DZIAŁ 1. LICZBY I DZIAŁANIA

Podobne dokumenty
Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej

Szczegółowe wymagania edukacyjne z matematyki w klasie siódmej szkoły podstawowej na rok szkolny 2017/2018

WYMAGANIA EDUKACYJNE KLASA VII. LICZBY i DZIAŁANIA

Wymagania edukacyjne z matematyki Szkoła Podstawowa im. Mikołaja z Ryńska w Ryńsku

WYMAGANIA EDUKACYJNE Z MATEMATYKI ucznia kl. VII

Wymagania na poszczególne stopnie szkolne z matematyki klasa VII

Wymagania edukacyjne z matematyki opracowane do programu Matematyka z plusem GWO w klasie 7 szkoły podstawowej

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 7 DZIAŁ 1. LICZBY I DZIAŁANIA

SZCZEGÓŁOWE KRYTERIA OCENIANIA DLA KLASY VII LICZBY I DZIAŁANIA. Ocenę dopuszczającą otrzymuje uczeń, który:

Wymagania na ocenę dostateczną(p) umie znajdować liczbę wymierną leżącą pomiędzy dwiema danymi na osi liczbowej

Temat LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII

Uczeń spełnia wymagania na ocenę dopuszczającą oraz:

Kryteria ocen z matematyki w klasie VII Na ocenę dopuszczającą uczeń: - rozumie rozszerzenie osi liczbowej na liczby ujemne - umie porównywać liczby

Wymagania edukacyjne z matematyki dla klasy VII - rok szkolny 2018/2019

Klasa 7 Matematyka z plusem

Wymagania edukacyjne z matematyki do klasy siódmej rok szkolny 2018/2019

Szkoła Podstawowa nr 28 Wymagania edukacyjne z matematyki do klasy siódmej, rok szkolny 2017/2018. Na ocenę dopuszczającą uczeń:

ZESPÓŁ SZKÓŁ W OBRZYCKU

WYMAGANIA EDUKACYJNE Z MATEMATYKI

Wymagania edukacyjne z matematyki dla klasy 7 szkoły podstawowej

Wymagania edukacyjne z matematyki dla. klasy 7

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY VII. końcoworoczne

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Według podstawy programowej z 2017r.

WYMAGANIA NA POSZCZEGÓLNE OCENY SZKOLNE KLASA 7 SZKOŁY PODSTAWOWEJ wg Matematyki z plusem, wyd. GWO

NaCoBeZU z matematyki dla klasy 7

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VII LICZBY I DZIAŁANIA

Wymagania na poszczególne oceny z matematyki w klasie VII.

Ocenę dobrą otrzymuje uczeń, który spełnia wymagania kryterialne na ocenę dostateczną oraz:

WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY VII

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ

WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY VII OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP.

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem

POZIOMY WYMAGAŃ EDUKACYJNYCH Klasa VII A. Umiejętności spoza nowej podstawy programowej zaznaczono szarym paskiem.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 7 MATEMATYKA Z PLUSEM

Uczeń spełnienia wymagań na ocenę dopuszczającą, dostateczną. Uczeń spełnienia wymagań na ocenę dopuszczającą, dostateczną, dobrą

Wymagania edukacyjne z matematyki na poszczególne oceny klasa 7

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7 DZIAŁ 1. LICZBY I DZIAŁANIA

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

Sylwia Kowalik dla Zespołu Szkolno-Przedszkolnego w Zabierzowie

DZIAŁ 1. LICZBY I DZIAŁANIA (18 h)

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VII

Wymagania edukacyjne na poszczególne oceny klasa VII

KRYTERIA OCENIANIANIA Z MATEMATYKI W KL.VII

1. LICZBY I DZIAŁANIA

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

MATEMATYKA 7 WYMAGANIA EDUKACYJNE DLA POSZCZEGÓLNYCH DZIAŁÓW

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VII

Wymagania edukacyjne z matematyki w klasie VII

KRYTERIA OCENIANIA NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7

Wymagania z matematyki KLASA VII

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE SZKOLNE W KLASIE VII SZKOŁY PODSTAWOWEJ

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

MATEMATYKA szkoła podstawowa klasa VII

Wymagania edukacyjne z matematyki dla klasy VII Szkoła Podstawowa nr 149. DZIAŁ 1. LICZBY I DZIAŁANIA (16 h)

Kryteria oceniania z matematyki w klasie VII

Wymagania edukacyjne z matematyki dla klasy 7 szkoły podstawowej na podstawie podręcznika Matematyka z plusem wyd. GWO

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII

Wymagania na poszczególne oceny z matematyki w klasie VII na rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ

