto regons A0, and the total area of the correspondng mnmal surfaces m(a A0 ) s mnmzed over parttons. The mnmal surfaces Σ(A ) are shown as colored dashed lnes; ther unon s Σ. Also shown as a dotted lne s the mnmal surface bp (A1 ) whch computes the bpartte EOP Ew (A1 ). We then generalze our analyss to the case of multpartte EOP. Gven a state ρa on a set A = {A } of systems, ths quantty s defned as X (1.4) Ep (A) = mn S(ψA A0 ), ψaa0 : ψa =ρa where A0 = {A0 } s a set of auxlary systems and the mnmzaton s over purfcatons ψaa0 of ρa [20, 21]. The holographc dual to (1.4) was conjectured by [20] to be gven as the area of a certan closed surface Σ defned as follows. Consder all possble ways of parttonng the jont RT surface O := m(a) nto non-overlappng regons A0, and for each partton fnd the homologous mnmal surface m(a A0 ); Σ s ther unon, mnmzed over parttons (see fg. 2): X X 0 Ew (A) := mn area(m(a A )) = area(σ(a )) = area(σ). (1.5) 0 {A }= partton of O To fnd the flow program dual to (1.5), we must frst make t nto a convex program; ths nvolves certan subtletes not present n the proof of the usual max flow-mn cut theorem (see appendx B). Modulo those ssues, we fnd that the dual flow program nvolves a set V := {v } of flows, one for each regon A, along wth a functon α on O whch defnes a boundary condton for all of the flows: Z! XZ Ew (A) = max h n v + hα V,α (1.6) A O such that v = 0, v 1, n v O = α. 4
We can understand ths program heurstcally as follows. If we set α = 0, then the flows are decoupled from each other; each v s smply maxmzng the flux from the correspondng regon A to the other regons j A j. The optmal value s then just the sum of those bpartte cross-sectons: h n v = E w (A ) (1.7) A where for brevty we wrte E w (A ) for E w (A : j A j ). Turnng on α allows each flow v to have addtonal flux comng out of O. However, the flows are now coupled to each other va the boundary condton n v j O = α. Ths constrant forces the other flows v j (j ) to also have ths addtonal flux, lmtng the amount of flux they can send to dfferent regons. A maxmal flow confguraton s found by balancng the competton to maxmze the flux of each flow. The dualty guarantees ths occurs exactly when each flow saturates on the correspondng porton of Σ. It s clear from the defnton (1.4) that the multpartte EOP cannot be less than the sum of the respects bpartte EOPs: E p (A) E p (A ), (1.8) Ths suggests that the resdue E p (A) E p (A ), (1.9) reflects the amount of entanglement that s truly multpartte among the partes of A. The conjectured holographc duals obey the same nequalty: E w (A) E w (A ). (1.10) Ths can be shown from the mnmal surfaces [20], or from the flows usng the above analyss, snce the rght-hand sde s the maxmum value of the objectve subject to the addtonal constrant α = 0 (see Theorem 1 below). We wll show that, wthn the set of all solutons (or maxmzng confguratons) of (1.6), there exsts a subset of partcularly nce solutons n whch (1.7) holds,.e. the flux of v emanatng from A saturates on the bpartte surface b p (A ). Hence the last term n the objectve, the flux on O, equals the resdue of (1.10): h α = Ew (A) E w (A ), (1.11) O suggestng agan that ths quantty reflect the truly multpartte entanglement. The pcture n terms of bt threads s that we have a dfferent color of thread for each regon A. These types of threads do not nteract wth each other n the bulk. They are only coupled va the constrant that, at any pont on O where a thread of one color begns, a thread of each other color must also begn. In the nce solutons mentoned n the last paragraph, 5
the A threads connectng A to A j (j ) represent bpartte entanglement, whle the ones connectng O to A j represent truly multpartte entanglement. In secton 2 we artculate how to express the mnmal homology regon cross secton n term of flows by utlzng relatve homology and convex dualty. We prove a smple theorem whch descrbes how the addton of constrants affects convex optmzaton problems. Utlzng ths theorem we reprove that all of the bpartte nequaltes whch the EOP satsfes are also satsfed by the mnmal homology regon cross secton. In secton 3 we generalze to the multpartte case and provde a dervaton usng convex dualty and proofs of several bounds. We fnd that wth some smple restrctons we can gauge to a class of thread confguratons whch have dstnct bpartte and multpartte contrbutons. In 4 we comment on some future drectons of potental work. In appendx A we revew the defnton and basc propertes of the multflow as well as gve a flow-based proof of MMI. In appendx B we dscuss a subtlety n the convex relaxaton of the holographc proposal (1.5). In appendx C we dualze another nterestng class of surfaces whch allow for ntersecton n the bulk. Comparng to the holographc multpartte EOP, we demonstrate a common mechansm for how the manfold s able to provde the extra flux necessary to overcome geometrc obstacles. Fnally, n appendx D we provde evdence usng an explct bt thread constructon of the multpartte nformaton that the multpartte squashed entanglement wll holographcally always be saturated. The methods of convex optmzaton, convex dualty, and convex relaxaton are used throughout ths paper. Those unfamlar wth these methods may fnd t useful to revew the relevant sectons of [22 24]. Whle ths paper was n preparaton, the paper [25] appeared, whch has some overlap wth secton 2 of ths paper. 