Przetworniki A/C i C/A w systemach mikroprocesorowych

Podobne dokumenty
Przetworniki A/C i C/A w systemach mikroprocesorowych

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe

Wyjścia analogowe w sterownikach, regulatorach

Struktury specjalizowane wykorzystywane w mikrokontrolerach

Przetworniki A/C. Ryszard J. Barczyński, Materiały dydaktyczne do użytku wewnętrznego

Przetworniki C/A. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Podstawowe funkcje przetwornika C/A

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Zastosowania mikrokontrolerów w przemyśle

Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D)

Badanie przetworników A/C i C/A

Architektura przetworników A/C

PRZETWORNIKI A/C I C/A.

Przetwornik analogowo-cyfrowy

XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej. XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej

Badanie przetworników AC różnych typów

Rys. Podstawowy system przetwarzania cyfrowego sygnałów analogowych

Przetwarzanie analogowo-cyfrowe sygnałów

Przetworniki analogowo-cyfrowe

Teoria przetwarzania A/C i C/A.

Przetworniki analogowo-cyfrowe - budowa i działanie" anie"

Liniowe układy scalone. Przetwarzanie A/C, C/A część 2

Liniowe układy scalone. Przetwarzanie A/C i C/A cz. 1

KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE. Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach wagowych

Moduł wejść/wyjść VersaPoint

Próbkowanie czyli dyskretyzacja argumentów funkcji x(t)) polega na kolejnym pobieraniu próbek wartości sygnału w pewnych odstępach czasu.

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych

Przetworniki AC i CA

Definicja kwantowania i próbkowania Sieci rezystorowe R-2R w przetwornikach C/A Klasyfikacja metody przetwarzania A/C Przetwarzanie A/C typu sigma

Przetworniki analogowo-cyfrowe (A/C)

Przetworniki analogowo - cyfrowe CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Zasada pracy przetwornika A/C

Pomiary i przyrządy cyfrowe

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości.

projekt przetwornika inteligentnego do pomiaru wysokości i prędkości pionowej BSP podczas fazy lądowania;

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Metody przetwarzania. Dr inż. Janusz MIKOŁAJCZYK

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

E-TRONIX Sterownik Uniwersalny SU 1.2

Architektura przetworników A/C. Adam Drózd

Elektronika i techniki mikroprocesorowe

Układy czasowo-licznikowe w systemach mikroprocesorowych

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:

Programy CAD w praktyce inŝynierskiej

Komputerowe systemy pomiarowe. Podstawowe elementy sprzętowe elektronicznych układów pomiarowych

PRZETWORNIK ADC w mikrokontrolerach Atmega16-32

Wejścia logiczne w regulatorach, sterownikach przemysłowych

Kod produktu: MP01105T

Ćw. 7 Przetworniki A/C i C/A

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu

Imię i nazwisko (e mail) Grupa:

Przykładowe zadanie praktyczne

KWANTYZACJA. kwantyzacja

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

2.11 MODUŁY WEJŚĆ ANALOGOWYCH

Kodowanie informacji. Kody liczbowe

Przetworniki pomiarowe obrotu i przesunięcia liniowego

Komunikacja w mikrokontrolerach Laboratorium

O sygnałach cyfrowych

Podstawy elektroniki i metrologii

1.1. Pozycyjne systemy liczbowe

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

M-1TI. PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA ZASTOSOWANIE:

KOMPUTEROWE SYSTEMY POMIAROWE

Przetworniki cyfrowo-analogowe C-A CELE ĆWICZEŃ PODSTAWY TEORETYCZNE

Proste układy wykonawcze

Stan wysoki (H) i stan niski (L)

Programowanie sterowników PLC wprowadzenie

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym

Kod produktu: MP01105

WOLTOMIERZ CYFROWY. Metoda czasowa prosta. gdzie: stała całkowania integratora. stąd: Ponieważ z. int

Metody wprowadzania informacji cyfrowej o wyniku pomiaru do komputera

Moduł wejść/wyjść VersaPoint

Sygnał a informacja. Nośnikiem informacji mogą być: liczby, słowa, dźwięki, obrazy, zapachy, prąd itp. czyli różnorakie sygnały.