WYMAGANIA NA OCENY KL. 7

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum

WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VII szkoły podstawowej

Wymagania edukacyjne z matematyki dla kl.7

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

Katalog wymagań programowych na poszczególne stopnie szkolne

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 7 ROK SZKOLNY 2017/2018

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Wymagania z matematyki na poszczególne oceny obowiązujące w Publicznej Szkole Podstawowej Nr 14 Integracyjnej im. Jana Pawła II w Radomiu

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE VII

PLAN NAUCZANIA Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 7 SZKOŁA PODSTAWOWA IM. GEN. J. BEMA W STARYM MIEŚCIE

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Dopuszczający. Opracowanie: mgr Michał Wolak 2

DZIAŁ 1. LICZBY I DZIAŁANIA

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA VII SZKOŁA PODSTAWOWA NR 2 W ŁĘCZNEJ

Wymagania edukacyjne z matematyki w klasie 7

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE VII SZKOŁY PODSTAWOWEJ

I. Liczby i działania

- zna pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres

WYMAGANIA EDUKACYJNE

Transkrypt:

DZIAŁ 1. LICZBY I DZIAŁANIA rozumie rozszerzenie osi liczbowej na liczby umie znajdować liczbę wymierną leżącą ujemne; pomiędzy dwiema danymi na osi liczbowej; umie porównywać liczby wymierne; umie zamieniać ułamek zwykły na dziesiętny i umie zaznaczać liczbę wymierną na osi odwrotnie; liczbowej; umie porównywać liczby wymierne; umie zamieniać ułamek zwykły na dziesiętny i umie zapisać liczby wymierne w postaci odwrotnie; rozwinięć dziesiętnych skończonych zna pojęcia: rozwinięcie dziesiętne skończone, i rozwinięć dziesiętnych nieskończonych nieskończone, okres; okresowych; umie zapisać liczby wymierne w postaci umie porównywać liczby wymierne; rozwinięć dziesiętnych skończonych umie określić na podstawie rozwinięcia i rozwinięć dziesiętnych nieskończonych dziesiętnego, czy dana liczba jest liczbą okresowych; wymierną; rozumie potrzebę zaokrąglania liczb (K-P rozumie potrzebę zaokrąglania liczb; umie zaokrąglić liczbę do danego rzędu; umie zaokrąglić liczbę do danego rzędu; zna algorytm dodawania i odejmowania liczb umie zaokrąglić liczbę o rozwinięciu wymiernych dodatnich; dziesiętnym nieskończonym okresowym do umie dodawać i odejmować liczby wymierne danego rzędu; dodatnie zapisane w jednakowej postaci; umie szacować wyniki działań; zna algorytm mnożenia i dzielenia liczb umie dodawać i odejmować liczby wymierne wymiernych dodatnich; dodatnie zapisane w różnych postaciach; umie podać odwrotność liczby; umie mnożyć i dzielić liczby wymierne umie mnożyć i dzielić przez liczbę naturalną; dodatnie; umie obliczać ułamek danej liczby naturalnej; umie obliczać liczbę na podstawie danego jej zna kolejność wykonywania działań; ułamka; umie dodawać, odejmować, mnożyć i dzielić umie wykonywać działania łączne na liczbach dwie liczby; wymiernych dodatnich; zna pojęcie liczb przeciwnych; umie określić znak liczby będącej wynikiem umie odczytać z osi liczbowej liczby dodawania lub odejmowania dwóch liczb spełniające określony warunek; wymiernych; umie opisać zbiór liczb za pomocą umie obliczać kwadraty i sześciany i liczb nierówności; wymiernych; umie zaznaczyć na osi liczbowej liczby prawa działań; spełniające określoną nierówność; umie zaznaczyć na osi liczbowej liczby zna pojęcie odległości między dwiema liczbami spełniające określoną nierówność na osi liczbowej; ; umie zapisać nierówność, jaką spełniają liczby umie na podstawie rysunku osi liczbowej umie znajdować liczby spełniające określone warunki; umie porządkować liczby wymierne zna warunek konieczny zamiany ułamka zwykłego na ułamek dziesiętny skończony; umie przedstawić rozwinięcie dziesiętne nieskończone okresowe w umie porządkować liczby wymierne; postaci ułamka zwykłego; zna sposób zaokrąglania liczb; umie dokonać porównań poprzez szacowanie w zadaniach nietypowe zadania na zastosowanie dodawania i odejmowania liczb wymiernych umie zamieniać jednostki długości, masy; umie wykonywać działania łączne na liczbach wymiernych dodatnich; umie obliczać wartości wyrażeń arytmetycznych zawierających większą liczbę działań; umie zapisać podane słownie wyrażenia arytmetyczne i obliczać jego wartość; umie tworzyć wyrażenia arytmetyczne na podstawie treści zadań i obliczać ich wartość; prawa działań umie obliczać wartości wyrażeń arytmetycznych; umie znajdować liczby spełniające określone warunki; nietypowe zadania na zastosowanie dodawania i odejmowania liczb wymiernych umie obliczać wartości wyrażeń arytmetycznych zawierających większą liczbę działań; umie tworzyć wyrażenia arytmetyczne na podstawie treści zadań i obliczać ich wartość; prawa działań umie obliczać wartości wyrażeń arytmetycznych; umie wstawiać nawiasy tak, by otrzymać żądany wynik; umie zaznaczać na osi liczbowej zbiór liczb, które spełniają jednocześnie dwie nierówności; umie znaleźć liczby znajdujące się w określonej odległości na osi liczbowej od danej liczby; umie wykorzystywać wartość bezwzględną do obliczeń odległości liczb na osi liczbowej; umie znaleźć umie znajdować liczby spełniające określone warunki; umie tworzyć wyrażenia arytmetyczne na podstawie treści zadań i obliczać ich wartość; umie obliczać wartości ułamków piętrowych; umie wykorzystywać wartość bezwzględną do obliczeń odległości liczb na osi liczbowej; umie znaleźć rozwiązanie równania z wartością bezwzględną;