2 Bpartte entanglement of purfcaton 2.1 Flows and relatve homology Startng wth a Remannan manfold M whch s dual to a state of a boundary CFT on M, the entanglement entropy of a boundary regon A M s gven by the RT formula [26] as the mnmal surface homologous to A S(A) = mn area(m). (2.1) m A We defne a flow v as a norm-bounded dvergenceless vector feld on M. That s v = 0 and v 1. Va an applcaton of convex dualty the RT formula can be expressed n terms of flows as the maxmum flux through A among all choces of flows [23] S(A) = max hn v v A. (2.2) It was shown n [24] that we can make the followng generalzaton of the standard max flow-mn cut (MFMC) theorem for flows: If we defne the mnmal surface wth respect to the 6
M<latext sha1_base64="n9d72j47mf8yas0zjy0aatokek=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0lesmecfy9cc/yd2la220m7drmjuxuhhp4clx4u8epp8ua/cdvmok0pbh7vztazl0ge18z1v53cxubw9k5xt7s3f3b4vd4+aes4vqxblbax6gzuo+asw4ybgd1eiy0cgz1gcjv3o0+oni/lg5km6ed0jhnigtvwat4pyhw365a1omxkwrkaazkx/1hzniipwgcat3z3mt4gvwgm4gzuj/vmfa2ospswspphnrpfofoyivvhsmls1pyel9pzhrsotpfnjojqxxvxm4n9elzvhzc+4tfkdk0xhakgjbzr8mqk2rgtc2hthf7k2fjqgznpusdcfbfxmdtk+qnlv1mteve2powhnca6x4men1oeogtacbgjp8apvzqpz4rw7h8vwgpppnmifoj8/ogumxw==</latext> <latext sha1_base64="n9d72j47mf8yas0zjy0aatokek=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0lesmecfy9cc/yd2la220m7drmjuxuhhp4clx4u8epp8ua/cdvmok0pbh7vztazl0ge18z1v53cxubw9k5xt7s3f3b4vd4+aes4vqxblbax6gzuo+asw4ybgd1eiy0cgz1gcjv3o0+oni/lg5km6ed0jhnigtvwat4pyhw365a1omxkwrkaazkx/1hzniipwgcat3z3mt4gvwgm4gzuj/vmfa2ospswspphnrpfofoyivvhsmls1pyel9pzhrsotpfnjojqxxvxm4n9elzvhzc+4tfkdk0xhakgjbzr8mqk2rgtc2hthf7k2fjqgznpusdcfbfxmdtk+qnlv1mteve2powhnca6x4men1oeogtacbgjp8apvzqpz4rw7h8vwgpppnmifoj8/ogumxw==</latext> <latext sha1_base64="n9d72j47mf8yas0zjy0aatokek=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0lesmecfy9cc/yd2la220m7drmjuxuhhp4clx4u8epp8ua/cdvmok0pbh7vztazl0ge18z1v53cxubw9k5xt7s3f3b4vd4+aes4vqxblbax6gzuo+asw4ybgd1eiy0cgz1gcjv3o0+oni/lg5km6ed0jhnigtvwat4pyhw365a1omxkwrkaazkx/1hzniipwgcat3z3mt4gvwgm4gzuj/vmfa2ospswspphnrpfofoyivvhsmls1pyel9pzhrsotpfnjojqxxvxm4n9elzvhzc+4tfkdk0xhakgjbzr8mqk2rgtc2hthf7k2fjqgznpusdcfbfxmdtk+qnlv1mteve2powhnca6x4men1oeogtacbgjp8apvzqpz4rw7h8vwgpppnmifoj8/ogumxw==</latext> <latext sha1_base64="27dfmnu0argle1ksjeqkmpxhsus=">aaab7hcbvbns8naej3ur1q/qh69lbbru0lesmecfy9cbdmw2lg222m7dlmjuxuhhp4glx4u8eop8ua/cdvmok0pbh7vztazl0we18z1v53c2vrg5lzxu7szu7d/ud48auo4vqx9fotytuoquxcjvufgydtrsknqycsc38z81hmqzwp5ycyjbhedsj7gjbor+xep2fm0v664vxcoskq8nfqgr6nx/ur2y5zgka0tvouo5yymykgynamclrqpxosymr1x1jji9rbnj92ss6s0edwnmshszv3xmzjbserkhtjkgz6wvvjv7ndvizqauzl0lqullfokeqinj7hps5wqzernlkfpc3krycrkjm2nzepwll9ejc3lqudwvfursr2wx1geezfc/dggupwcw3wgqghz3fn0c6l86787foltj5zdh8gfp5a3qzjmw=</latext> <latext sha1_base64="27dfmnu0argle1ksjeqkmpxhsus=">aaab7hcbvbns8naej3ur1q/qh69lbbru0lesmecfy9cbdmw2lg222m7dlmjuxuhhp4glx4u8eop8ua/cdvmok0pbh7vztazl0we18z1v53c2vrg5lzxu7szu7d/ud48auo4vqx9fotytuoquxcjvufgydtrsknqycsc38z81hmqzwp5ycyjbhedsj7gjbor+xep2fm0v664vxcoskq8nfqgr6nx/ur2y5zgka0tvouo5yymykgynamclrqpxosymr1x1jji9rbnj92ss6s0edwnmshszv3xmzjbserkhtjkgz6wvvjv7ndvizqauzl0lqullfokeqinj7hps5wqzernlkfpc3krycrkjm2nzepwll9ejc3lqudwvfursr2wx1geezfc/dggupwcw3wgqghz3fn0c6l86787foltj5zdh8gfp5a3qzjmw=</latext> <latext sha1_base64="27dfmnu0argle1ksjeqkmpxhsus=">aaab7hcbvbns8naej3ur1q/qh69lbbru0lesmecfy9cbdmw2lg222m7dlmjuxuhhp4glx4u8eop8ua/cdvmok0pbh7vztazl0we18z1v53c2vrg5lzxu7szu7d/ud48auo4vqx9fotytuoquxcjvufgydtrsknqycsc38z81hmqzwp5ycyjbhedsj7gjbor+xep2fm0v664vxcoskq8nfqgr6nx/ur2y5zgka0tvouo5yymykgynamclrqpxosymr1x1jji9rbnj92ss6s0edwnmshszv3xmzjbserkhtjkgz6wvvjv7ndvizqauzl0lqullfokeqinj7hps5wqzernlkfpc3krycrkjm2nzepwll9ejc3lqudwvfursr2wx1geezfc/dggupwcw3wgqghz3fn0c6l86787foltj5zdh8gfp5a3qzjmw=</latext> <latext sha1_base64="27dfmnu0argle1ksjeqkmpxhsus=">aaab7hcbvbns8naej3ur1q/qh69lbbru0lesmecfy9cbdmw2lg222m7dlmjuxuhhp4glx4u8eop8ua/cdvmok0pbh7vztazl0we18z1v53c2vrg5lzxu7szu7d/ud48auo4vqx9fotytuoquxcjvufgydtrsknqycsc38z81hmqzwp5ycyjbhedsj7gjbor+xep2fm0v664vxcoskq8nfqgr6nx/ur2y5zgka0tvouo5yymykgynamclrqpxosymr1x1jji9rbnj92ss6s0edwnmshszv3xmzjbserkhtjkgz6wvvjv7ndvizqauzl0lqullfokeqinj7hps5wqzernlkfpc3krycrkjm2nzepwll9ejc3lqudwvfursr2wx1geezfc/dggupwcw3wgqghz3fn0c6l86787foltj5zdh8gfp5a3qzjmw=</latext> relatve homology A rel O of a boundary regon O ths