Karta katalogowa V E3XB. Moduł wejść/wyjść Snap. 18 (podzielone na dwie grupy) Typ wejść


Interfejsy komunikacyjne pomiary sygnałów losowych i pseudolosowych. Instrukcja do ćwiczenia laboratoryjnego

ASTOR IC200ALG320 4 wyjścia analogowe prądowe. Rozdzielczość 12 bitów. Kod: B8. 4-kanałowy moduł ALG320 przetwarza sygnały cyfrowe o rozdzielczości 12

KOMPUTEROWE SYSTEMY POMIAROWE

LICZNIKI Liczniki scalone serii 749x

PRZETWORNIKI CYFROWO - ANALOGOWE POMIARY, WŁAŚCIWOŚCI, ZASTOSOWANIA.

Przetwarzanie AC i CA

Technika Mikroprocesorowa

Research & Development Ultrasonic Technology / Fingerprint recognition DATA SHEETS. Opis karty OPCONZ. optel@optel.

HC541 8-bitowy bufor jednokierunkowy HC245 8-bitowy bufor dwukierunkowy HC244 dwa 4-bitowe bufory jednokierunkowe

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII

Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...

Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA. Autor: Daniel Słowik

Research & Development Ultrasonic Technology / Fingerprint recognition

Realizacja regulatora PID w komputerze PC z kartą akwizycji danych. Opracował na podstawie dokumentacji dr inż. Jarosław Tarnawski

Teoretyczne Podstawy Informatyki

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych

Schemat funkcjonalny układu automatycznej regulacji

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

Transkrypt:

Przetworniki A/C i C/A w systemach mikroprocesorowych 1 Przetwornik A/C i C/A Przetworniki analogowo-cyfrowe (A/C) i cyfrowoanalogowe (C/A) to układy elektroniczne umożliwiające przesyłanie informacji między systemami analogowymi, a systemami cyfrowymi i na odwrót. Sygnał wejściowy przetwornika A/C i sygnał wyjściowy przetwornika C/A mają postad analogową, natomiast odpowiadające im sygnały wejściowe przetwornika C/A i wyjściowy przetwornika A/C mają postad cyfrową. Działanie tych układów polega zatem, na przetwarzaniu sygnału analogowego na sygnał cyfrowy bądź odwrotnie. 2 1

Przetwornik A/C Przetwornik analogowo-cyfrowy służy do zamiany sygnału analogowego w cyfrowy, w celu dalszego przetwarzania, czyli: zapisu, obróbki sygnału, przesyłania na dalszą odległośd, prezentacji. Takich metod wymagają w szczególności wszystkie systemy komputerowe. Obecnie bardzo szybkie przetworniki A/C są coraz powszechniej stosowane w różnych dziedzinach elektroniki, między innymi w analizie sygnałów telewizyjnych radarowych, w transmisji kodowej tych sygnałów, w układzie rejestracji i analizy bardzo szybkich przebiegów elektrycznych. Coraz większe zapotrzebowanie na przesyłanie, rejestrowanie, odtwarzanie dźwięku i obrazu w postaci cyfrowej wymaga coraz szybszych i dokładnych przetworników A/C i C/A. 3 Przetwornik A/C Sygnał napięciowy U X A/C EOC START 111 Obwód wejściowy przetwornika A/C 000 0V U X U FS Charakterystyka przejściowa unipolarnego przetwornika A/C [V] q U FS n 2 Rozdzielczośd może byd wyrażana w jednostkach napięcia (najczęściej w miliwoltach), jako wielkośd przedziału kwantowania q, czyli przez wartośd napięcia wejściowego odpowiadającą najmniej znaczącemu bitowi (1 LSB) słowa wyjściowego Jeśli na wyjściu przetwornika A/C uzyskuje się n-bitowe słowo wyjściowe: a 1, a 2...a n, to napięcie wejściowe U X odpowiadające takiemu wynikowi przetwarzania można obliczyd ze wzoru: U X napięcie wejściowe, U FS napięcie pełnej skali 1 2 n U X ( a1 2 a2 2... an 2 ) U FS 4 2

Przetwornik A/C Na wejściu przetwornika analogowo-cyfrowego występuje sygnał analogowy, w którym istotna informacja jest zawarta w wartości i znaku napięcia lub prądu, a na wyjściu sygnał cyfrowy reprezentowany jest przez odpowiednio zakodowaną liczbę wyrażaną zwykle w zapisie dwójkowym. Istotą przetwarzania A/C jest więc przyporządkowanie każdej wartości napięcia wejściowego U X odpowiedniej wartości cyfrowej N X na wyjściu przetwornika w postaci kombinacji stanów logicznych 0 lub 1. Taka kombinacja o określonej liczbie n-bitów nazywa się słowem wyjściowym przetwornika i stanowi wynik przetwarzania zakodowany na ogół w naturalnym kodzie dwójkowym. 5 Wielokanałowy pomiar napięcia AIN0 V0 AIN1 W U X A/C START V1 EOC AIN2 V2 COM Multiplekser analogowy Wybór kanału 6 3

