Egzamin / zaliczenie na ocenę*

Podobne dokumenty
KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU

KARTA PRZEDMIOTU. Zaliczenie na ocenę

KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Auditorium classes. Lectures

Podstawy automatyki. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

PROJECT. Syllabus for course Global Marketing. on the study program: Management

PROJECT. Syllabus for course Negotiations. on the study program: Management

PROJECT. Syllabus for course Principles of Marketing. on the study program: Management

Odnawialne źródła energii. Renewable Energy Resources. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

KARTA PRZEDMIOTU. zaliczenie na ocenę WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Faculty: Management and Finance. Management

Course syllabus. Mathematical Basis of Logistics. Information Technology in Logistics. Obligatory course. 1 1 English

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę*

Mechanics and Machine Design 1 st degree (1st degree / 2nd degree) General (general / practical)

Automatic Control and Robotics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

1,2 1,2. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak

Z-ZIP Równania Różniczkowe. Differential Equations

12. Wymagania wstępne w zakresie wiedzy, umiejętności i kompetencji społecznych dla przedmiotu/modułu oraz zrealizowanych przedmiotów:

PROJECT. Syllabus for course Principles of Marketing. on the study program: Administration

Gospodarka Elektroenergetyczna. Power Systems Economy. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

Systemy pomiarowe. Measurement Systems. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

Egzamin / zaliczenie na ocenę*

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS) Wydział Nauk Historycznych i Pedagogicznych, Instytut Archeologii 4. Kod przedmiotu/modułu 22-AR-S1-KMaA1

PLANY I PROGRAMY STUDIÓW

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę*

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Lab. Poznanie procesu modelowania świata wirtualnego. Zaznajomienie z algorytmami symulacji zjawisk fizycznych w świecie wirtualnym.

PLANY I PROGRAMY STUDIÓW

Z-LOG-1070 Towaroznawstwo Commodity Studies. Logistics 1st degree (1st degree / 2nd degree) General (general / practical)

Egzamin / zaliczenie na ocenę*

60 60 Egzamin / zaliczenie na ocenę* 1 1,5

SUBJECT CARD. Lecture Classes Laboratory Project Seminar. Examination / crediting with grade* 0,6 2

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)

PROJECT. Syllabus for course Techniques of negotiations and mediations in administration. on the study program: Administration

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę* WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak

Field of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time studies. Auditorium classes.

Teoria sygnałów. Signal Theory. Electrical Engineering 1 st degree (1st degree / 2nd degree) General (general / practical)

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)

MiBM_UiTI _BW_1/5. Balistyka wewnętrzna. Internal Ballistics

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę*

INP002018W, INP002018L

EiT_S_I_CSP. Cyfrowe systemy pomiarowe. Digital Measurement Systems. Full-time (full-time / part-time)

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę* WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę*

KARTA PRZEDMIOTU. Egzamin / zaliczenie. Egzamin / zaliczenie. ocenę*

Logistics 1st degree (1st degree / 2nd degree) General (general / practical)

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Lab. Efekt 1 - kolokwium wykładowe. Efekt 2, 3 i 4 - samodzielnie rozwiązywane ćwiczenia laboratoryjne.

KARTA PRZEDMIOTU. zaliczenie na ocenę

Zał. nr 4 do ZW 33/2012 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI

OPISY KURSÓW. Kod kursu:mcr2302 Nazwa kursu: Nowoczesne techniki sterowania w instalacjach elektrycznych Język wykładowy: polski

OPISY KURSÓW. Nazwa kursu: PROGRAMOWANIE SYSTEMÓW ROZPROSZONYCH NA BAZIE STE- ROWNIKÓW PLC. Język wykładowy: polski

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

PLANY I PROGRAMY STUDIÓW

Egzamin / zaliczenie na ocenę*

Power Machines and Technology. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

Egzamin / zaliczenie na ocenę* WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Nie ma wymagań wstępnych

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)

Egzamin / zaliczenie na ocenę*

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)

STATYSTYKA MATEMATYCZNA

PLANY I PROGRAMY STUDIÓW

Egzamin / zaliczenie na ocenę*

OPISY KURSÓW. Kod kursu: MCR5105 Nazwa kursu: Układy zasilania w systemach mechatronicznych Język wykładowy: polski

KARTA PRZEDMIOTU. Zaliczenie na ocenę

Egzamin / zaliczenie na ocenę*

PLANY I PROGRAMY STUDIÓW

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

PRZEWODNIK PO PRZEDMIOCIE

Przesyłanie energii elektrycznej. Electric Energy Transmission. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę*

PROGRAM STAŻU. Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o.

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę*

Distributed programming Distributed programming. Informatyka II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

Stopy metali nieżelaznych Non-Ferrous Alloys

Egzamin / zaliczenie na ocenę*

1 / 5. Inżynierii Mechanicznej i Robotyki. Mechatronic Engineering with English as instruction language. stopnia

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA

Transkrypt:

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim : METODY NUMERYCZNE W BIOMECHANICE Nazwa w języku angielskim: NUMERICAL METHODS IN BIOMECHANICS Kierunek studiów (jeśli dotyczy): INŻYNIERIA BIOMEDYCZNA Specjalność (jeśli dotyczy): BIOMECHANIKA INŻYNIERSKA Stopień studiów i forma: I / II stopień*, stacjonarna / niestacjonarna* Rodzaj przedmiotu: obowiązkowy / wybieralny / ogólnouczelniany * Kod przedmiotu ARM005303W, ARM005303P Grupa kursów TAK / NIE* Liczba godzin zajęć zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego nakładu pracy studenta (CNPS) Forma zaliczenia Egzamin / zaliczenie na ocenę* Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 45 30 90 Egzamin / zaliczenie na ocenę* Egzamin / zaliczenie na ocenę* Egzamin / zaliczenie na ocenę* Dla grupy kursów zaznaczyć kurs końcowy (X) Liczba punktów ECTS 1 3 w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego kontaktu (BK) 0,6 Egzamin / zaliczenie na ocenę* WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zaliczone kursy: 1. Biomechanika Inżynierska (MDM000146W) \ CELE PRZEDMIOTU C1 Uzyskanie wiedzy o podstawach teoretycznych metody elementów skończonych (MES). C Uzyskanie wiedzy i umiejętności pozwalających na praktyczne zastosowanie MES do analizy stanu odkształcenia i naprężenia w elementach konstrukcyjnych (implantach) i elementach układu kostnego. *niepotrzebne skreślić 1

PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Z zakresu wiedzy: PEK-W01 Ma podstawową wiedzę o metodzie elementów skończonych. PEK-W0 Ma wiedzę o zasadach tworzenia modeli numerycznych obiektów inżynierskich i biomechanicznych oraz definiowania warunków brzegowych dla takich modeli. Z zakresu umiejętności: PEK-U01 Potrafi opracować modele numeryczne prostych elementów konstrukcyjnych i fragmentów układu kostnego. PEK-U0 Potrafi przeprowadzić obliczenia MES i dokonać podstawowej analizy wyników uzyskanych w programie Ansys. Z zakresu kompetencji społecznych: PEK-K01 Ma świadomość roli inżyniera w rozwoju cywilizacyjnym. PEK-K0 Ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżyniera i rozumie związaną z tym odpowiedzialność za podejmowane decyzje. TREŚCI PROGRAMOWE Forma zajęć - wykład Liczba godzin Wy1 Podstawy teoretyczne MES. Wy Wyznaczenie podstawowych zależności metody elementów skończonych oraz ich postaci w zadaniach inżynierii biomedycznej. Wy3 Klasyfikacja elementów skończonych, wyznaczenie ich macierzy sztywności, zastosowanie poszczególnych typów elementów w modelach elementów anatomicznych. Wy4 Metody rozwiązywania układów równań zadania metody elementów skończonych. Wy5 Analiza błędów i zbieżności rozwiązań w metodzie elementów skończonych. Wy6 Weryfikacja wyników obliczeń MES. Wy7 Zastosowanie metody elementów skończonych w analizach z zakresu inżynierii biomedycznej. 3 Suma godzin 15 Forma zajęć - projekt Liczba godzin Pr1 Zadanie 1 modelowanie układów płaskich Tworzenie geometrii modelu dwuwymiarowego prostego elementu konstrukcyjnego, dobór rodzaju elementu skończonego, dyskretyzacja 3 modelu. Pr Zadanie 1. Definiowane stałych materiałowych i warunków brzegowych. Określenie 3 parametrów modułu obliczeniowego. Analiza wyników obliczeń. Pr 3 Zadanie modelowanie prostych układów trójwymiarowych. Opracowanie założeń do budowy trójwymiarowego modelu numerycznego układu stabilizator płytkowy ZESPOL odłamy kostne. Określenie 3 wymiarów, rodzaju i wartości obciążenia, zbioru parametrów mechanicznych przewidzianych do analizy. Pr 4 Zadanie. Określenie uproszczeń przyjętych w modelu i ich uzasadnienie merytoryczne. Tworzenie geometrii płytki stabilizatora; zapis procedury 3 generującej geometrię w postaci pliku wsadowego. Pr 5 Zadanie. 3

Pr 6 Pr 7 Pr 8 Pr 9 Pr 10 Pr 11 Pr 1 Pr 13 Pr 14 Pr 15 Tworzenie geometrii wkrętów kostnych. Opracowanie koncepcji połączenia wkrętów z płytką stabilizatora. Zadanie. Tworzenie geometrii odłamów kostnych. Opracowanie połączenia odłamów 3 z wkrętami kostnymi. Wybór typu elementu skończonego, dyskretyzacja modelu. Zadanie. Zdefiniowanie warunków brzegowych dla opracowanego modelu 3 geometrycznego układu: stabilizator ZESPOL odłamy kostne. Przeprowadzenie obliczeń dla wybranego stanu obciążenia. Zadanie. Kontynuacja obliczeń. Opracowanie wyników obliczeń, wyznaczenie 3 wartości odkształceń i naprężeń w analizowanym modelu. Zadanie 3 modelowanie złożonych geometrycznie elementów, implantów układu kostno stawowego (indywidualne zadania dla każdego studenta) Opracowanie założeń do budowy trójwymiarowego modelu numerycznego wybranego implantu. Identyfikacja geometrii rzeczywistego implantu, 3 topografii powierzchni, rodzaju materiału, a także funkcjonalności poszczególnych fragmentów implantu. Opracowanie strategii budowy modelu. Zadanie 3. Określenie uproszczeń przyjętych w modelu i ich uzasadnienie merytoryczne. Określenie wymiarów, rodzaju i wartości obciążenia, zbioru 3 parametrów mechanicznych przewidzianych do analizy. Tworzenie geometrii implantu; zapis procedury generującej geometrię w postaci pliku wsadowego. Zadanie 3. 3 Kontynuacja prac nad modelem geometrycznym implantu. Zadanie 3. 3 Kontynuacja prac nad modelem geometrycznym implantu. Zadanie 3. Wybór typu elementu skończonego. Podział geometrii modelu na siatkę 3 elementów skończonych, zróżnicowanie gęstości siatki, optymalizacja siatki. Zadanie 3. Zdefiniowanie warunków brzegowych dla opracowanego modelu 3 Przeprowadzenie obliczeń MES dla wybranego stanu obciążenia. Zadanie 3. Opracowanie wyników obliczeń, wyznaczenie wartości odkształceń 3 i naprężeń w skali globalnej modelu, wyznaczenie wartości analizowanych parametrów we wskazanych przekrojach. Sformułowanie wniosków. Suma godzin 45 STOSOWANE NARZĘDZIA DYDAKTYCZNE N1. Prezentacje multimedialne. N. Komputer, oprogramowanie Ansys 3

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW KSZTAŁCENIA (wykład) Oceny F formująca (w trakcie semestru), P podsumowująca (na koniec semestru) F1 P = F1 Numer efektu kształcenia PEK_W01 PEK_W0 Sposób oceny osiągnięcia efektu kształcenia Ocena z kolokwium OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW KSZTAŁCENIA (projekt) Oceny F formująca (w trakcie semestru), P podsumowująca (na koniec semestru) F1 F F3 P=1/5F1 + 1/5F + 3/5F3 Numer efektu kształcenia PEK_W0 PEK_U01 PEK_K01 PEK_W01 PEK_W0 PEK_U01 PEK_U0 PEK_K01 PEK_K0 PEK_W01 PEK_W0 PEK_U01 PEK_U0 PEK_K01 PEK_K0 Sposób oceny osiągnięcia efektu kształcenia Ocena z Zadania 1 Ocena z Zadania Ocena z Zadania 3 LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA LITERATURA PODSTAWOWA: [1] Rusiński E., Czmochowski J., Smolnicki T., Zaawansowana metoda elementów skończonych w konstrukcjach nośnych. Ofic. Wyd. PWr., Wrocław 000. [] Rusiński E., Metoda elementów skończonych. WKŁ, Warszawa 1994. LITERATURA UZUPEŁNIAJĄCA: [1] Zagrajek T., Krzesiński G., Marek P., Metoda elementów skończonych w mechanice konstrukcji. Ćwiczenia z zastosowaniem systemu ANSYS. Ofic. Wyd. PW, Warszawa 005. OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL) Dr inż. Jarosław Filipiak, jaroslaw.filipiak@pwr.wroc.pl 4