has the effect of allowng the mnmal surface to begn or end on O, ncreasng the space of allowed surface. On the flow sde ths s equvalent to mposng the constrant n v O = 0. Ths means no threads can end on or pass through O. <latext sha1_base64="n9d72j47mf8yas0zjy0aatokek=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0lesmecfy9cc/yd2la220m7drmjuxuhhp4clx4u8epp8ua/cdvmok0pbh7vztazl0ge18z1v53cxubw9k5xt7s3f3b4vd4+aes4vqxblbax6gzuo+asw4ybgd1eiy0cgz1gcjv3o0+oni/lg5km6ed0jhnigtvwat4pyhw365a1omxkwrkaazkx/1hzniipwgcat3z3mt4gvwgm4gzuj/vmfa2ospswspphnrpfofoyivvhsmls1pyel9pzhrsotpfnjojqxxvxm4n9elzvhzc+4tfkdk0xhakgjbzr8mqk2rgtc2hthf7k2fjqgznpusdcfbfxmdtk+qnlv1mteve2powhnca6x4men1oeogtacbgjp8apvzqpz4rw7h8vwgpppnmifoj8/ogumxw==</latext> M 0 Fgure 3. Shrnkng M to M. In order to make use of ths we can further generalze to the case when O s nstead an arbtrary codmenson 1 surface whose boundary les entrely on M. In other words we no longer requre that O be restrcted to le on the boundary M. To prove ths result we apply convex dualzaton to the max flow program max hn v v A s.t. n v O = 0. (2.3) Frst we construct the Lagrangan functon on M L(v, ψ, φ, γ) = hn v + g[ ψ v + φ(1 v )] + γ hn v. (2.4) A M To proceed we make the followng observaton: snce the flow cannot penetrate the surface O and the mnmal surface wll always be located where the threads acheve ther maxmum densty, the mnmal surface correspondng to the dual soluton can never be located n a regon of the manfold contaned entrely n O or between the boundary and O. As a result wthout loss of generalty we are free to nstead consder the manfold M whch s constructed by shrnkng the bulk by removng all regons the threads cannot reach (see fg. 3). Ths ensures O wll be a part of the boundary M. Now that O s a part of the boundary we can make the constrant n v O = 0 mplct and ntegrate by parts L(v, ψ, φ) = hn v (χ A ψ) + g[v ψ + φ(1 v )]. (2.5) M M \O Integratng out v and mnmzng we get the dual program mn ψ,φ M gφ s.t. ψ M \O = χ A, φ ψ = mn m A rel O area(m) on M. (2.6) O 7
We may now vew the surface as beng located on M nstead of M and arrve at the MFMC result max hn v v A s.t. n v O = 0 MFMC mn area(m) on M. (2.7) m A rel O 2.2 Flow formulaton m(ab) <latext sha1_base64="3mslkamrw40sfxn3atkw6uykzcc=">aaab7hcbvbntwixej3fl8qv1koxrmkcf7kljnpevxjexaus2jbu6ujd2920xroy4td48aaxxv1b3vw3ftdg+z5ow9mczmcxpothhdb6ewtr6xuvxclu3s7u0fla+pwjpofae+xmsohwldnjfcmmp51eusxcttvh+g7mt5+o0ywj2as0edgowqri9hyyrfvm9vzfrn1tw50crxclkbhm1++as3ekqqdsey627npuyimpkmmlptnrlnu0wgemh7voqsaa6yobhttgzvqyoputadbc/t2ryah1ris2u2az0svetpzp66ymug4yjppuuekw6kuixoj2edowbqlhk8swuqxeysi6wwmtafkg3bw355lbtqne+vn+4rdtcpi4nmapvmgdk2japttbbwimnuev3hzpvdjvzsetedkm8fwb87nd6lrjd8=</latext> A B E w (A : B) <latext sha1_base64="zddrj6am7qre8w40mozdksm3/0=">aaab8xcbvbns8naej3ur1q/qh69lbahxkrschzpvre8vraf2iay2w7apztn2n0ojfrfepggff/jtf/jds2b219mpb4b4azev7emdk2/w1lvlbx1jeym7mt7z3dvfz+qvofsss0quieyrahfevm0izmmtn2jckope5b3uh66rceqvqsfpd6hfe3wapbfeawntldts95mhqvl65oe/mcxbjnqmvesukbutr7+a9upyrxqiumhcvvcexiuwmwmhfoj7lurgeyqgpamdqgqoq3gr28qsdgkwp/fcaehrn1n8tcq6uggee6qywhqpfbyr+53v7vfdhiko1lsq+si/5khapo+6jnjezjqzcrznykybbltlqjkwdccbzfxbncsmplmp3z4vany0jc0dwdevw4bxqcat1aaabac/wcm+wsl6sd+tj3pqx0pld+apr8wdjzy/5</latext> Fgure 4. A maxmal flow of (2.8) whose flux calculates E w (A : B). One can make use of (2.7) to defne E w (A : B) n terms of flows: Frst, determne the homology regon r(ab) and ts boundary n the bulk. From ths construct the submanfold M wth boundary M = r(ab) = A B m(ab). By usng relatve homology to force the thread confguratons to reman n M we can then by (2.7) defne E w (A : B) n terms of flows: E w (A : B) := max hn v v A s.t. n v m(ab) = 0 mn area(b p(a : B)) b p(a:b) A rel m(ab) (2.8) where v s a flow (see fg. 4). We stress that the explct constructon of M s not mportant snce we can vew the flow as beng ether on M or M. The exstence of M provdes a smple argument that all the standard results of convex optmzaton wll carry over to ths submanfold. 2.3 Relaxaton of the homology regon In ths subsecton we wll reformulate our flow program for the mnmal homology regon cross secton by removng the need to refer to the boundary of the homology regon. To provde some ntuton consder the followng: as before, splt the boundary M nto three regons A, B, R := (A B) c and calculate the maxmum flux from A to B such that n v R = 0. Such a maxmum flow wll not be contaned to r(ab). What we need s a way to force the threads to reman n r(ab) so that the flux wll correctly calculate E w (A : B). 8