Przetwornik A/C przy czym współczynnik a 1...a n może przyjmowad wartości 0 lub 1, a oznaczenie U FS określa pełny zakres napięcia przetwarzania. Współczynnik a 1 określa stan najbardziej znaczącego bitu (MSB), a współczynnik a n najmniej znaczącego bitu (LSB) wyniku przetwarzania. 7 Podstawowe parametry przetworników A/C Rozdzielczośd Czas przetwarzania Zakres napięcia wejściowego Dokładnośd przetwarzania Liniowośd Kod wyjściowy Napięcie zasilania i pobór prądu 8 4

Parametry przetwornika A/C Rozdzielczośd jest własnością najbardziej związaną z cechami przetwornika A/C jako układu cyfrowego, ponieważ wiąże się z liczbą bitów słowa wyjściowego. Dokładnośd przetwornika jako układu analogowego zależy, poza rozdzielczością od kilku rodzajów błędów, z których główny wpływ mają: błędy wzmocnienia i przesunięcia zera, nieliniowośd całkowania i różniczkowania zmiany termiczne. 9 Rozdzielczośd przetwornika A/C Liczba przedziałów kwantowania, czyli liczba bitów słowa wyjściowego, określa podstawowy parametr przetwornika A/C, jakim jest rozdzielczośd. Zdolnośd rozdzielcza (rozdzielczośd), wyraża najmniejszą wartośd sygnału wejściowego, która jest rozróżnialna przez przetwornik. Rozdzielczośd może byd wyrażana w jednostkach napięcia (najczęściej w miliwoltach), jako wielkośd przedziału kwantowania q, czyli przez wartośd napięcia wejściowego odpowiadającą najmniej znaczącemu bitu (1 LSB) słowa wyjściowego: Często określa się rozdzielczośd jako liczbę bitów słowa wyjściowego. q U FS n 2 10 5

Parametry przetwornika A/C charakterystyka idealna Charakterystyka wyjściowa 3-bitowego przetwornika A/C 11 Błąd kwantyzacji 12 6

Wartośd 1LSB dla idealnego przetwornika A/C 13 Dokładnośd a rozdzielczośd przetwornika A/C Suma wszystkich błędów analogowych dokładnośd przetwornika, w całym zakresie temperatury pracy powinna się mieścid w granicach określonych rozdzielczością (wartością przedziału kwantowania) odpowiadająca 1 LSB. W prawidłowo zaprojektowanym przetworniku A/C liczba bitów wyniku przetwarzania jest dobrana tak, że wartośd błędu analogowego wyrażona przez dokładnośd jest mniejsza od kwantyzacji wynikającego z rozdzielczości. Zwiększanie zdolności rozdzielczej ponad granicę wynikającą z wielkości błędu analogowego, jest niecelowe, ponieważ nie poprawia dokładności przetwarzania. Więc przy prawidłowo wyznaczonych parametrach przetwornika A/C wartośd katalogowej zdolności rozdzielczej powinna również określad jego dokładnośd. 14 7

Nieliniowośd przetwornika A/C Nieliniowośd całkowa stanowi maksymalne względne odchylenie rzeczywistej charakterystyki przetwarzania od linii prostej łączącej dwa kraocowe punkty zakresu przetwarzania. E C ( U U X ) FS MAX 100% 15 Błędy przetwornika A/C Charakterystyki przetworników A/C: a- z błędem nieliniowości całkowanej, b- różniczkowej 16 8

Błędy przetwornika A/C Charakterystyka przetwarzania A/C: a- z błędem wzmocnienia, b- z błędem przesunięcia zera. 17 Szybkośd przetwarzania A/C Proces przetwarzania analogowo-cyfrowego odbywa się z pewną określoną szybkością, którą można wyrazid przez czas przetwarzania, częstotliwośd przetwarzania lub tzw. szybkośd bitową. Czas przetwarzania T C to czas konieczny do jednego całkowitego przetworzenia na wielkośd cyfrową sygnału analogowego o wartości równej pełnemu zakresowi przetwarzania. Jest to więc czas upływający od chwili podania sygnału inicjującego do pojawienia się pełnej wartości cyfrowej wyniku przetwarzania. START KONIEC T C T S T S T C t [s] t [s] N-1 N t [s] T S czas próbkowania T C czas przetwarzania f s =1/T S - częstotliwośd próbkowania 18 9