Przedmiotowy efekt kształcenia MACIERZ POWIĄZANIA EFEKTÓW KSZTAŁCENIA DLA PRZEDMIOTU Metody numeryczne w biomechanice Z EFEKTAMI KSZTAŁCENIA NA KIERUNKU Inżynieria Biomedyczna I SPECJALNOŚCI Biomechanika Inżynierska Odniesienie przedmiotowego efektu do efektów kształcenia zdefiniowanych dla kierunku studiów i specjalności (o ile dotyczy) Cele przedmiotu** Treści programowe** Numer narzędzia dydaktycznego** PEK_W01 K1IBM_W09_S1BIN C1 Wy1-Wy7 N1 (wiedza) PEK_W0 K1IBM_W11_S1BIN C1, C Wy1-Wy7 N1, N Pr1-Pr15 PEK_U01 K1IBM_U14_S1BIN C1, C Pr1-Pr15 N1, N (umiejętności) PEK_U0 K1IBM_U15_S1BIN C1, C Pr1-Pr15 N1, N PEK_K01 K1IBM_K07 C1, C Pr1-Pr15 N1, N (kompetencje) PEK_K0 K1IBM_K0 C1, C Pr1-Pr15 N1, N ** - z tabeli powyżej 5

Zał. nr 4 do ZW 64/01 FACULTY OF FUNDAMETAL PROBLEMS OF TECHNOLOGY SUBJECT CARD Name in Polish: METODY DOŚWIADCZALNE I NUMERYCZNE W BIOMECHANICE Name in English: NUMERICAL AND EXPERIMENTAL METHODS IN BIOMECHANICS Main field of study (if applicable): BIOMEDICAL ENGINEERING Specialization (if applicable): BIOMECHANICAL ENGINEERING Level and form of studies: 1st/ nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code ARM015301L Group of courses YES / NO* Number of hours of organized classes in University (ZZU) Number of hours of total student workload (CNPS) Form of crediting Lecture Classes Laboratory Project Seminar 45 For group of courses mark (X) final course Number of ECTS points 3 including number of ECTS points for practical (P) classes including number of ECTS points for direct teacher-student contact (BK) classes *delete as applicable 90 PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES 1. Biomechanical Engineering (MDM000146W).. Design of Mechanical Constructions (MMM010154L). 3. Biomaterials (MDM010147W). 4. Numerical Methods in Biomechanics (ARM005303W, ARM005303L). \ SUBJECT OBJECTIVES C1. Acquire the knowledge and skills to practical use FEM to analyze the state of strain and stress in structures (implants) and parts of the skeleton. C. Acquire the knowledge and skills in the validation of numerical models.

SUBJECT EDUCATIONAL EFFECTS relating to knowledge: PEK_W01 The student has a basic knowledge of the finite element method (FEM). PEK_W0 It has a well-established knowledge of the principles of numerical modeling systems: the implant - bone elements and define the boundary conditions for such a model. PEK_W03 He knows techniques of validation of numerical models. relating to skills: PEK_U01 Able to develop a numerical models of implants structural elements and bone system fragments. PEK_U0 Able to carry out verification of the numerical model. PEK_U03 Able to perform FEM and to analyze the results obtained in the Ansys software. relating to social competences: PEK_K01 Is aware of the role of the engineer in the development of civilization. PEK_K0 Is aware of and understands the importance and impact of non-technical aspects of an engineer activity and understands the consequent responsibility for their decisions. Form of classes - laboratory Number of hours Lab 1 Develop assumptions for the construction of three-dimensional numerical model of the system: the implant - bone fragment. Identification of the actual geometry of the implant, surface topography, the type of material, as well as the functionality of the various parts of the implant. Develop strategies for a model building. Lab Determination of the simplifications adopted in the model and the substantive justification. Determination of size, type and value of the load, the set of mechanical parameters provided for in the analysis. Create the geometry of the implant. Lab 3 Continue work on the geometrical model of the implant. Lab 4 Continue work on the geometrical model of the implant. Lab 5 Continue work on the geometrical model of the implant. Lab 6 Selecting the type of finite element. The division model geometry for finite element mesh, mesh density variation, the optimization of the grid. Lab 7 Continuation of work on optimizing the discretization model. Lab 8 Defining the boundary conditions for of the developed model. Carrying out preliminary FEM to obtain the results of the validation of the model. Presentation of the results of the model. Lab 9 Determination of mechanical parameters (displacement, strain), on the basis of which there will be validation of the model. Selecting experimental measurement method for model verification (of the test methods used in the ZIBiME laboratory). Formulation of the assumptions for the construction of a measuring set-up. Lab 10 Configuring the test set-up, install a physical model of the system: the implant - bone fragment on the measurement set-up. Lab 11 Carrying out research, determine the values of the analyzed parameters for 3 the assumed load conditions. Scientific description of research results.

Lab 1 Validation of the numerical model. Comparison of the results obtained from the preliminary FEM simulation and experimental research. Determination of the degree of divergence of the results. Analysis of factors associated with the numerical model that could help to improve the convergence of the results. Lab 13 Modifications to the numerical model and test their impact on the convergence of the results with the results of the experiment. Lab 14 Continuation of work on the modification of the model. 1 Lab 15 Description of the final form of the numerical model of the system: the implant-bone fragment. Presentation of the final results achieved. Total hours 30 TEACHING TOOLS USED N1. Computer and software Ansys. Evaluation (F forming (during semester), P concluding (at semester end) F1 F P=1/3F1 + /3F EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT Educational effect number PEK_W01 PEK_W0 PEK_U01 PEK_K01 PEK_K0 PEK_W01 PEK_W0 PEK_U01 PEK_U0 PEK_U03 PEK_K01 PEK_K0 Way of evaluating educational effect achievement Presentation of the results of the numerical model (presentation front of the group) Final presentation on the results (presentation front of the group) PRIMARY AND SECONDARY LITERATURE PRIMARY LITERATURE: [1] Rusiński E., Czmochowski J., Smolnicki T., Zaawansowana metoda elementów skończonych w konstrukcjach nośnych. Ofic. Wyd. PWr., Wrocław, 000 (in Polish). SECONDARY LITERATURE: [1] Czasopisma (e-czasopisma, BG, PWr): Journal of Biomechanics, Clinical Biomechanics SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Dr. Eng. Jarosław Filipiak, jaroslaw.filipiak@pwr.wroc.pl