A B A B E w (A : B) <latext sha1_base64="zddrj6am7qre8w40mozdksm3/0=">aaab8xcbvbns8naej3ur1q/qh69lbahxkrschzpvre8vraf2iay2w7apztn2n0ojfrfepggff/jtf/jds2b219mpb4b4azev7emdk2/w1lvlbx1jeym7mt7z3dvfz+qvofsss0quieyrahfevm0izmmtn2jckope5b3uh66rceqvqsfpd6hfe3wapbfeawntldts95mhqvl65oe/mcxbjnqmvesukbutr7+a9upyrxqiumhcvvcexiuwmwmhfoj7lurgeyqgpamdqgqoq3gr28qsdgkwp/fcaehrn1n8tcq6uggee6qywhqpfbyr+53v7vfdhiko1lsq+si/5khapo+6jnjezjqzcrznykybbltlqjkwdccbzfxbncsmplmp3z4vany0jc0dwdevw4bxqcat1aaabac/wcm+wsl6sd+tj3pqx0pld+apr8wdjzy/5</latext> Fgure 5. Left: The flow x acts to change the geometry v can probe. Rght: On the reduced manfold the maxmum flux of v gves the holographc EOP. To do ths consder an arbtrary partton of the manfold M by a surface homologous to R, call t O. For such a choce of O we calculate a maxmum flow from R to O and then mnmze the maxmum flux wth respect to choces of partton. Ths has the effect of forcng O to extend far enough nto the bulk such that the regon between R and O contans the mnmal surface. Call ths set of parttons X. By the dvergencelessness condton all such elements of X wll allow the same maxmal flux. Next we calculate the maxmum flow from A to B such that n v O = 0 where O X. By constructon the partton whch gves the maxmum space for these threads wll be the one where O s the mnmal surface homologous to R. E w (A : B) s the flux of ths flow (see fg. 5): E w (A : B) = X = {O} s.t. mn max x (2.9) O x R max v s.t. n v O = 0. (2.10) v,o X A As a result of maxmzng the flux on O, the flows naturally fnd the mnmal surface homologous to O whch forms the boundary of the homology regon. From ths perspectve the threads of x act to change the geometry of the manfold by reducng the regon that the threads of v can occupy. Ths means that there are a class of parttons of the manfold on whch we wll be able to reproduce E w (A : B). Ths could be antcpated by notng that the maxmal flow only saturates at the mnmal homology regon cross secton. There s freedom n how the threads are arranged whch gves rse to a number of allowed parttons. Whle we wll not n general make use of ths addtonal freedom, t s appealng to see how the threads can gve rse to the change n geometry. Snce the homology regon can always be canoncally chosen usng ths procedure, we wll n general make ths choce leavng the generaton of the manfold partton va threads mplct. 9
F<latext sha1_base64="emr2cmgex4jab+rjb417hzxm8lw=">aaab8ncbvdlssnafl2pr1pfvzdugkvwvrirdfkuxguf+4a2lml00g6dziszg6gefoybf4q49wvc+tdo2y09cda4zx7mxnpmahu0po+ndla+sbmvnm7sro7t39qptxqg5vqylpucaw7itfmcmlayfgwbqizupbouhknvc7t0wbruqjthmwxgqkecqpqsv1+jhbmsuu5snqjwv7s3hrhk/iduo0bxuv/pdrdoysascgnpzvqsdjgjkvlbzpz8alha6ispws1ssmjkgm0eeuwdwgbqr0vzjdofq742mxmzm49bo5hhnspel/3m9fkpriomyszfjuvgosowlys3vd4dcm4pagmhmtuslh0ttsjalq2bh/55fxsvqj7xt1/ukw1boo6ynacp3aoplxba+6hcs2gooazxuhnqeffexc+fqmlp9g5hj9wpn8ad+erxa==</latext> <latext sha1_base64="emr2cmgex4jab+rjb417hzxm8lw=">aaab8ncbvdlssnafl2pr1pfvzdugkvwvrirdfkuxguf+4a2lml00g6dziszg6gefoybf4q49wvc+tdo2y09cda4zx7mxnpmahu0po+ndla+sbmvnm7sro7t39qptxqg5vqylpucaw7itfmcmlayfgwbqizupbouhknvc7t0wbruqjthmwxgqkecqpqsv1+jhbmsuu5snqjwv7s3hrhk/iduo0bxuv/pdrdoysascgnpzvqsdjgjkvlbzpz8alha6ispws1ssmjkgm0eeuwdwgbqr0vzjdofq742mxmzm49bo5hhnspel/3m9fkpriomyszfjuvgosowlys3vd4dcm4pagmhmtuslh0ttsjalq2bh/55fxsvqj7xt1/ukw1boo6ynacp3aoplxba+6hcs2gooazxuhnqeffexc+fqmlp9g5hj9wpn8ad+erxa==</latext> <latext sha1_base64="emr2cmgex4jab+rjb417hzxm8lw=">aaab8ncbvdlssnafl2pr1pfvzdugkvwvrirdfkuxguf+4a2lml00g6dziszg6gefoybf4q49wvc+tdo2y09cda4zx7mxnpmahu0po+ndla+sbmvnm7sro7t39qptxqg5vqylpucaw7itfmcmlayfgwbqizupbouhknvc7t0wbruqjthmwxgqkecqpqsv1+jhbmsuu5snqjwv7s3hrhk/iduo0bxuv/pdrdoysascgnpzvqsdjgjkvlbzpz8alha6ispws1ssmjkgm0eeuwdwgbqr0vzjdofq742mxmzm49bo5hhnspel/3m9fkpriomyszfjuvgosowlys3vd4dcm4pagmhmtuslh0ttsjalq2bh/55fxsvqj7xt1/ukw1boo6ynacp3aoplxba+6hcs2gooazxuhnqeffexc+fqmlp9g5hj9wpn8ad+erxa==</latext> <latext sha1_base64="emr2cmgex4jab+rjb417hzxm8lw=">aaab8ncbvdlssnafl2pr1pfvzdugkvwvrirdfkuxguf+4a2lml00g6dziszg6gefoybf4q49wvc+tdo2y09cda4zx7mxnpmahu0po+ndla+sbmvnm7sro7t39qptxqg5vqylpucaw7itfmcmlayfgwbqizupbouhknvc7t0wbruqjthmwxgqkecqpqsv1+jhbmsuu5snqjwv7s3hrhk/iduo0bxuv/pdrdoysascgnpzvqsdjgjkvlbzpz8alha6ispws1ssmjkgm0eeuwdwgbqr0vzjdofq742mxmzm49bo5hhnspel/3m9fkpriomyszfjuvgosowlys3vd4dcm4pagmhmtuslh0ttsjalq2bh/55fxsvqj7xt1/ukw1boo6ynacp3aoplxba+6hcs2gooazxuhnqeffexc+fqmlp9g5hj9wpn8ad+erxa==</latext> <latext sha1_base64="nhbnfkka4xw9o1y6lkbeo4lfyi=">aaab/hcbvdlssnafj3uv62vajdugkvwvrirdfkuxguf+4amlmnkph06myszrbc/bu3lhrx64e482+ctflo64gbwzn3cs8cp2fuktv+nmpr6xubw/xtxs7u3v6bexjul3eqcprizgix9leerjn0ffumhokahpkmbv7spvqhjyakjfmdyhlwijzhnkqeky2nzaarkasgdyospgsz/lyoxmblbttzwkvequglveozs83ekaaveeyslhjp0ol8dcuckgalphastgz7asfooi5bepg9fwkdacawwfvpxzc3v3xs5jqtmil9plhnlslek/3mjvivxxk55krgzheotjmlyqtswgqoakjypgkmguqsfplgynsftv0cc7yl1dj/7zt2g3n/qlvua7qqknjdilokimuuqfdos7qiyiy9ixe0zvxzlwy78bhyrrmvdtn9afg5w9u8pvd</latext> F<latext sha1_base64="nhbnfkka4xw9o1y6lkbeo4lfyi=">aaab/hcbvdlssnafj3uv62vajdugkvwvrirdfkuxguf+4amlmnkph06myszrbc/bu3lhrx64e482+ctflo64gbwzn3cs8cp2fuktv+nmpr6xubw/xtxs7u3v6bexjul3eqcprizgix9leerjn0ffumhokahpkmbv7spvqhjyakjfmdyhlwijzhnkqeky2nzaarkasgdyospgsz/lyoxmblbttzwkvequglveozs83ekaaveeyslhjp0ol8dcuckgalphastgz7asfooi5bepg9fwkdacawwfvpxzc3v3xs5jqtmil9plhnlslek/3mjvivxxk55krgzheotjmlyqtswgqoakjypgkmguqsfplgynsftv0cc7yl1dj/7zt2g3n/qlvua7qqknjdilokimuuqfdos7qiyiy9ixe0zvxzlwy78bhyrrmvdtn9afg5w9u8pvd</latext> F<latext