określić odległość między liczbami; z zaznaczonego na osi liczbowej zbioru; umie obliczyć odległość między liczbami na osi liczbowej; umie uzupełniać brakujące liczby w dodawaniu, odejmowaniu, mnożeniu i dzieleniu tak, by otrzymać ustalony wynik; umie zaznaczać na osi liczbowej zbiór liczb, które spełniają jednocześnie dwie nierówności; umie znaleźć liczby znajdujące się w określonej odległości na osi liczbowej od danej liczby; umie wykorzystywać wartość bezwzględną do obliczeń odległości liczb na osi liczbowej; umie znaleźć rozwiązanie równania z wartością bezwzględną; rozwiązanie równania z wartością bezwzględną 2

DZIAŁ 2. PROCENTY zna pojęcie procentu; umie zamienić ułamek na procent; rozumie potrzebę stosowania procentów w życiu umie zamienić liczbę wymierną na procent; codziennym; umie określić procentowo zaznaczoną umie wskazać przykłady zastosowań procentów część figury; i zaznaczyć procent danej w życiu codziennym; figury; umie zamienić procent na ułamek; zna sposób obliczania, jakim procentem umie zamienić ułamek na procent; jednej liczby jest druga liczba; umie określić procentowo zaznaczoną część umie obliczyć, jakim procentem jednej figury; i zaznaczyć procent danej figury; liczby jest druga liczba; umie obliczyć procent danej liczby; umie obliczyć procent danej liczby; rozumie pojęcia podwyżka (obniżka) o pewien umie obliczyć podwyżkę (obniżkę) o procent; pewien procent; wie, jak obliczyć podwyżkę (obniżkę) o pewien wie jak obliczyć liczbę na podstawie jej procent; procentu; umie obliczyć podwyżkę (obniżkę) o pewien umie obliczyć liczbę na podstawie jej procent; procentu (P zadania związane z procentami; umie obliczyć, jakim procentem jednej liczby jest druga liczba; tekstowe dotyczące obliczania, jakim procentem jednej liczby jest druga liczba; tekstowe dotyczące obliczania procentu danej liczby; umie wykorzystać diagramy do rozwiązywania zadań tekstowe dotyczące obliczania podwyżek i obniżek o pewien procent; umie obliczyć liczbę na podstawie jej procentu; tekstowe dotyczące obliczania liczby na podstawie jej procentu; umie obliczyć, o ile procent jest większa (mniejsza) liczba od danej; umie zastosować powyższe obliczenia w zdaniach umie odczytać z diagramu informacje potrzebne w zadaniu; zadania związane z procentami; własności procentów w sytuacji ogólnej; tekstowe dotyczące obliczania, jakim procentem jednej liczby jest druga liczba; tekstowe dotyczące obliczania procentu danej liczby; umie wykorzystać diagramy do rozwiązywania zadań tekstowe dotyczące obliczania podwyżek i obniżek o pewien procent; tekstowe dotyczące obliczania liczby na podstawie jej procentu; umie zastosować powyższe obliczenia w zdaniach umie odczytać z diagramu informacje potrzebne w zadaniu; zadania związane z procentami; dotyczące obliczania, jakim procentem jednej liczby jest druga liczba; dotyczące obliczania procentu danej liczby; umie wykorzystać diagramy do rozwiązywania zadań dotyczące obliczania podwyżek i obniżek o pewien procent; dotyczące obliczania liczby na podstawie jej procentu; umie zastosować powyższe obliczenia w zdaniach własności procentów w sytuacji ogólnej; 3