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT Numerical and Experimental Methods in Biomechanics AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Biomedical Engineering AND SPECIALIZATION: Biomechanical Engineering Subject educational effect Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)** Subject objectives*** Programme content*** Teaching tool number*** PEK_W01 (knowledge) K1IBM_W09_S1BIN C1 Lab1-Lab15 N1 PEK_W0 K1IBM_W09_S1BIN C1 Lab1-Lab15 N1 PEK_W03 K1IBM_W11_S1BIN C Lab8-Lab15 N1 PEK_U01 (skills) K1IBM_U14_S1BIN C1 Lab1-Lab15 N1 PEK_U0 K1IBM_U14_S1BIN C1, C Lab8-Lab15 N1 PEK_U03 K1IBM_U16_S1BIN C1, C Lab1-Lab15 N1 PEK_K01 (competences) K1IBM_K07 C1, C Lab1-Lab15 N1 PEK_K0 K1IBM_K0 C1, C Lab1-Lab15 N1 ** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY Zał. nr 4 do ZW 64/01 SUBJECT CARD Name in Polish BIOCHEMIA Name in English BIOCHEMISTRY Main field of study (if applicable): BIOMEDICAL ENGINEERING Specialization (if applicable): BIOMECHANICAL ENGINEERING, MEDICAL ELECTRONICS, BIOMEDICAL OPTICS Level and form of studies: 1st/ nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code CHC003031W, CHC003031L Group of courses YES / NO* Number of hours of organized classes in University (ZZU) Number of hours of total student workload (CNPS) Lecture Classes Laboratory Project Seminar 30 15 60 Form of crediting 30 For group of courses mark (X) final course Number of ECTS points 1 including number of ECTS points for practical (P) classes including number of ECTS points for direct teacher-student contact (BK) classes *delete as applicable 1.5 1 0.7 PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES 1. Basic biology and chemistry courses. Passed courses Physicochemistry of materials and Biology with basics of microbiology \ SUBJECT OBJECTIVES C1 providing students with basic concepts of the biochemistry of proteins (relations structure - function, enzymes - control and catalytic strategies) and of carbohydrates (lipids and biological membranes, membrane channels and pumps), as well as with mechanisms ruling sending of biological signals C familiarize with the theoretical basics of working with biomolecules, obtaining basic knowledge of the kinetics of enzymatic reactions, obtaining knowledge of biological membranes, membrane pumps and channels, students will learn the basic concepts and the

organization of metabolism, familiarize students with the basic knowledge about the molecular structure of nucleic acids, molecular biology and transmission of genetic information C3 familiarize with the basic techniques of working with proteins and DNA (determination of the concentration and purity, DNA isolation, separation of proteins, determination of molecular weight, sequencing etc.) SUBJECT EDUCATIONAL EFFECTS relating to knowledge: PEK_W01 Student knows the essential building blocks of proteins and levels of organization of their structure; has a basic knowledge of the techniques of isolation, purification and description of proteins; understands the principles of folding of the peptide chain; can describe the mechanism of non-enzymatic function of the protein hemoglobin as an example; has a basic knowledge of enzyme kinetics; has knowledge of the control of the activity of enzymes and mechanisms of enzymatic catalysis; knows the basic concepts of structure and properties of biological membranes; recognizes the principles of regulation of metabolism and biological signal transduction; recognizes the fundamental processes associated with the transmission of genetic information; has knowledge of molecular physiology and participation of G proteins; has knowledge about the functioning of molecular motors and molecular sensory systems. relating to skills: PEK_U01 Student is able to determine the kinetic parameters of the enzymes (Km and Vmax); can interpret the elution profiles after chromatographic separation of proteins; can select the appropriate gel filtration conditions; is able to interpret SDS-PAGE electrophorograms of proteins; can calculate the basic parameters describing the properties of the protein like pk, pi, molecular weight, optimum ph and temperature based on the experimental data; can isolate DNA from biological material and determine the melting point of the DNA. PROGRAMME CONTENT Form of classes - lecture Lec 1 Introduction. Chemical bonds in biomolecules. Entropy and thermodynamic rules. Proteins structure and function: amino acids and protein preliminary structure. Lec Proteins structure and function: cont. secondary and ter tiary and quarternary structure, Anfinsena experiment, protein folding, inherentny disordered proteins Lec 3 Proteins exploring purification and basic description chromatographic methods, centrifugation, activity tests, evaluation of the degree of purification and purification yield, polyacrylamide gel electrophoresis, protein sequencing - Edman degradation, mass spectrometry Lec 4 Proteins exploring cont. - immunological methods in the study of proteins, peptide synthesis on a solid phase, determination of the spatial structure of proteins - NMR spectroscopy, X-ray crystallography, learning of proteome Lec 5 Hemoglobin - a portrait of protein in action - allosteric effect, adjustment of the BPG, the effect of ph and CO - Bohr effect, sickle anemia Number of hours

Lec 6 Enzymes - basic concepts and kinetics: cofactors, classification, free energy and spontaneity of the reaction, the active site, the transition state: enzyme-substrate reaction, the importance of the Km and Vmax, the criterion of kcat / Km, the Michaelis-Menten model, models of inhibition: competitive inhibition and noncompetitive, irreversible inhibitors, catalytic antibodies, penicillin, vitamins Lec 7 Enzymes catalytic strategies and regulatory strategies proteases, allosteric enzymes, restriction enzymes, blood clotting cascade, role of covalent modifications, specific proteolysis Lec 8 Lipids and biological membranes - elements, attributes of bilayers, fluid mosaic model, the membrane in eukaryotic cells, membrane channels and pumps - passive and active transport, ATPases, multidrug resistance, the technique of "patch-clamp", potential gated channels Lec 9 Biological signaling pathways - 7TM receptors, G proteins, signaling molecules, defects in signaling pathways Lec 10 Metabolism - the basic concepts and organization - coupling reactions, regulatory strategies, evolution paths; carbohydrates metabolism (glycolysis, citric acids cycle, oxidative phosphorylation, glyconeogenesis) Lec11 DNA, RNA - the flow of genetic information; genes and genomes Lec 1 Protein biosynthesis - structure and function of the ribosome, translation stages Lec 13 Sensory systems - olfactory receptors, taste receptors, photoreceptors (rhodopsin) Lec 14 Molecular motors - myosin, kinesin, dynein, muscle contraction, movement of bacterial flagella Lec 15 Final test Total hours 30 Form of classes - laboratory Number of hours Lab 1 Preliminary classes - discussion of safety rules, the organization of classes, the rules of pipetting, using the instruments - spectrophotometers, centrifuges, SDS-PAGE 3 electrophoresis system, protein concentration determination Lab Enzyme kinetics 3 Lab 3 Gel filtration 3 Lab 4 Effect of temperature on the enzyme activity 3 Lab 5 Effect of ph on the enzyme activity 3 Lab 6 DNA isolation and purification 3 Lab 7 ph titration of amino acids and protein 3 Lab 8 SDS PAGE electrophoresis 3 Lab 9 DNA melting curve 3 Lab10 Determination of protein concentration Bradford method 3 Total hours 30 1) NOTE! Students perform four exercises listed above (-10) under three hours / week for four consecutive weeks. TEACHING TOOLS USED N1. Lecture with multimedia presentation N. Laboratory experiments Number of hours