Szybkośd przetwarzania A/C Częstotliwośd przetwarzania f C jest to maksymalna częstotliwośd, z jaką mogą następowad kolejne przetworzenia sygnału wejściowego z zachowaniem określonej dokładności i rozdzielczości w pełnym zakresie przetwarzania. Przyjmuje się, że częstotliwośd przetwarzania jest w przybliżeniu równa odwrotności czasu przetwarzania, chociaż istnieją odchylenia od tej zasady. Przy obliczaniu częstotliwości przetwarzania powinno się bowiem uwzględnid nie tylko czas przetwarzania, lecz także niezbędny czas ustalania się warunków pracy układu przed następnym cyklem przetwarzania. Z tego powodu częstotliwośd przetwarzania jest z reguły nieco mniejsza od odwrotności czasu przetwarzania. 19 Metody przetwarzania A/C Metody pośrednie Czasowe - z pojedynczym całkowaniem - z podwójnym całkowaniem - z potrójnym całkowaniem - z poczwórnym całkowaniem Częstotliwościowe - prosta - z równoważeniem ładunków - metoda sigma-delta (Σ-Δ) Metody bezpośrednie Bezpośredniego porównywania - równoległa - szeregowa - szeregowo równoległa - wielokrotnego składania sygnałów Kompensacyjna - wagowa - równomierna Metody pośrednie są wolne (Tc ok. [ms]) ale bardzo dokładne (10-22 bitów). Metoda kompensacyjna jest szybka (Tc ok. [µs]) i dokładna (10-16 bitów). Metody bezpośrednie są najszybsze (Tc ok. [ns], *µs+) ale mniej dokładne (6-8 bitów). 20 10

Zasada pomiaru wejście napięciowe pojedyncze Sygnał napięciowy z czujnika 1 U WY R KABLA R KABLA1 zakłócenia U GND I we U WE R WE Filtr DP Obwód pomiarowy z wejściem pojedynczym R1 C R2 W Wewnętrzny system pomiarowy U X A/C Dzielnik wejściowy, filtr DP, wzmacniacz pojedynczy, przetwornik A/C i mikrokontroler Zalety i wady wejścia pojedynczego: mała liczba przewodów, małe koszty przy krótkich odległościach, małe koszty i prostota układu pomiarowego, słaba odpornośd na zakłócenia, słabe tłumienie sygnałów tzw. wspólnych 21 Zasada pomiaru wejście napięciowe różnicowe Sygnał napięciowy z czujnika R KABLA U wy R KABLA zakłócenia I we R1 R we C R2 WR U we U x K I we Filtr DP R1 U W1 U W2 C U U R W+ W- KABLA1 R2 Wewnętrzny system pomiarowy + - U x A/C 1 U GND Obwód pomiarowy z wejściem różnicowym Zalety i wady wejścia pojedynczego: dobra odpornośd na zakłócenia, silne tłumienie sygnałów tzw. wspólnych większa liczba przewodów, większe koszty przy dużych odległościach, większe koszty i bardziej skomplikowany układ pomiarowy, Dzielnik wejściowy, filtr DP, wzmacniacz różnicowy, przetwornik A/C i mikrokontroler Wejściowe Napięcie Różnicowe U we = U W1 - U W2 Wejściowe Napięcie dla przet. A/C U X = K*(U W1 - U W2 ) 22 11

Kody wyjściowe przetworników A/C Kod naturalny binarny BIN Kod dziesiętny BCD Kod uzupełnieo do dwóch (U2) Kod znak + moduł w kodzie BIN Kod Graya W systemach mikroprocesorowych najczęściej stosuje się kod naturalny binarny (BIN). 23 Kody wyjściowe przetworników A/C 111 111 111 [V] 000 0V U X U FS Charakterystyka przejściowa unipolarnego przetwornika A/C 000 -U FS 0V U X U FS Charakterystyka przejściowa bipolarnego przetwornika A/C [V] 000 [V] 0V U X U FS Charakterystyka przejściowa bipolarnego przetwornika A/C w kodzie znak+moduł 24 12