Dział 3 Figury na płaszczyźnie zna podstawowe pojęcia: punkt, prosta, zna wzór na pole prostokąta; odcinek; zna wzór na pole kwadratu; zna pojęcie prostych prostopadłych i umie obliczać pole prostokąta, którego równoległych; boki są wyrażone w tych samych umie konstruować odcinek przystający do jednostkach; danego; zna wzory na obliczanie pól powierzchni zna pojęcie kąta; wielokątów; zna pojęcie miary kąta; umie obliczać pola wielokątów; zna rodzaje kątów; umie narysować układ współrzędnych; umie konstruować kąt przystający do danego; zna pojęcie układu współrzędnych; zna nazwy kątów utworzonych przez dwie umie odczytać współrzędne punktów; przecinające się proste oraz kątów utworzonych umie zaznaczyć punkty o danych pomiędzy dwiema prostymi równoległymi współrzędnych; przeciętymi trzecią prostą i związki pomiędzy umie rysować odcinki w układzie nimi; współrzędnych; zna pojęcie wielokąta; umie kreślić proste i odcinki prostopadłe zna sumę miar kątów wewnętrznych trójkąta; przechodzące przez dany punkt; umie kreślić poszczególne rodzaje trójkątów; umie konstruować odcinek przystający zna definicję figur przystających; do danego; umie wskazać figury przystające; umie podzielić odcinek na połowy; zna definicję prostokąta i kwadratu; wie, jak obliczyć odległość punktu od umie rozróżniać poszczególne rodzaje prostej i odległość pomiędzy prostymi; czworokątów; zna warunek współliniowości trzech umie rysować przekątne czworokątów; punktów; umie rysować wysokości czworokątów; zna rodzaje kątów; zna pojęcie wielokąta foremnego; zna nazwy kątów utworzonych przez zna jednostki miary pola; dwie przecinające się proste oraz kątów zna zależności pomiędzy jednostkami pola; utworzonych pomiędzy dwiema prostymi równoległymi przeciętymi trzecią prostą i związki pomiędzy nimi; umie obliczyć miary katów przyległych (wierzchołkowych, odpowiadających, naprzemianległych), gdy dana jest miara jednego z nich; umie kreślić poszczególne rodzaje trójkątów; umie obliczać na podstawie rysunku zna nierówność trójkąta AB+BC AC; umie sprawdzić, czy z danych odcinków można zbudować trójkąt; zna cechy przystawania trójkątów; umie konstruować trójkąt o danych trzech bokach; umie rozpoznawać trójkąty przystające; zna definicję trapezu, równoległoboku i rombu; umie podać własności czworokątów; umie rysować wysokości czworokątów; umie obliczać miary katów w poznanych czworokątach; umie obliczać obwody narysowanych czworokątów; rozumie własności wielokątów foremnych; umie konstruować sześciokąt i ośmiokąt foremny; umie obliczyć miarę kąta wewnętrznego wielokąta foremnego; zna zależności pomiędzy jednostkami pola; umie zamieniać jednostki; umie obliczać pole prostokąta, którego boki są wyrażone w różnych jednostkach; umie rysować wielokąty w umie sprawdzić współliniowość trzech punktów; umie kreślić geometryczną sumę i różnicę kątów; umie obliczać na podstawie rysunku miary kątów; dotyczące kątów; rozumie zasadę klasyfikacji trójkątów; umie klasyfikować trójkąty ze względu na boki i kąty; umie wybrać z danego zbioru odcinki, z których można zbudować trójkąt; zależności między bokami (kątami) w trójkącie podczas rozwiązywania zadań umie konstruować trójkąt o danych dwóch bokach i kącie między nimi zawartym; zadania konstrukcyjne; umie uzasadniać przystawanie trójkątów; rozumie zasadę klasyfikacji czworokątów; umie klasyfikować czworokąty ze względu dotyczące kątów; umie wybrać z danego zbioru odcinki, z których można zbudować trójkąt; zależności między bokami (kątami) w trójkącie podczas rozwiązywania zadań umie konstruować trójkąt, gdy dany jest bok i dwa kąty do niego przyległe; zadania konstrukcyjne; umie uzasadniać przystawanie trójkątów; własności czworokątów do rozwiązywania zadań; związane z wielokątami foremnymi ; trudniejsze zadania dotyczące pola prostokąta; związane z obliczaniem pól i 4

miary kątów w trójkącie; układzie współrzędnych; umie obliczyć długość odcinka równoległego do jednej z osi układu; umie kreślić proste i odcinki równoległe przechodzące przez dany punkt; umie obliczyć odległość punktu od prostej i odległość pomiędzy prostymi; na boki i kąty; własności czworokątów do rozwiązywania zadań; umie zamieniać jednostki; trudniejsze zadania dotyczące pola prostokąta; związane z obliczaniem pól i obwodów wielokątów na płaszczyźnie; umie obliczać pola wielokątów; związane z obliczaniem pól i obwodów wielokątów w układzie współrzędnych; umie wyznaczyć współrzędne brakujących wierzchołków prostokąta, równoległoboku i trójkąta; obwodów wielokątów na płaszczyźnie; umie obliczać pola wielokątów; związane z obliczaniem pól i obwodów wielokątów w układzie współrzędnych; dotyczące kątów; zależności między bokami (kątami) w trójkącie podczas rozwiązywania zadań zadania konstrukcyjne; własności czworokątów do rozwiązywania zadań; związane z wielokątami foremnymi umie obliczać pola wielokątów; 5