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT Evaluation (F forming (during semester), P concluding (at semester end) F1 F P = F1 - lecture evaluation of colloquium P = F - laboratory - average from F grades P(lecture) = 3.0 if = 60.0 70.0 pts 3.5 if = 70.1 75.0 pts 4.0 if = 75,1 80.0 pts 4,5 if = 80.1 85,0 pts 5.0 if = 85.1 90.0 pts 5.5 if = 90.1-100.0 pts Educational Way of evaluating educational effect achievement effect number PEK_W01 Colloquium PEK_U01 Evaluation of laboratory work PRIMARY AND SECONDARY LITERATURE PRIMARY LITERATURE: [1] Berg, J. M., Tymoczko, J. L., Stryer, L., Biochemistry. W.H. Freeman and Co., New York 01 [] Berg, J. M., Tymoczko, J. L., Stryer, L., Biochemia. PWN S.A., Warszawa 005/6 (transl. of the 6- edition) SECONDARY LITERATURE: [1] Gumport, R.I., Deis, F.H., Gerber, N.C., Koeppe II, R., Student Companion to Accompany Biochemistry, seventh edition, WH, Freeman, 01 [] Voet, D., Voet, J.G., Biochemistry. Wiley & Sons, Inc., 3 rd edition SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) dr hab. inż. Piotr Dobryszycki, PhD, DSc. piotr.dobryszycki@pwr.wroc.pl

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT Biochemistry AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Biomedical Engineering AND SPECIALIZATION Biomechanical Engineering, Medical Electronics, Biomedical Optics Subject educational effect Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)** Subject Programme objectives*** content*** Teaching tool number*** PEK_W01 (knowledge) PEK_U01 (skills) K1IBM_W01 K1IBM_W03 K1IBM_U08 K1IBM_U09 C1,C Lec1 - Lec14 N1 C3 Lab1-Lab10 N ** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY FUNDAMENTAL PROBLEMS OF TECHNOLOGY Zał. nr 4 do ZW 64/01 SUBJECT CARD Name in Polish FIZYKOCHEMIA MATERIAŁÓW Name in English PHYSICOCHEMISTRY OF MATERIALS Main field of study (if applicable): BIOMEDICAL ENGINEERING Specialization (if applicable): MEDICAL ELECTRONICS, BIOMEDICAL OPTICS, BIOMECHANICAL ENGINEERING Level and form of studies: 1st level, full-time Kind of subject: obligatory Subject code CHP001004W, CHP001004C Group of courses NO Number of hours of organized classes in University (ZZU) Number of hours of total student workload (CNPS) Form of crediting Lecture Classes Laboratory Project Seminar 1 60 30 crediting with grade For group of courses mark (X) final course Number of ECTS points 1 including number of ECTS points for practical (P) classes including number of ECTS points for direct teacher-student contact (BK) classes *niepotrzebne skreślić 1 1,5 0,8 grade PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES SUBJECT OBJECTIVES C1. Basic knowledge of the structure of matter C Basic knowledge on the relationship of matter and physicochemical properties. C3 Basic knowledge on the relationship of matter and molecular structure C4 Ability basic physicochemical calculations 1

SUBJECT EDUCATIONAL EFFECTS relating to knowledge: PEK_W01 has a basic knowledge of the structure of matter and chemical kinetics PEK_W0 has a basic background knowledge about the physical and chemical properties of materials relating to skills: PEK_U01 can perform basic physicochemical calculations relating to social competences: PEK_K01 Can formulate questions that deepen their understanding of the topic and found the missing elements of reasoning PROGRAMME CONTENT number of hours Form of classes - lecture Lec 1 Chemistry and biomedical engineering. Range of chemical knowledge essential for biomedical engineers Lec The experimental basis of quantum mechanics Lec 3 Relationship between chemical properties and the atomic structure Lec 4 4 Lec 5 Periodicity of chemical and physical properties Lec 6 Chemical bonding, molecular orbitals Lec 7 Dipole moment and electronegativity Lec 8 Intermolecular interactions and consequences of their formation Lec 9 Solid: crystals, semiconductors - the types of chemical bonds and chemical structure Lec 10 Polymers, macromolecules, liquid crystals - chemical bonds and structure Lec 11 Liquids and gases type of intermolecular interactions Lec 1 Solutions, dispersion systems Lec 13 Chemical kinetics: collision theory, activation energy, activated complex, Lec 14 catalysts (enzymes) 4 Lec 15 Final test Total hours 30 Form of classes number of hours Cl 1 The concentration of the solutions Cl Dissociation in aqueous solutions Cl 3 The ionic strength and activity coefficients Cl 4,Cl 5 ph of solution and buffers 3 Cl 6 Acids and bases, pk Cl 7 Solubility: the effect of salt and common ion effect Cl 8 Final test Total hours 15

TEACHING TOOLS USED N1. Using the traditional lecture and slides N. Discussion N3. Individual consultations N4. Pen, array EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT Evaluation (F forming (during semester), P concluding (at semester end) F1 F P1= F1+F lecture F3 F4 P = F3+F4 classes Educational effect number PEK_W01 PEK_W0 PEK_W01 PEK_W0 PEK_U01 PEK_K01 PEK_U01 PEK_K01 Way of evaluating educational effect achievement test: base chemistry repetition final test activity in the class final test PRIMARY AND SECONDARY LITERATURE PRIMARY LITERATURE: [1] Galus Z. (red.), Ćwiczenia rachunkowe z chemii analitycznej, PWN Warszawa 004. [] Jones L., Atkins P., Chemia ogólna, cząsteczki, materia, reakcje, PWN Warszawa 004 SECONDARY LITERATURE: [1] Pauling L., Pauling P., Chemia, PWN Warszawa 004. SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Dr hab. Małgorzata Komorowska, prof. nadzw. PWr malgorzata.komorowska@pwr.wroc.pl D1, room 114 3

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT Physicochemistry of Materials AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Biomedical Engineering AND SPECIALIZATION Medical Electronics, Biomedical Optics, Biomechanical Engineering Subject educational effect PEK_W01 (knowledge) Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)** Subject objectives*** Programme content*** Teaching tool number*** K1IBM_W01 C1, C, C3 Lec 1-Lec 1 N1-N4 Cl 1-Cl 7 PEK_W0 K1IBM_W01 C1-C4 Lec 1-Lec 1 N1-N4 Cl 1-Cl 7 PEK_U01 K1IBM_U09 C4 Cl 1-Cl 7 N3-N4 (skills) PEK_K01 (competences) K1IBM_K01 C1-C4 Lec 1-Lec 1 Cl 1-Cl 7 N1-N4 ** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY Zał. nr 4 do ZW 64/01 SUBJECT CARD Name in Polish FIZYKOCHEMICZNE METODY POMIAROWE Name in English PHYSICO-CHEMICAL METHODS OF MEASUREMENTS Main field of study (if applicable): BIOMEDICAL ENGINEERING Specialization (if applicable): BIOMECHANICAL ENGINEERING, MEDICAL ELECTRONICS, BIOMEDICAL OPTICS Level and form of studies: 1st/ nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code CHP00001W, CHP00001L Group of courses YES / NO* Number of hours of organized classes in University (ZZU) Number of hours of total student workload (CNPS) Form of crediting Lecture Classes Laboratory Project Seminar 30 30 60 60 For group of courses mark (X) final course Number of ECTS points Examinatio n / crediting with including number of ECTS points for practical (P) classes including number of ECTS points for direct teacherstudent contact (BK) classes *delete as applicable 1,5 1,5 PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES 1. Credited course physicochemistry of materials (CHP001004W) SUBJECT OBJECTIVES C1 obtain basic knowledge on: electrochemical and spectroscopic techniques and their application in biology and medicine C Ability to read signals and spectra, and on the basis determination of quantitative parameters. C3 Ability to design experiments using these methods