sha1_base64="emr2cmgex4jab+rjb417hzxm8lw=">aaab8ncbvdlssnafl2pr1pfvzdugkvwvrirdfkuxguf+4a2lml00g6dziszg6gefoybf4q49wvc+tdo2y09cda4zx7mxnpmahu0po+ndla+sbmvnm7sro7t39qptxqg5vqylpucaw7itfmcmlayfgwbqizupbouhknvc7t0wbruqjthmwxgqkecqpqsv1+jhbmsuu5snqjwv7s3hrhk/iduo0bxuv/pdrdoysascgnpzvqsdjgjkvlbzpz8alha6ispws1ssmjkgm0eeuwdwgbqr0vzjdofq742mxmzm49bo5hhnspel/3m9fkpriomyszfjuvgosowlys3vd4dcm4pagmhmtuslh0ttsjalq2bh/55fxsvqj7xt1/ukw1boo6ynacp3aoplxba+6hcs2gooazxuhnqeffexc+fqmlp9g5hj9wpn8ad+erxa==</latext> <latext sha1_base64="emr2cmgex4jab+rjb417hzxm8lw=">aaab8ncbvdlssnafl2pr1pfvzdugkvwvrirdfkuxguf+4a2lml00g6dziszg6gefoybf4q49wvc+tdo2y09cda4zx7mxnpmahu0po+ndla+sbmvnm7sro7t39qptxqg5vqylpucaw7itfmcmlayfgwbqizupbouhknvc7t0wbruqjthmwxgqkecqpqsv1+jhbmsuu5snqjwv7s3hrhk/iduo0bxuv/pdrdoysascgnpzvqsdjgjkvlbzpz8alha6ispws1ssmjkgm0eeuwdwgbqr0vzjdofq742mxmzm49bo5hhnspel/3m9fkpriomyszfjuvgosowlys3vd4dcm4pagmhmtuslh0ttsjalq2bh/55fxsvqj7xt1/ukw1boo6ynacp3aoplxba+6hcs2gooazxuhnqeffexc+fqmlp9g5hj9wpn8ad+erxa==</latext> <latext sha1_base64="emr2cmgex4jab+rjb417hzxm8lw=">aaab8ncbvdlssnafl2pr1pfvzdugkvwvrirdfkuxguf+4a2lml00g6dziszg6gefoybf4q49wvc+tdo2y09cda4zx7mxnpmahu0po+ndla+sbmvnm7sro7t39qptxqg5vqylpucaw7itfmcmlayfgwbqizupbouhknvc7t0wbruqjthmwxgqkecqpqsv1+jhbmsuu5snqjwv7s3hrhk/iduo0bxuv/pdrdoysascgnpzvqsdjgjkvlbzpz8alha6ispws1ssmjkgm0eeuwdwgbqr0vzjdofq742mxmzm49bo5hhnspel/3m9fkpriomyszfjuvgosowlys3vd4dcm4pagmhmtuslh0ttsjalq2bh/55fxsvqj7xt1/ukw1boo6ynacp3aoplxba+6hcs2gooazxuhnqeffexc+fqmlp9g5hj9wpn8ad+erxa==</latext> <latext sha1_base64="emr2cmgex4jab+rjb417hzxm8lw=">aaab8ncbvdlssnafl2pr1pfvzdugkvwvrirdfkuxguf+4a2lml00g6dziszg6gefoybf4q49wvc+tdo2y09cda4zx7mxnpmahu0po+ndla+sbmvnm7sro7t39qptxqg5vqylpucaw7itfmcmlayfgwbqizupbouhknvc7t0wbruqjthmwxgqkecqpqsv1+jhbmsuu5snqjwv7s3hrhk/iduo0bxuv/pdrdoysascgnpzvqsdjgjkvlbzpz8alha6ispws1ssmjkgm0eeuwdwgbqr0vzjdofq742mxmzm49bo5hhnspel/3m9fkpriomyszfjuvgosowlys3vd4dcm4pagmhmtuslh0ttsjalq2bh/55fxsvqj7xt1/ukw1boo6ynacp3aoplxba+6hcs2gooazxuhnqeffexc+fqmlp9g5hj9wpn8ad+erxa==</latext> <latext sha1_base64="nhbnfkka4xw9o1y6lkbeo4lfyi=">aaab/hcbvdlssnafj3uv62vajdugkvwvrirdfkuxguf+4amlmnkph06myszrbc/bu3lhrx64e482+ctflo64gbwzn3cs8cp2fuktv+nmpr6xubw/xtxs7u3v6bexjul3eqcprizgix9leerjn0ffumhokahpkmbv7spvqhjyakjfmdyhlwijzhnkqeky2nzaarkasgdyospgsz/lyoxmblbttzwkvequglveozs83ekaaveeyslhjp0ol8dcuckgalphastgz7asfooi5bepg9fwkdacawwfvpxzc3v3xs5jqtmil9plhnlslek/3mjvivxxk55krgzheotjmlyqtswgqoakjypgkmguqsfplgynsftv0cc7yl1dj/7zt2g3n/qlvua7qqknjdilokimuuqfdos7qiyiy9ixe0zvxzlwy78bhyrrmvdtn9afg5w9u8pvd</latext> F<latext sha1_base64="nhbnfkka4xw9o1y6lkbeo4lfyi=">aaab/hcbvdlssnafj3uv62vajdugkvwvrirdfkuxguf+4amlmnkph06myszrbc/bu3lhrx64e482+ctflo64gbwzn3cs8cp2fuktv+nmpr6xubw/xtxs7u3v6bexjul3eqcprizgix9leerjn0ffumhokahpkmbv7spvqhjyakjfmdyhlwijzhnkqeky2nzaarkasgdyospgsz/lyoxmblbttzwkvequglveozs83ekaaveeyslhjp0ol8dcuckgalphastgz7asfooi5bepg9fwkdacawwfvpxzc3v3xs5jqtmil9plhnlslek/3mjvivxxk55krgzheotjmlyqtswgqoakjypgkmguqsfplgynsftv0cc7yl1dj/7zt2g3n/qlvua7qqknjdilokimuuqfdos7qiyiy9ixe0zvxzlwy78bhyrrmvdtn9afg5w9u8pvd</latext> 2.4 Addng constrants The followng bound wll be used throughout the paper and s a key tool to provng many results. Therefore we state t as a theorem: Theorem 1. Let P be a convex maxmzaton program: P : maxmze f 0 (y) subject to f (y) 0 and h j (y) = 0 j (2.11) wth soluton y F where F s the set of feasble ponts. Let P be a second convex maxmzaton program obtaned by mposng an addtonal set of constrants g m (y) 0 m and l n (y) = 0 n on P : P : maxmze f 0 (y) subject to f (y) 0, h j (y) = 0 j, g m (y) 0 m and l n (y) = 0 n (2.12) and smlarly defne ỹ F. Then f 0 (y ) f 0 (ỹ ). Proof. Suppose the opposte that s f 0 (y ) < f 0 (ỹ ). By constructon F F whch means ỹ F Ths leads to a contradcton snce then y s not maxmal n F. f o (y ) <latext sha1_base64="2rkzyxfnvjnj6nnngs8gnjamdao=">aaab83cbvbnswmxej2tx7v+vt16crahe7vdbjwyvhcvyd2rvk02wbmk2wjcuuzf+gfw+kepxpeppfmlz70nyha4/3zpzf8scaeo6305hbx1jc6u4xdrz3ds/kb8etbvmfketirlu3qbrypmglcmmp91yurwfnhacye3m7zxrpzkud2yauz/ci8fcrrcxuj8cpdkrth/t+x8uk64nxcoteq8nfqgr3nq/uopjukkgzhwoue58bgt7eyjhcalfqjpjemezypusfjqj20/nngtqzyhcfutksbs3v3xmpjrserohtjlaz62vvjv7n9rit3vgpe3fqcclrwhckzfofgaamkwj4vnlmfhm3origctmji2pzepwll9eje16zbus1e+vkg03j6mij3akvfdgghpwb01oayeynuev3pzeexheny9fa8hjz47hd5zph6ackvo=</latext> f o (ỹ ) <latext sha1_base64="oiwncqsm19cvqtzgcadlrpabse=">aaab/xcbvdlssnafj3uv62v+n5gsxcdvgskuy4mzlbfuanobjznioncyemykqq/bx3lhqxk3/4c6/cfpyapxahcm593lvpuhcqnko82wvlpzxvtfk65wnza3thxt3r6nekjfpy8ge7avieuy5awuqgeklkqa4ykqbjk8mfveeseufv9vzqrwydtmnkebasl59epm5kgodtvli8qy4y0+le9+uonvncvxuhnsbxo0fptzeaqcxorrzjbsfddjtjcjqslmpkgmukushmdospqgchqt5ext6wt4bjqqrkka4hpo1z8toyqvyuladmzij9snxh/8/qpj69npik1ytj2aiozvaloikchlqsrflmcmksmlshhgjsdabvuwi7ullf0mnuxfp6o2b82rtmcdrbofgcnsacy5ae1ydfmgddb7ae3gbr9aj9wy9we+z1pi1n9khv2b9faoz35vb</latext> f