DZIAŁ 4. WYRAŻENIA ALGEBRAICZNE zna pojęcie wyrażenia algebraicznego; rozumie zasadę nazywania wyrażeń umie budować proste wyrażenia algebraiczne; algebraicznych; umie rozróżnić pojęcia: suma, różnica, iloczyn, umie budować i odczytywać wyrażenia iloraz; algebraiczne; umie budować i odczytywać wyrażenia liczbową wyrażenia algebraiczne; bez jego przekształcenia dla jednej liczbową wyrażenia bez zmiennej wymiernej; jego przekształcenia dla jednej zmiennej umie porządkować jednomiany; wymiernej; rozumie zasadę przeprowadzania redukcji zna pojęcie jednomianu; wyrazów podobnych; zna pojęcie jednomianów podobnych; umie zredukować wyrazy podobne; umie porządkować jednomiany; umie opuścić nawiasy; umie określić współczynniki liczbowe umie zredukować wyrazy podobne; jednomianu; umie rozpoznawać sumy algebraiczne umie rozpoznać jednomiany podobne; przeciwne; zna pojęcie sumy algebraicznej; liczbową wyrażenia zna pojęcie wyrazów podobnych; dla zmiennych wymiernych po umie odczytać wyrazy sumy algebraicznej; przekształceniu do postaci dogodnej do umie wskazać współczynniki sumy algebraicznej; obliczeń; umie wyodrębnić wyrazy podobne; umie przemnożyć każdy wyraz sumy umie zredukować wyrazy podobne; algebraicznej przez jednomian; umie zredukować wyrazy podobne; liczbową wyrażenia umie przemnożyć każdy wyraz sumy dla zmiennych wymiernych po algebraicznej przez liczbę; przekształceniu do postaci dogodnej do obliczeń; umie podzielić sumę algebraiczną przez liczbę wymierną; umie pomnożyć dwumian przez dwumian; umie budować i odczytywać wyrażenia o konstrukcji wielodziałaniowej; liczbową wyrażenia bez jego przekształcenia dla kilku zmiennych wymiernych; umie zapisywać warunki zadania w postaci jednomianu; umie zapisywać warunki zadania w postaci sumy algebraicznej; liczbową wyrażenia dla zmiennych wymiernych po przekształceniu do postaci dogodnej do obliczeń; wyrażenia dla zmiennych wymiernych po przekształceniu do postaci dogodnej do obliczeń; umie mnożyć sumy algebraiczne; umie doprowadzić wyrażenie algebraiczne do prostszej postaci, stosując mnożenie sum algebraicznych; umie interpretować geometrycznie iloczyn sum algebraicznych; mnożenie sum algebraicznych w zadaniach umie budować i odczytywać wyrażenia o konstrukcji wielodziałaniowej; liczbową wyrażenia bez jego przekształcenia dla kilku zmiennych wymiernych; umie zapisywać warunki zadania w postaci jednomianu; umie obliczyć sumę algebraiczną znając jej wartość dla podanych wartości występujących w niej zmiennych; umie zapisywać warunki zadania w postaci sumy algebraicznej; liczbową wyrażenia dla zmiennych wymiernych po przekształceniu do postaci dogodnej do obliczeń; umie wstawić nawiasy w sumie algebraicznej tak, by wyrażenie spełniało podany warunek; dodawanie i odejmowanie sum algebraicznych w zadaniach tekstowych umie zinterpretować geometrycznie iloczyn sumy algebraicznej umie zapisywać warunki zadania w postaci jednomianu; umie zapisywać warunki zadania w postaci sumy algebraicznej; dodawanie i odejmowanie sum algebraicznych w zadaniach tekstowych mnożenie jednomianów przez sumy mnożenie sum algebraicznych w zadaniach umie wykorzystać mnożenie sum algebraicznych do dowodzenia własności liczb. 6

przez jednomian; wyrażenia dla zmiennych wymiernych po przekształceniu do postaci dogodnej do obliczeń; mnożenie jednomianów przez sumy umie doprowadzić wyrażenie algebraiczne do prostszej postaci, stosując mnożenie sum algebraicznych; mnożenie sum algebraicznych w zadaniach umie wykorzystać mnożenie sum algebraicznych do dowodzenia własności liczb ; 7