Przetwornik C/A WPIS [V] C/A Sygnał napięciowy wyjściowy U FS U WY U wy Obwód wyjściowy przetwornika C/A 0V 000 111 Charakterystyka wyjściowa unipolarnego przetwornika C/A q U FS n 2 Rozdzielczośd może byd wyrażana w jednostkach napięcia (najczęściej w miliwoltach), jako wielkośd przedziału kwantowania q, czyli przez wartośd napięcia wyjściowego odpowiadającą najmniej znaczącemu bitu (1 LSB) słowa wejściowego Uwy q* Dn 25 Podstawowe parametry przetwornika C/A Rozdzielczośd Dokładnośd przetwarzania Czas ustalania napięcia na wyjściu (czas przetwarzania) Zakres napięcia wyjściowego Liniowośd Kod wejściowy Napięcie zasilania i pobór prądu 26 13

Parametry przetwornika C/A charakterystyka idealna [V] [V] U FS U WY +U FS U WY 0V 000 111 0V 000 111 Charakterystyka wyjściowa unipolarnego przetwornika C/A -U FS Charakterystyka wyjściowa bipolarnego przetwornika C/A Zakresy napięd wyjściowych przetworników C/A: Unipolarne +2.5V, +5V, +10V Bipolarne ± 2.5V, ± 5V, ±10V 27 Czas ustalania przetwornika C/A 28 14

Metody przetwarzania C/A Metody bezpośrednie Metody sumowania prądów (drabinka 2 N lub R-2R) Metoda sumowania napięd (drabinka 2 N lub R-2R) Metody pośrednie PWM Pulse Width Modulation (modulacja szerokości impulsu) PDM - Pulse-Density Modulation (modulacja gęstością impulsów) metoda sigma-delta (Σ-Δ) 29 Podłączenie przetworników A/C i C/A do systemu mikroprocesorowego Do systemu mikroprocesorowego można podłączyd przetwornik A/C lub C/A na kilka sposobów: 1. Za pomocą sprzętowej zewnętrznej szyny danych, szyny adresowej i szyny sterującej. Wtedy do zapisu lub odczytu danych używa się gotowych rozkazów mikroprocesora. Przetwornik A/C może byd podłączony jeszcze do systemu przerwao sprzętowych. 2. Za pomocą programowej zewnętrznej szyny danych, zewnętrznej szyny adresowej i zewnętrznej szyny sterującej zrealizowanej za pomocą równoległych portów I/O. Wtedy do zapisu lub odczytu danych należy napisad procedury. 3. Za pomocą równoległych portów I/O, zapis lub odczyt poprzez odpowiednie sterowanie poszczególnych koocówek portu. 4. Za pomocą interfejsów szeregowych sprzętowych lub interfejsów szeregowych programowych. Np. typu SPI, I2C, 1-Wire. Tylko wtedy przetwornik musi byd wyposażony w taki interfejs szeregowy. 30 15

Przetwornik A/C i C/A w systemie mikroprocesorowym Najlepszym sposobem uniknięcia problemów z podłączeniem przetworników A/C i C/A do systemu jest zastosowanie mikrokontrolera, która ma wewnętrzne układy A/C i C/A. Wtedy przetworniki są traktowane jako wewnętrzne układy wejścia/wyjścia. W takim przypadku musimy zapewnid odpowiednią obsługę programową takiego układu. Obecnie większośd mikrokontrolerów 8, 16 i 32 bitowych ma wewnętrzny wielokanałowy system pomiarowy (4, 8, 12 kanałów) z przetwornikiem np. 10-bitowym o czasie przetwarzania kilkunastu µs. Rzadziej się spotyka mikrokontrolery z przetwornikami C/A. Można do tego celu zastosowad wyjściowy kanał PWM. 31 Interfejsy przetworników A/C EOC MISO U WE A/C START U WE A/C MOSI SCK /CS Przetwornik A/C z wyjściem równoległym U1 WE EOC U2 WE U3 MUX WE U4 WE A/C START Przetwornik A/C z wyjściem szeregowym, typu SPI U1 WE U2 WE U3 WE U4 WE MUX A/C SCL SDA Czterokanałowy przetwornik A/C z wyjściem równoległym Czterokanałowy przetwornik A/C z wyjściem szeregowym typu I2C 32 16

Interfejsy przetworników C/A WPIS MISO C/A U wy MOSI SCK /CS C/A U wy Przetwornik C/A z wejściem równoległym MISO MOSI SCK /CS C/A 1 C/A 2 C/A 3 C/A 4 Przetwornik C/A z wejściem szeregowym typu SPI U1 wy U2 wy U3 wy U4 wy Cztero-kanałowy przetwornik C/A z wejściem szeregowym typu SPI 33 Przykłady przetworników A/C 34 17

Przykłady przetworników A/C 35 Przykłady przetworników C/A 36 18