SUBJECT EDUCATIONAL EFFECTS relating to knowledge: PEK_W01 Knows and understands basic laws which are based on physicochemical measurement techniques. PEK_W0 Has a basic knowledge of the structure and operation of various measurement systems. PEK_W03 Has ordered theoretically founded knowledge about the physical and chemical properties of materials relating to skills: PEK_U01 Can understand the description of experiments based on these techniques. Can obtain from literature, databases and other sources of basic information on measurement techniques and their applications relating to social competences: PEK_K01 Can work in a team PROGRAMME CONTENT Form of classes - lecture Lec 1 Preview, uncertainties, accuracy, sensitivity and precision of the method, samples and calibration Lec. Light and matter, fundamental laws Lec 3 Excited molecules, Jablonski diagram, absorption and emission spectra Lec 4 Principles of operation of spectrometers, light sources, detectors Lec 5 The absorption bands in various areas, their interpretation and application of the quantitative and qualitative analysis Lec 6 Scattering and spectra Ramana Lec 7 Application of Raman spectroscopy Lec 8 Test I Lec 9 Basic concepts of electrochemistry: potential at the interface, the Nernst law Lec 10 Methods: conductivity, potentiometry Lec11 Amperometry Lec 1 Magnetic resonases Lec 13 Mass spectrometry Lec 14 Chromatography Lec 15 Test II Total hours 303030 Form of classes - laboratory Part I Lab 1 Acid-base titration 3 Number of hours Number of hours Lab Conductometric titration 3

Lab 3 Potentiometric titration 3 Part II Lab 4 Application of the quantitative analysis of refractometry 3 Lab 5 Application of interferometric methods for the analysis of materials 3 Lab 6 Polarimetric determination of the optical activity of materials 3 Lab 7 Photometric titration 3 Lab 8 Flame photometry 3 Lab 9 Gas chromatography 3 Lab 10 Completing up, credit 3 Total hours 30 TEACHING TOOLS USED N1. Using the traditional lecture and slide transparency N. Problem discussion N3. Consultation N4. Working student in the lab, contact the laboratory apparatus N5. Oral checking messages N6. Statements made outside of the classroom organized EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT Evaluation (F forming (during semester), P concluding (at semester end) Educational effect number F1 PEK_W01 Test I F PEK_W01 Test II F3 F4 F5 P= F1+ F Wykład P=F3+F4+F5 Laboratorium PEK_U01 Way of evaluating educational effect achievement Implementation of laboratory Oral test before exercise Rating of the report PRIMARY AND SECONDARY LITERATURE PRIMARY LITERATURE: [1] Cygański A., Metody elektro-analityczne. WNT Warszawa 1995 [] Kealey D., Haines P. J., Krótkie wykłady. Chemia analityczna. PWN Warszawa 005 [3] Sadlej J., Spektroskopia molekularna. WNT Warszawa 00 SECONDARY LITERATURE: [1] Jones L., Atkins P.. Chemia ogólna, cząsteczki, materia, reakcje, PWN Warszawa 004 [] Pauling L., Pauling P., Chemia, PWN Warszawa 004 SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Dr hab. Małgorzata Komorowska, prof. nadzw. PWr

malgorzata.komorowska@pwr.wroc.pl

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT Physico-Chemical Methods of Measurements AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Biomedical Engineering AND SPECIALIZATION Biomechanical Engineering, Medical Electronics, Biomedical Optics Subject educational effect Correlation between subject Subject Programme Teaching educational effect and educational objectives*** content*** tool effects defined for main field of number*** study and specialization (if applicable)** PEK_W01 (knowledge) K1IBM_W01 C1 Lec1-Lec14 N1-N3 PEK_W0 K1IBM_W01 C1 Lec1-Lec14 N1-N3 PEK_W03 K1IBM_W01 C1 Lec1-Lec14 N1-N3 PEK_U01 (skills) K1IBM_U01 C, C3 Lab1-Lab9 N-N6 PEK_K01 (competences) K1IBM_K03 C, C3 Lab1-Lab9 N-N6 ** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY Zał. nr 4 do ZW 64/01 SUBJECT CARD Name in Polish PODSTAWY ELEKTROTECHNIKI I ELEKTRONIKI 1 Name in English PRINCIPLES OF ELECTRICAL AND ELECTRONIC ENGINEERING 1 Main field of study (if applicable): BIOMEDICAL ENGINEERING Specialization (if applicable): BIOMECHANICAL ENGINEERING, MEDICAL ELECTRONICS, BIOMEDICAL OPTICS Level and form of studies: 1st/ nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code ETP00001W, ETP001C Group of courses YES / NO* Number of hours of organized classes in University (ZZU) Number of hours of total student workload (CNPS) Form of crediting Lecture Classes Laboratory Project Seminar 30 15 60 30 For group of courses mark (X) final course Number of ECTS points 1 including number of ECTS points for practical (P) classes including number of ECTS points for direct teacher-student contact (BK) classes *delete as applicable 1 1,5 0,8 PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES Basic knowledge in physics, in the range of electricity and magnetism. \ SUBJECT OBJECTIVES C1 Gaining basic knowledge in fundamentals of electrical and electronic engineering, and simple electrical and electronic circuits. C Gaining basic skill in the range of description, analysis and solving simple electrical and electronic circuits.