DZIAŁ 5. RÓWNANIA zna pojęcie równania; umie zapisać zadanie w postaci równania; umie zapisać zadanie w postaci równania; zna pojęcia: równania równoważne, zna pojęcie rozwiązania równania; tożsamościowe, sprzeczne; rozumie pojęcie rozwiązania równania; umie rozpoznać równania równoważne; umie sprawdzić, czy dana liczba spełnia umie zbudować równanie o podanym równanie; rozwiązaniu; zna metodę równań równoważnych; zna metodę równań równoważnych; metodę równań równoważnych; metodę równań równania posiadające jeden równoważnych; pierwiastek, równania sprzeczne i równania posiadające tożsamościowe; jeden pierwiastek, równania sprzeczne i równania bez stosowania tożsamościowe; przekształceń na wyrażeniach algebraicznych; równania z zastosowaniem prostych przekształceń na wyrażeniach algebraicznych; umie analizować treść zadania o prostej konstrukcji; proste za pomocą równania i sprawdzić poprawność rozwiązania; umie analizować treść zadania z procentami o prostej konstrukcji; proste z procentami za pomocą równania; umie przekształcać proste wzory; umie wyznaczyć z prostego wzoru określoną wielkość; umie zapisać zadanie w postaci równania; umie zbudować równanie o podanym rozwiązaniu; wyszukuje wśród równań z wartością bezwzględną równania sprzeczne; metodę równań równoważnych; równania posiadające jeden pierwiastek, równania sprzeczne i tożsamościowe; równania z zastosowaniem przekształceń na wyrażeniach algebraicznych; umie wyrazić treść zadania za pomocą równania; tekstowe za pomocą równania i sprawdzić poprawność rozwiązania; umie wyrazić treść zadania z procentami za pomocą równania; tekstowe z procentami za pomocą równania i sprawdzić poprawność rozwiązania; umie przekształcać wzory, w tym fizyczne i geometryczne; umie wyznaczyć ze wzoru określoną wielkość; umie zapisać zadanie w postaci równania; wyszukuje wśród równań z wartością bezwzględną równania sprzeczne; równania posiadające jeden pierwiastek, równania sprzeczne i tożsamościowe; równania z zastosowaniem przekształceń na wyrażeniach algebraicznych; umie wyrazić treść zadania za pomocą równania; tekstowe za pomocą równania i sprawdzić poprawność rozwiązania; tekstowe za pomocą równania ; umie wyrazić treść zadania z procentami za pomocą równania; tekstowe z procentami za pomocą równania i sprawdzić poprawność rozwiązania; umie przekształcać wzory, w tym fizyczne i geometryczne; umie wyznaczyć ze wzoru określoną wielkość; umie zapisać problem w postaci równania; umie wyrazić treść zadania za pomocą równania; za pomocą równania i sprawdzić poprawność rozwiązania; za pomocą równania ; umie wyrazić treść zadania z procentami za pomocą równania; z procentami za pomocą równania i sprawdzić poprawność rozwiązania; umie wyznaczyć ze wzoru określoną wielkość; 8