o (y )=f o (ỹ ) <latext sha1_base64="ffsx3umdnxhuvgbbmyta8gnen7e=">aaacdhcbvdnsgmxgmz6w+tf1aoxybgqh7jbbb0ibs8ek9gfaneszwbb0gyyjflhwfybvpgqxjwo4tuh8obbmg73ok0dgcnmfctfebgjstv2t7w0vlk6tl7akg9ube/svvb2o0reepm2fkzinocuyzsttqaakv4kcqo9rrre5hrqdx+ivftwo51exa3rnoayqsnnkxug2eqslpyn55mj/akzq4dtzlp0tlzzoy63youecglrbgdaw8jxwby5dwjvmskm+y0fatzhufdoslqexihhcezqfum5coly03yzdb4bxyebkozwdxp190skqqws0dpjeomxmvem4n9ep9bbpztshswacdx7kigz1ajom4e+lqrrlhcsktmrxcpkurym/7kpgrnfuvf0mnunbn64/a82rslokrgebybgndabwcg9acbydbi3ggr+dnerjerhfryxzdsoqza/ah1ucp1cqayg==</latext> f o (y ) f o (ỹ ) <latext sha1_base64="qbaasnen4zvnuhhrc1fp+e3n/ms=">aaacd3cbvdlssnafj34rpvvdelmscjvrumqyjcfny4r2ac0tuymn+3qycozrbc/scnv+lghsju3brzb5ymwwjrgquhc+7l3nuckdoptppbwfpewv1bl2wun7e2d3zle/ttguscqosgpbbdh0jgziewyopdnxrapiddx5lctf3oawjjav9wxsh0ptlymcsouvoale7cqrkklfguoutpst2cezxtbmx4eji4zzxbqwxwzqx4kvg5kamczuhpyx4gnplav5qtkxuwgap+qorlenatcmjiaetmokepj7xqpat7j8uh2tln1a6pivzttfewnxpiw9r3d6ri3lvdcv//n6kxlr/yt5yatap7nfbssxcva0hdxkaqjssaecqzvxxrmbkfkr1juivjzly+sdq1qnvdrnxflrj2po4ao0rgqiatdoga6rk3uqhq9omf0t6mj+pfedc+zq1lrj5zgp7a+pwbgp+cta==</latext> f o (y )=f o (ỹ ) <latext sha1_base64="ur3aoyjfbvmqm1hz+ga9y9kw/q=">aaacdhcbvdnsgmxgmzwv1r/qh69bitqpztdktlupdsyl9gxyt2ttbhmatjckky7ip4mvx8ejbea8+gdffxns7b20dcexm5p5xgszvdq2v63cyura+kzxs7s1vbo7v94/6cgrsuzawdahex5shffo2ppqrnqhjcjwgol60+uz330gulhb73qcejday059pe20rbc8yejskvxfxkwnsirol8ongujksrpjpuuxbmzwgx5kqccrsg5a/bsoaoifxjhptqo3ao3qrjttejawkqkripevj0jeuo4aon8mwsegjuubqf9icrmgm/p5iukbuhhgmgsa9uyvetpzp60fab7gj5wgkccfzh/yiqs3grbk4opjgzwjdejbu/bxcziia9nfyztglk68tdr1mnneq99evjqnvi4oalhoaoccama4aa0qbtg8aewst4s56sf+vd+phhc1y+cwj+wpr8adasmti=</latext> Fgure 6. The two possble cases: In each f 0 (y ) f 0 (ỹ ). In other words there are two possble cases (see fg. 6): If y F then necessarly y = ỹ, but f y F\ F then f 0 (y ) must be greater then every pont n F. If not then there would be a pont n F whch s greater and we would be back to the frst case. Theorem 1 states that whenever we have a convex maxmzaton program and we add addtonal constrants, the orgnal soluton wll always be an upper bound to the new one. Thus, by relatng dfferent programs n ths way we can easly derve nequaltes between them. Ths method allows for many of the nequaltes nvolvng EOP to be proven usng our flow constructon (2.8). 2.5 Condtonal EOP Before contnung we wsh to menton a straghtforward generalzaton of the EOP. A proposal for holographc condtonal EOP was defned n [21, 27] as the mnmum cross secton of the 10
<latext sha1_base64="bbltdezccuewjpt1krujblkrm4i=">aaab+ncbvbns8naej34wetxqkcv0wol5kugukp6kvvfewhtkfstpt26wytdjdkf0pxjwo4tvf4s1/47bnqvsfddzem2fmnh9zprtjffsrq2vrg5u5rfz2zu7evl04akookyq2smqj2faxopwj2tbmc9qojcwhz2nlh11p/dydlypf4l6py+qfecbywajwrurzhw4gmundsvqz3jyul65oe3brktszogxzqqigeo9+6vbj0gsuqejx0p1xcfwxoqlzottsb6bkbpjmsid2jfu4jaql52dpkenrumjijkmheyz9fdekolxqfvokosh2rrm4r/ez1eb+deykscacriffgqckqjnm0b9zmkrpoxizhizm5fzihnftqkltchuisvl5nmpew6zfeuwqxvszhycathuaixzqagn1chbhb4hgd4htfryxqx3q2peeuklc0cwh9ynz+wpjlp</latext> <latext sha1_base64="bbltdezccuewjpt1krujblkrm4i=">aaab+ncbvbns8naej34wetxqkcv0wol5kugukp6kvvfewhtkfstpt26wytdjdkf0pxjwo4tvf4s1/47bnqvsfddzem2fmnh9zprtjffsrq2vrg5u5rfz2zu7evl04akookyq2smqj2faxopwj2tbmc9qojcwhz2nlh11p/dydlypf4l6py+qfecbywajwrurzhw4gmundsvqz3jyul65oe3brktszogxzqqigeo9+6vbj0gsuqejx0p1xcfwxoqlzottsb6bkbpjmsid2jfu4jaql52dpkenrumjijkmheyz9fdekolxqfvokosh2rrm4r/ez1eb+deykscacriffgqckqjnm0b9zmkrpoxizhizm5fzihnftqkltchuisvl5nmpew6zfeuwqxvszhycathuaixzqagn1chbhb4hgd4htfryxqx3q2peeuklc0cwh9ynz+wpjlp</latext> <latext sha1_base64="bbltdezccuewjpt1krujblkrm4i=">aaab+ncbvbns8naej34wetxqkcv0wol5kugukp6kvvfewhtkfstpt26wytdjdkf0pxjwo4tvf4s1/47bnqvsfddzem2fmnh9zprtjffsrq2vrg5u5rfz2zu7evl04akookyq2smqj2faxopwj2tbmc9qojcwhz2nlh11p/dydlypf4l6py+qfecbywajwrurzhw4gmundsvqz3jyul65oe3brktszogxzqqigeo9+6vbj0gsuqejx0p1xcfwxoqlzottsb6bkbpjmsid2jfu4jaql52dpkenrumjijkmheyz9fdekolxqfvokosh2rrm4r/ez1eb+deykscacriffgqckqjnm0b9zmkrpoxizhizm5fzihnftqkltchuisvl5nmpew6zfeuwqxvszhycathuaixzqagn1chbhb4hgd4htfryxqx3q2peeuklc0cwh9ynz+wpjlp</latext> <latext sha1_base64="bbltdezccuewjpt1krujblkrm4i=">aaab+ncbvbns8naej34wetxqkcv0wol5kugukp6kvvfewhtkfstpt26wytdjdkf0pxjwo4tvf4s1/47bnqvsfddzem2fmnh9zprtjffsrq2vrg5u5rfz2zu7evl04akookyq2smqj2faxopwj2tbmc9qojcwhz2nlh11p/dydlypf4l6py+qfecbywajwrurzhw4gmundsvqz3jyul65oe3brktszogxzqqigeo9+6vbj0gsuqejx0p1xcfwxoqlzottsb6bkbpjmsid2jfu4jaql52dpkenrumjijkmheyz9fdekolxqfvokosh2rrm4r/ez1eb+deykscacriffgqckqjnm0b9zmkrpoxizhizm5fzihnftqkltchuisvl5nmpew6zfeuwqxvszhycathuaixzqagn1chbhb4hgd4htfryxqx3q2peeuklc0cwh9ynz+wpjlp</latext> bulk regon r(abc)\r(c). Ths s easly accounted for usng bt threads by a modfcaton of the boundary condton. E w (A : B C) := max hn v v A s.t. n v O[AB C] = 0 (2.13) where O[AB C] := (r(abc)\r(c))\a B. E w (A : B C) satsfes a modfed verson of each of the nequaltes that E w (A : B) satsfes. The proofs reman essentally unchanged. 