SUBJECT EDUCATIONAL EFFECTS relating to knowledge: PEK_W01 Has ordered, theoretically based general knowledge including main problems from the range of electrical and electronic engineering. relating to skills: PEK_U01 Can correctly interpret, select and merge information gained in the range of electrical and electronic engineering. PEK_U0 Can apply in practice gained information for solving simple electrical and electronic circuits. relating to social competences: PEK_K01 Knows limitations of the own knowledge and understand necessity of further study. PROGRAMME CONTENT Form of classes - lecture Lec 1 Introduction to the subject, terms of crediting and examination. Introduction to electrical circuits, basic quantities: current, voltage, resistance, power, sources of electrical energy. Lec Properties of media and elements. Ohm s law, Kirchhoff s laws, series and parallel circuits, voltage and current dividers. Lec 3 Superposition principle, Thevenin s and Norton s theorems, maximum power theorem. 1 Lec 4 Loop currents analysis of multi-branch circuits. Electric and magnetic fields, basic properties. Lec 5 Resistance, capacitance and inductance. Resistors, capacitors and inductors. Mutual inductance, transformer. Electrical waveforms and their description and properties. Harmonic waveforms. Lec 6 AC voltage and current in resistors, capacitors and inductors. Kirchhoff s law for AC circuits. Using complex numbers in circuit analysis. Number of hours Lec 7 Series and parallel RLC circuits. Resonance in series and parallel electrical circuits. 1 AC power. 1 Lec 8 Simple electrical devices. Human as source of electrical signals. 1 Transient states in electrical circuits. 1 Lec 9 Four-terminal networks and their properties. Transmittance. Feedback. Lec 10 Operational amplifiers and their applications. Semiconductor elements, p-n junction, diodes and transistors. Applications of various type diodes. Lec 11 Transistor configurations, transistor biasing. Transistor as active and switching device. Operation point of transistor circuits. Non-linear circuits. Lec 1 Basic amplifier configurations, differential amplifier, power amplifier. Electronic sources, DC supply circuits and generators. Lec 13 Analog and digital systems. A/D and D/A converters. Lec 14 Basic digital circuits, combinational and sequential. Lec 15 Applications of digital circuits. Microprocessors and microcomputers. Total hours 30 Form of classes - class 1 1 1 1 Number

of hours Cl 1 Solving simple DC circuits (Ohm s law, Kirchhoff s laws).. Cl Solving DC circuits, Thevenin s law and Norton s law. Cl 3 Solving multi-branch circuits using loop currents method. Cl 4 Waveforms and their parameters. AC circuits, complex numbers method. Cl 5 AC circuits, complex impedance. Resonant circuits. Cl 6 Calculation of impedance and power in AC circuits. Cl 7 Analysis of chosen electronic circuits. Feedback. Operational amplifiers with feedback. Cl 8 Analysis of electronic circuits, cont. 1 Total hours 15 TEACHING TOOLS USED N1. Board and marker traditional method N. Multimedia presentation for some chosen subjects N3. Solving exemplary problems at classes (usually given earlier on website) related to lecture subjects N4. Tests of individual solving chosen examples EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT Evaluation (F forming (during semester), P concluding (at semester end) Educational effect number Way of evaluating educational effect achievement F1 PEK_W01 Examination mark F PEK_U01 PEK_U0 PEK_K01 Marks from written tests solving short examples Marks from oral answers at board solving examples and answering questions P = F1 lecture P = F class - average grade from marks of tests and answers PRIMARY LITERATURE: PRIMARY AND SECONDARY LITERATURE [1] Bird J., Electrical and electronic principles and technology, Newnes, Elsevier, 007 (third edition) free available in the Internet [] P. Horowitz, W. Hill, The art of electronics, Cambridge University Press, second edition 1989 SECONDARY LITERATURE: [1] Włodzimierz Wolski, Teoretyczne podstawy techniki analogowej, Oficyna Wydawnicza Politechniki Wrocławskiej, 007 [] Rusek A., Pasierbiński J., Elementy i układy elektroniczne w pytaniach i odpowiedziach, WNT, Warszawa 006Warszawa 006 [3] Bolkowski S., Teoria obwodów elektrycznych, WNT, Warszawa 007 SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Dr hab. inż. Zbigniew Moroń zbigniew.moron@pwr.wroc.pl

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT Principles of Electrical and Electronic Engineering 1 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Biomedical Engineering AND SPECIALIZATION Biomechanical Engineering, Medical Electronics, Biomedical Optics Subject educational effect Correlation between subject Subject Programme Teaching educational effect and educational objectives*** content*** tool effects defined for main field of number*** study and specialization (if applicable)** PEK_W01 (knowledge) K1IBM_W01 C1, C Lec1-Lec15 N1, N PEK_U01 (skills) K1IBM_U01 C Cl1 Cl8 N3, N4 PEK_U0 K1IBM_U09 C Cl1 Cl8 N3,N4 PEK_K01 (competences) K1IBM_K01 C Cl1 Cl8 N3,N4 ** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY Zał. nr 4 do ZW 64/01 SUBJECT CARD Name in Polish PODSTAWY ELEKTROTECHNIKI I ELEKTRONIKI Name in English PRINCIPLES OF ELECTRICAL AND ELECTRONICS ENGINEERING Main field of study (if applicable): BIOMEDICAL ENGINEERING Specialization (if applicable): BIOMECHANICAL ENGINEERING, MEDICAL ELECTRONICS, BIOMEDICAL OPTICS Level and form of studies: 1st/ nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code ETP00003L Group of courses YES / NO* Lecture Classes Laboratory Project Seminar Number of hours of organized classes in University (ZZU) 30 Number of hours of total student workload (CNPS) Form of crediting 90 For group of courses mark (X) final course Number of ECTS points 3 including number of ECTS points for practical (P) classes including number of ECTS points for direct teacher-student contact (BK) classes *delete as applicable 3 1,5 PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES 1. Knowledge in the range of principles of electrical and electronic engineering.. Skills in the range of laboratory training. \ SUBJECT OBJECTIVES C1 Consolidation of knowledge and gaining basic skills in the range of measurements of electrical quantities, in application to electrical and electronic circuits. C Gaining basic practical skills in the range of analysis of electronic circuits.

SUBJECT EDUCATIONAL EFFECTS relating to knowledge: PEK_W01 Has ordered, theoretically based general knowledge including main problems from the range of electrical and electronic engineering. relating to skills: PEK_U01 Can gain from literature, data bases and other sources, basic information related to chosen practical problems in the range of electrical and electronic engineering. PEK_U0 Can design and carry experiments, can interpret obtained results and draw conclusions. PEK_U03 Is able to plan and carry out experiments, is able to interpret the results obtained and draw conclusions relating to social competences: PEK_K01 Knows limitations of the own knowledge and understand necessity of further study. PEK_K0 Can individually retrieve information in literature, also in foreign languages. PROGRAMME CONTENT Form of classes - laboratory Number of hours Lab 1 Introduction to laboratory Lab Measurements of DC voltages and currents Lab 3 Basic laws of electrotechnics Lab 4 Linear and non-linear passive elements of electrical circuits Lab 5 Sources of DC voltages and currents Lab 6 Electronic oscilloscope 1 Lab 7 Electronic oscilloscope Lab 8 Generators of electrical waveforms Lab 9 Measurements of basic parameters of electrical waveforms Lab 10 RLC two-terminal networks, electrical resonance Lab 11 Passive two-port networks, frequency characteristics Lab 1 Operational amplifier Lab 13 Basic logic gates Lab 14 Voltage stabilizer Lab 15 Test exercise Total hours 30 TEACHING TOOLS USED N1. Work in laboratory of electrical and electronic circuits. N. Short tests of knowledge. N3. Written reports from laboratory exercises. EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT Evaluation (F forming (during semester), P concluding (at semester end) Educational effect number F1 PEK_W01 1. Short written tests. Way of evaluating educational effect achievement