DZIAŁ 6. POTĘGI zna i rozumie pojęcie potęgi o wykładniku umie zapisać liczbę w postaci potęgi; naturalnym; umie porównać potęgi o różnych umie obliczyć potęgę o wykładniku naturalnym; wykładnikach naturalnych i takich samych umie porównać potęgi o różnych wykładnikach podstawach oraz o takich samych naturalnych i takich samych podstawach oraz o wykładnikach naturalnych i różnych takich samych wykładnikach naturalnych i dodatnich podstawach; różnych dodatnich podstawach; umie określić znak potęgi, nie wykonując zna wzór na mnożenie i dzielenie potęg o tych obliczeń; samych podstawach; wyrażenia umie zapisać w postaci jednej potęgi iloczyny i arytmetycznego zawierającego potęgi; ilorazy potęg o takich samych podstawach; rozumie powstanie wzoru na mnożenie i umie mnożyć i dzielić potęgi o tych samych dzielenie potęg o tych samych podstawach; podstawach; zna wzór na potęgowanie potęgi; umie zapisać w postaci jednej potęgi umie zapisać w postaci jednej potęgi potęgę iloczyny i ilorazy potęg o takich samych potęgi; podstawach; umie potęgować potęgę; mnożenie i dzielenie potęg zna wzór na potęgowanie iloczynu i ilorazu; o tych samych podstawach do obliczania umie zapisać w postaci jednej potęgi iloczyny i wartości liczbowej wyrażeń; ilorazy potęg o takich samych wykładnikach; rozumie powstanie wzoru na potęgowanie umie potęgować iloczyn i iloraz; potęgi; umie zapisać iloczyn i iloraz potęg o tych samych umie przedstawić potęgę w postaci wykładnikach w postaci jednej potęgi; potęgowania potęgi; zna pojęcie notacji wykładniczej dla danych liczb; potęgowanie potęgi do umie zapisać dużą liczbę w notacji wykładniczej; obliczania wartości liczbowej wyrażeń; zna pojęcie potęgi liczby 10 o wykładniku rozumie powstanie wzoru na potęgowanie całkowitym ujemnym; iloczynu i ilorazu; zna pojęcia pierwiastka arytmetycznego II umie zapisać w postaci jednej potęgi stopnia z liczby nieujemnej oraz pierwiastka III iloczyny i ilorazy potęg o takich samych stopnia z dowolnej liczby; wykładnikach; zna wzór na obliczanie pierwiastka II stopnia z umie zapisać iloczyn i iloraz potęg o tych kwadratu liczby nieujemnej samych wykładnikach w postaci jednej i pierwiastka III stopnia z sześcianu dowolnej potęgi; liczby; umie doprowadzić wyrażenie do prostszej umie obliczyć pierwiastek II stopnia z kwadratu postaci, stosując działania na potęgach; liczby nieujemnej wyrażenia i pierwiastek III stopnia z sześcianu dowolnej arytmetycznego, stosując działania na umie zapisać liczbę w postaci iloczynu potęg liczb pierwszych; wyrażenia arytmetycznego zawierającego potęgi; mnożenie i dzielenie potęg o tych samych podstawach do obliczania wartości liczbowej wyrażeń; nietypowe związane z potęgami; umie wykonać porównanie ilorazowe potęg o jednakowych podstawach; umie porównać potęgi sprowadzając je do tej samej podstawy; potęgowanie potęgi do obliczania wartości liczbowej wyrażeń; potęgowanie iloczynu i ilorazu w zadaniach umie doprowadzić wyrażenie do prostszej postaci, stosując działania na potęgach; działania na potęgach w zadaniach rozumie potrzebę stosowania notacji wykładniczej w praktyce; umie zapisać daną liczbę w notacji wykładniczej; umie porównać liczby zapisane w notacji wyrażenia arytmetycznego zawierającego potęgi; umie podać cyfrę jedności liczby podanej w postaci potęgi; mnożenie i dzielenie potęg o tych samych podstawach do obliczania wartości liczbowej wyrażeń; nietypowe zadanie potęgami; potęgowanie potęgi do obliczania wartości liczbowej wyrażeń; potęgowanie iloczynu i ilorazu w zadaniach umie doprowadzić wyrażenie do prostszej postaci, stosując działania na potęgach; umie porównywać potęgi o różnych podstawach i różnych wykładnikach, stosując działania na potęgach ; działania na potęgach w zadaniach umie porównać liczby nietypowe zadanie potęgami; umie przekształcić wyrażenie arytmetyczne zawierające potęgi; umie porównać i porządkować potęgi, korzystając z potęgowania potęgi; umie doprowadzić wyrażenie do prostszej postaci, stosując działania na potęgach; umie porównywać potęgi o różnych podstawach i różnych wykładnikach, stosując działania na potęgach ; na zastosowanie działań na pierwiastkach; 9

liczby; umie obliczyć pierwiastek arytmetyczny II stopnia z liczby nieujemnej i pierwiastek III stopnia z dowolnej liczby; zna wzór na obliczanie pierwiastka z iloczynu i ilorazu; umie wyłączyć czynnik przed znak pierwiastka oraz włączyć czynnik pod znak pierwiastka; umie mnożyć i dzielić pierwiastki II stopnia oraz pierwiastki III stopnia; potęgach (P-R) umie zapisać dużą liczbę w notacji wykładniczej; umie zapisać bardzo małą liczbę w notacji wykładniczej, wykorzystując potęgi liczby 10 o ujemnych wykładnikach( P) umie obliczyć pierwiastek arytmetyczny II stopnia z liczby nieujemnej i pierwiastek III stopnia z dowolnej liczby; umie oszacować wartość wyrażenia zawierającego pierwiastki; wyrażenia arytmetycznego zawierającego pierwiastki; umie wyłączyć czynnik przed znak pierwiastka oraz włączyć czynnik pod znak pierwiastka; wzory na obliczanie pierwiastka z iloczynu i ilorazu do wyznaczania wartości liczbowej wyrażeń; wykładniczej; wyrażenia arytmetycznego zawierającego liczby zapisane w notacji wykładniczej umie wykonać porównywanie ilorazowe dla liczb podanych w notacji wykładniczej; notację wykładniczą do zamiany jednostek; rozumie potrzebę stosowania notacji wykładniczej w praktyce; umie zapisać liczbę w notacji wykładniczej; umie wykonać porównywanie ilorazowe dla liczb podanych w notacji wykładniczej; notację wykładniczą do zamiany jednostek; umie oszacować wartość wyrażenia zawierającego pierwiastki; wyrażenia arytmetycznego zawierającego pierwiastki; umie oszacować liczbę niewymierną; umie wykonywać działania na liczbach niewymiernych; umie wyłączyć czynnik przed znak pierwiastka; umie włączyć czynnik pod znak pierwiastka; umie wykonywać działania na liczbach niewymiernych; wzór na obliczanie pierwiastka z iloczynu i ilorazu do obliczania wartości liczbowej wyrażeń; umie doprowadzić wyrażenie algebraiczne zawierające potęgi i pierwiastki do prostszej postaci; zadania tekstowe na zastosowanie zapisane w notacji wykładniczej; wyrażenia arytmetycznego zawierającego liczby zapisane w notacji wykładniczej umie wykonać porównywanie ilorazowe dla liczb podanych w notacji wykładniczej; notację wykładniczą do zamiany jednostek; umie zapisać liczbę w notacji umie wykonać porównywanie ilorazowe dla liczb podanych w notacji wykładniczej; notację wykładniczą do zamiany jednostek; wyrażenia arytmetycznego zawierającego liczby zapisane w notacji wykładniczej wyrażenia arytmetycznego zawierającego pierwiastki ; umie oszacować liczbę niewymierną; umie wykonywać działania na liczbach niewymiernych; umie włączyć czynnik pod znak pierwiastka; umie wykonywać działania na liczbach niewymiernych; wzór na obliczanie pierwiastka z iloczynu i ilorazu do 10