2.6 Bounds We now proceed by dervng the nequaltes that the EOP satsfes usng our flow formulaton for the holographc proposal. Ths s accomplshed by notng that restrctng to a smaller submanfold (.e. decreasng the volume of the homology regon) or addng topologcal obstructons, such as black holes, can only reduce the space threads can occupy. These restrctons are mplemented by mposng addtonal constrants on the flow whch ncreases the regon of relatve homology. Because of Theorem 1, mposng a constrant can never ncrease the maxmal flow whch means the unconstraned problem s an upper bound. In contrast lower bounds can be found by explct constructon. If a partcular thread confguraton s always allowed when maxmzng (n the feasble set of the convex program) then the true optmal value of the program wll always be at least ths value. 2.6.1 1 2 I(A : B) E w(a : B) mn[s(a), S(B)] Upper bound S(A) and E w (A : B) only dffer as flow optmzaton problems by the addton of the constrant n v m(ab) = 0. Furthermore, we note that the flow whch gves E w (A : B) s n the feasble set of flows of S(A). Thus by Theorem 1 S(A) E w (A : B). The same argument s true for S(B) therefore E w (A : B) mn[s(a), S(B)]. A B 1 I(A : B) 2 Fgure 7. A flow whch gves 1 2I(A : B) s suboptmal to the program (2.8). 11
A<latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> B<latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> <latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> <latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> <latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> A<latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> B<latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> <latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> <latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> <latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> A<latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> A<latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> <latext sha1_base64="ln782ek/esyctzvfkwfphmfongc=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmekf48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajxomsw==</latext> B<latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> <latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> <latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> <latext sha1_base64="qk7rfuytsa+gmvqche5ldyoqoqe=">aaab6hcbvbns8naej3ur1q/qh69lbbbu0leqmef48t2a9oq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgobm1vbo8xd0t7+wefr+fkrenumwyxwmsqg1cngktsgw4edhofnaoedolj3dzvpkhspjypzpqgh9gr5cfn1fpetsov9yquwbzj15okpcjmsh/9ycxsyouhgmqdc9ze+nnvbnobm5k/vrjqtmejrbnqaqraj9bhdojf1yzkjbwtqqhc/x3reyjradrydsjasz61zul/3m91iq3fszlkhqublkotauxmzl/tyzcitnagllttbcrttrzmx2zrscn7qy+ukfvx13krxvk7u3tyoipzbovycbzwowz00oaumej7hfd6cr+ffexc+lq0fj585ht9wpn8ajvemta==</latext> Lower bound Followng [23], we can explctly defne the flow 1 2 (v(a, B) v(b, A)) where v(a, B) s the maxmum flow through A and AB. By constructon 1 2 I(A : B) = 1 A 2 (v(a, B) v(b, A)). Ths flow s non zero only n the homology regon because both of the ndvdual flows v(a, B) and v(b, A) saturated on m(ab). The result of takng ther dfference s therefore a flow whch satsfes the condton n v m(ab) = 0 and s n the feasble set of E w (A : B). Snce t s an allowed flow when maxmzng, E w (A : B) wll always be at least ths value therefore 1 2 I(A : B) E w(a : B) (see fg. 7). Together we have: 1 2 I(A : B) E w(a : B) mn[s(a), S(B)] (2.14) m(a) <latext sha1_base64="7h9v/bnqlj6fxrxuabijjp4rpbi=">aaab63cbvbnswmxej31s9avqkcvwslus8mkomekf48v7ae0s8mm2ty0ys5jvhl/4ixd4p49q9589+ybfegrq8ghu/nmdmvtaq3funvb219y3nru7rt3t3bpzshb23tzxqylo0frhuhsqwwrvrww4f6yaaerkk1gknd7nfewla8fg92mncaklgkeceptlsnz7mahucr3pgvajx5aqfggokl/9yuxtyzslghjt83fg4xoy6lgs3i/nswhdejgroeoipkzijvfokpnthmknaulevz9fderqqxuxm6tkns2cx7uff10ttdbnkxcwpzyoufkwpqdzg+enoydwjvkwdivrzdyuy6ijts6esgvbx355lbqv6z6u+w9x1qyu4jbkzxbdxy4hgbcqxnaqgemz/akb570xrx372pruuyvmyfwb97ndx4tjy8=</latext> m(b) <latext sha1_base64="vuyqal9vmyit7s5mr/ral3vtsr0=">aaab63cbvbnswmxej31s9avqkcvwslus8mkomef48v7ae0s8mm2ty0ys5jvhl/4ixd4p49q9589+ybfegrq8ghu/nmdmvtaq3funvb219y3nru7rt3t3bpzshb23tzxqylo0frhuhsqwwrvrww4f6yaaerkk1gknd7nfewla8fg92mncaklgkeceptlsnz7mahucr3pgvajx5aqfggokl/9yuxtyzslghjt83fg4xoy6lgs3i/nswhdejgroeoipkzijvfokpnthmknaulevz9fderqqxuxm6tkns2cx7uff10ttdbnkxcwpzyoufkwpqdzg+enoydwjvkwdivrzdyuy6ijts6esgvbx355lbqv6z6u+w9x1qyu4jbkzxbdxy4hgbcqxnaqgemz/akb570xrx372pruuyvmyfwb97ndx+yjza=</latext> m(a) <latext