PEK_U01 PEK_U0 PEK_U03 PEK_K01. Reports from laboratory exercises. 3. Problems to solve of after organized classes. P = F1 average mark from partial marks PRIMARY LITERATURE: PRIMARY AND SECONDARY LITERATURE [1] Instructions to laboratory exercises available at website www.ibp.pwr.wroc.pl [] Bird J., Electrical and Electronic Principles and Technology, Newes, 008 (third edition) available online [3] Horowitz P., Hill W., The art of electronics, Cambridge University Press, second edition 1989 SECONDARY LITERATURE: [1] Wolski W., Teoretyczne podstawy techniki analogowej, Oficyna Wydawnicza Politechniki [] RusekM., Pasierbiński J., Elementy i układy elektroniczne w pytaniach i odpowiedziach, WNT, Warszawa 006 SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Dr hab. inż. Zbigniew Moroń zbigniew.moron@pwr.wroc.pl MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT Principles of Electrical and Electronics Engineering AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Biomedical Engineering

AND SPECIALIZATION Biomechanical Engineering, Medical Electronics, Biomedical Optics Subject educational effect Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)** Subject Programme objectives*** content*** Teaching tool number*** PEK_W01 (knowledge) K1IBM_W03 C1, C La1 - La15 N, N3 PEK_U01 (skills) K1IBM_U01 C1, C La1 - La15 N1 - N3 PEK_U0 K1IBM_U09 C1, C La1 - La15 N1, N3 PEK_U03 K1IBM_U08 C1, C La1 - La15 N1 - N3 PEK_K01 (competences) K1IBM_K01 C1, C La1 - La15 N1 - N3 PEK_K0 K1IBM_K01 C1, C La1 - La15 N1 - N3 ** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

Zał. nr 4 do ZW 64/01 FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY SUBJECT CARD Name in Polish: MIKROKONTROLERY 1 Name in English: MICROCONTROLLERS 1 Main field of study (if applicable): BIOMEDICAL ENGINEERING Specialization (if applicable): BIOMECHANICAL ENGINEERING, MEDICAL ELECTRONICS, BIOMEDICAL OPTICS Level and form of studies: 1st/ nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code ETP00004W, ETP00040L Group of courses YES / NO* Number of hours of organized classes in University (ZZU) Number of hours of total student workload (CNPS) Form of crediting Lecture Classes Laboratory Project Seminar 15 0 30 0 0 60 60 For group of courses mark (X) final course Number of ECTS points including number of ECTS points for practical (P) classes including number of ECTS points for direct teacher-student contact (BK) classes 1 1.5 PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES 1. Basic knowledge of digital electronic circuits (logical gates, flip-flops, registers, multiplexers, counters). E.g., Introduction to electrical engineering and electronics, Introduction to electrical engineering and electronics. Basic knowledge of and basic skills in C programming language, e.g., Programming languages (both the lecture course: INP003W and the laboratory one: INP003L) SUBJECT OBJECTIVES C1. Acquiring of basic knowledge about the resources of typical microcontroller and about possibilities of their practical application C. Learning of basic practical skills at programming in an assembler language and at using of some exemplary development environment for preparing and debugging programs

SUBJECT EDUCATIONAL EFFECTS relating to knowledge: PEK_W01 has basic knowledge of the structure of a typical microcontroller and of its programming in an assembler language. PEK_W0 knows basic rules of preparing a proper documentation of a program. relating to skills: PEK_U01 is able to analyse, write and practically debug simple programs using typical algorithms and data structures. PEK_U0 is able to control elements connected to the microcontroller circuit and also to react to outer drives. PEK_U03 is able to use basic tool programs such as: editor, assembler, debugger or simulator. relating to social competences: PEK_K01 is able to retrieve information from literature, also in foreign languages. PEK_K0 is able to anticipate many-sided effects of her/his decisions and activities. PROGRAMME CONTENT Form of classes - lecture Microcontroller as a programmable digital circuit and the programming structure Lec 1 of AVR microprocessor Data transfer instructions addressing modes. Lec Some typical applications of the logical and arithmetical instructions Lec 3 Building of typical programming structures Division of the program task into blocks subroutines and a stack; Lec 4 techniques of parameters transfer to subroutines Lec 5 Input/Output ports: their structure and usage Lec 6 Count of events and time intervals; timers/counters circuits their application and programming Lec 7 Interrupts Lec 8 The course completion test 1 Number of hours Total hours: 15

Form of classes - laboratory Number of hours An introduction. Exercises in numbers notation in positional numeral systems Lab 1 of different bases Lab Elaborating and debugging of a simple program having the structure of a loop. Practical familiarization with the program development environment used in the laboratory, especially with its editor, assembler, and debugger Unaided preparation and debugging of the programs using data transfer Lab 3 instructions, logical operations and conditional jumps. x Selected examples of microcontroller communication with its surroundings via parallel ports: sending data out, reading the state of some input line and a Lab 4 reaction to it; elementary microcontroller co-operation with a display, switch, x and with a joystick. Lab 5 Elaboration of the program of the expanded reaction to the external event. x Lab 6 Tables creation in the program memory and the communication with them. x Lab 7 Complex tasks decomposition subroutines separation Lab 8 Data transfer to subroutines Lab 9 Program delays and their utilisation in practice 3 Lab 10 Proper documentation of a program basic rules and examples Lab 11 Tests in the course of a semester 1 Total hours 30 TEACHING TOOLS USED N1. Multimedia lecture with elements of traditional lecture; the elements of lecture are also present during laboratories N. Data sheets and application notes prepared by the manufacturer of the used microcontroller N3. In the laboratory: the microcontroller evaluation boards together with exemplary peripheral elements fixed on them, and also PC computers with the appropriate tool programs installed. N4. The lecture course completion: a written test; The laboratory course: completion of all short tests in the course of a semester and completion of all the instructed tasks. N5. Work with the software. EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT Evaluation (F forming (during semester), P concluding (at semester end) F1 Educational effect number PEK_W01 PEK_W0 PEK_U01 Way of evaluating of educational effect achievement A written final test completing the lecture course (colloquium) F PEK_U01 Short tests during laboratories PEK_U01-PEK_U03 Individual discussions with students, F3 PEK_K01 completing each particular programming task PEK_K0 P- Lecture: the mark obtained for the written final test (colloquium) Laboratory: the marks obtained for tests and for the discussions completing each particular programming task