sha1_base64="7h9v/bnqlj6fxrxuabijjp4rpbi=">aaab63cbvbnswmxej31s9avqkcvwslus8mkomekf48v7ae0s8mm2ty0ys5jvhl/4ixd4p49q9589+ybfegrq8ghu/nmdmvtaq3funvb219y3nru7rt3t3bpzshb23tzxqylo0frhuhsqwwrvrww4f6yaaerkk1gknd7nfewla8fg92mncaklgkeceptlsnz7mahucr3pgvajx5aqfggokl/9yuxtyzslghjt83fg4xoy6lgs3i/nswhdejgroeoipkzijvfokpnthmknaulevz9fderqqxuxm6tkns2cx7uff10ttdbnkxcwpzyoufkwpqdzg+enoydwjvkwdivrzdyuy6ijts6esgvbx355lbqv6z6u+w9x1qyu4jbkzxbdxy4hgbcqxnaqgemz/akb570xrx372pruuyvmyfwb97ndx4tjy8=</latext> m(b) <latext sha1_base64="vuyqal9vmyit7s5mr/ral3vtsr0=">aaab63cbvbnswmxej31s9avqkcvwslus8mkomef48v7ae0s8mm2ty0ys5jvhl/4ixd4p49q9589+ybfegrq8ghu/nmdmvtaq3funvb219y3nru7rt3t3bpzshb23tzxqylo0frhuhsqwwrvrww4f6yaaerkk1gknd7nfewla8fg92mncaklgkeceptlsnz7mahucr3pgvajx5aqfggokl/9yuxtyzslghjt83fg4xoy6lgs3i/nswhdejgroeoipkzijvfokpnthmknaulevz9fderqqxuxm6tkns2cx7uff10ttdbnkxcwpzyoufkwpqdzg+enoydwjvkwdivrzdyuy6ijts6esgvbx355lbqv6z6u+w9x1qyu4jbkzxbdxy4hgbcqxnaqgemz/akb570xrx372pruuyvmyfwb97ndx+yjza=</latext> m(a) =m(b) <latext sha1_base64="l7tt8c7jduhcyyqv5u5uy7bu+xu=">aaab8hcbvbnswmxej2tx7v+vt16crahvzrdkehfqhrxwmf+sluubjptq5pskmsfsvrxepggfd/jjf/jwm7b219mpb4b4azeuhmmtau++3k1ty3nrfy24wd3b39g+lhuuthsk0ssiequ6anevm0qzhhtnorcgwaaftyhw789tpvgkwyqczakv8fcykbfsrpqoytevk1g+qfsljbfqzofwzeremro9itfvufeekglirxr3fxc2pgpvoyrtqefxqjpjmkyd2nxuokf1x46p3kzqwyqggkbemd5urvrqlrscsj0cm5fe9mbf143meglnzizj4zkslgujhyzcm2+rwomkdf8ygkmtlberlhhymxgrvscn7yy6ukdv713kp3xyvv3syopjzakztbgwuowx00oakebdzdk7w5ynlx3p2prwvoywao4q+czx+/e47+</latext> m(ab) <latext sha1_base64="5bowzq0gjaxhdo9+tuooptg7fc8=">aaab7hcbvbns8naej3ur1q/qh69lbahxkogh6rxjxwmg2hdwwz3brldzdhdyoe0n/gxymxv1b3vw3btsctpxbwoo9gwbmhqln2rjut1naw9/y3cpvv3z29/ypqodhbr2nlcfxdxw3rbrypmkvmgg026kbyhp51wcjfzo09uarblr5mlnbb4jfnecdzw8kx95vz8uk25dxcoteq8gtsgqgtq/eopy5ikkg3hwoue5yymyleyjha6rfrttrnmjnhee5zklkgo8vmxu3rmlsgkymvlgjrxf0/kwgddb2cmzgetmbf95vdre10hozjiaksluzryzgi0+xwnmale8mwstbsztyiyxgoty/op2bc85zdxsfu4bkn7+gy1nslompwaqdqbw+uoan30aifcdb4hld4c6tz4rw7h4vwklpmhmmfoj8/qb2n2w==</latext> m(ab) =H <latext sha1_base64="lwlzgsm5hnzsya49hvbrf300ekc=">aaab7ncbvbnswmxej2tx7v+vt16crahxsquchorql56rga/of1kns22oul2sbjcwfojvhhqxku/x5v/xmy7b219mpb4b4azeuhmmtau++0u1ty3nrek26wd3b39g/lhuvthsk0rsieqw6anevm0pzhhtnurcgwaaedyhkf+z0nqjsl5kozxtqxecrzyag2vuqi6u3d+u1juk64nxcoteq8nfqgr3nq/uopi5iikg3hwoue58bgt7eyjha6k/uttwnmjnhee5zklkj20/m5m3rmlseki2vlgjrxf0+kwgg9fyhtfnm9bkxf95vcse137kzjwyksluzhwzcku/y6gtff+nqstbsztyiyxgotyxmq2rc85zdxsfu5rk17+gyunfzoipwaqdqbq+uoa4naeilcezggv7hzymdf+fd+v0fpx85hj+wpn8ab5zjnq=</latext> <latext sha1_base64="lwlzgsm5hnzsya49hvbrf300ekc=">aaab7ncbvbnswmxej2tx7v+vt16crahxsquchorql56rga/of1kns22oul2sbjcwfojvhhqxku/x5v/xmy7b219mpb4b4azeuhmmtau++0u1ty3nrek26wd3b39g/lhuvthsk0rsieqw6anevm0pzhhtnurcgwaaedyhkf+z0nqjsl5kozxtqxecrzyag2vuqi6u3d+u1juk64nxcoteq8nfqgr3nq/uopi5iikg3hwoue58bgt7eyjha6k/uttwnmjnhee5zklkj20/m5m3rmlseki2vlgjrxf0+kwgg9fyhtfnm9bkxf95vcse137kzjwyksluzhwzcku/y6gtff+nqstbsztyiyxgotyxmq2rc85zdxsfu5rk17+gyunfzoipwaqdqbq+uoa4naeilcezggv7hzymdf+fd+v0fpx85hj+wpn8ab5zjnq=</latext> <latext sha1_base64="lwlzgsm5hnzsya49hvbrf300ekc=">aaab7ncbvbnswmxej2tx7v+vt16crahxsquchorql56rga/of1kns22oul2sbjcwfojvhhqxku/x5v/xmy7b219mpb4b4azeuhmmtau++0u1ty3nrek26wd3b39g/lhuvthsk0rsieqw6anevm0pzhhtnurcgwaaedyhkf+z0nqjsl5kozxtqxecrzyag2vuqi6u3d+u1juk64nxcoteq8nfqgr3nq/uopi5iikg3hwoue58bgt7eyjha6k/uttwnmjnhee5zklkj20/m5m3rmlseki2vlgjrxf0+kwgg9fyhtfnm9bkxf95vcse137kzjwyksluzhwzcku/y6gtff+nqstbsztyiyxgotyxmq2rc85zdxsfu5rk17+gyunfzoipwaqdqbq+uoa4naeilcezggv7hzymdf+fd+v0fpx85hj+wpn8ab5zjnq=</latext> <latext sha1_base64="lwlzgsm5hnzsya49hvbrf300ekc=">aaab7ncbvbnswmxej2tx7v+vt16crahxsquchorql56rga/of1kns22oul2sbjcwfojvhhqxku/x5v/xmy7b219mpb4b4azeuhmmtau++0u1ty3nrek26wd3b39g/lhuvthsk0rsieqw6anevm0pzhhtnurcgwaaedyhkf+z0nqjsl5kozxtqxecrzyag2vuqi6u3d+u1juk64nxcoteq8nfqgr3nq/uopi5iikg3hwoue58bgt7eyjha6k/uttwnmjnhee5zklkj20/m5m3rmlseki2vlgjrxf0+kwgg9fyhtfnm9bkxf95vcse137kzjwyksluzhwzcku/y6gtff+nqstbsztyiyxgotyxmq2rc85zdxsfu5rk17+gyunfzoipwaqdqbq+uoa4naeilcezggv7hzymdf+fd+v0fpx85hj+wpn8ab5zjnq=</latext> Fgure 8. Examples of stuatons where AL s saturated. Saturaton The upper bound, E w (A : B) = mn[s(a), S(B)], wll saturate f the Arak- Leb (AL) nequalty S(A) S(AB) + S(B) s saturated [2] (see fg. 8). Wthout loss of generalty let S(B) S(A). In the bulk AL wll be saturated f and only f m(a) = m(ab) m(b) and r(a) = r(ab)\r(b) [16]. In ths case t s always possble fnd a flow that smultaneously maxmzes the flux through A, B, AB (whch s an exceptonal case of the nestng property of [23]). As a result, the part of ths flow whch goes to B s the maxmal flow and gves E w (A : B). That s when we mpose n v m(ab) = 0 none of the maxmal flows whch gve S(B) cross m(ab) and thus mposng the constrant to get E w (A : B) cannot decrease the flow. If we have a bpartte pure state both nequaltes saturate as S(AB) = 0 and m(a) = m(b). Trvally, m(ab) = and E w (A : B) = S(A) = S(B). Therefore, I(A : B) = 2S(A) and 1 2 I(A : B) = E w(a : B). 12