działań na pierwiastkach; umie porównać liczby niewymierne; obliczania wartości liczbowej wyrażeń (P-D) umie doprowadzić wyrażenie algebraiczne zawierające potęgi i pierwiastki do prostszej postaci; na zastosowanie działań na pierwiastkach; umie porównać liczby niewymierne; 11

DZIAŁ 7. GRANIASTOSŁUPY zna pojęcie prostopadłościanu; zna pojęcie graniastosłupa pochyłego; zna pojęcie graniastosłupa prostego; umie wskazać na rysunku graniastosłupa zna pojęcie graniastosłupa prawidłowego; prostego krawędzie i ściany prostopadłe zna budowę oraz równoległe; rozumie sposób tworzenia nazw umie określić liczbę wierzchołków, graniastosłupów; krawędzi i ścian umie wskazać na modelu graniastosłupa umie rysować graniastosłup prosty w prostego krawędzie i ściany prostopadłe oraz rzucie równoległym; równoległe; umie obliczyć sumę długości krawędzi umie wskazać na rysunku graniastosłupa prostego krawędzie i ściany prostopadłe oraz rozumie sposób obliczania pola równoległe; powierzchni jako pola siatki; umie określić liczbę wierzchołków, krawędzi i umie rozpoznać siatkę graniastosłupa ścian prostego; umie rysować graniastosłup prosty w rzucie umie obliczyć pole powierzchni równoległym; graniastosłupa prostego; zna pojęcie siatki tekstowe zna pojęcie pola powierzchni związane z polem powierzchni zna wzór na obliczanie pola powierzchni graniastosłupa prostego; rozumie zasady zamiany jednostek rozumie pojęcie pola figury; objętości; rozumie zasadę kreślenia siatki; umie zamieniać jednostki objętości; umie rozpoznać siatkę graniastosłupa prostego; umie obliczyć objętość prostopadłościanu i umie kreślić siatkę graniastosłupa prostego o sześcianu; podstawie trójkąta lub czworokąta; tekstowe umie obliczyć pole powierzchni graniastosłupa związane z objętością prostopadłościanu; prostego; umie obliczyć objętość zna wzory na obliczanie objętości tekstowe prostopadłościanu i sześcianu; związane z objętością zna jednostki objętości; rozumie pojęcie objętości figury; umie zamieniać jednostki objętości; umie obliczyć objętość prostopadłościanu i sześcianu; zna pojęcie wysokości zna wzór na obliczanie objętości umie obliczyć objętość umie obliczyć sumę długości krawędzi sumą długości krawędzi; umie kreślić siatkę graniastosłupa o podstawie dowolnego wielokąta (P-R) umie rozpoznać siatkę umie obliczyć pole powierzchni polem powierzchni graniastosłupa prostego; umie zamieniać jednostki objętości; objętością prostopadłościanu; umie obliczyć objętość objętością sumą długości krawędzi; umie rozpoznać siatkę polem powierzchni graniastosłupa prostego; umie zamieniać jednostki objętości; objętością prostopadłościanu; objętością nietypowe zadanie związane z rzutem umie rozpoznać siatkę związane z polem powierzchni graniastosłupa prostego; związane z objętością prostopadłościanu; związane z objętością 12

STATYSTYKA zna pojęcie diagramu słupkowego i kołowego; zna pojęcie wykresu; rozumie potrzebę korzystania z różnych form prezentacji informacji; umie odczytać informacje z tabeli, wykresu, diagramu; zna pojęcie średniej arytmetycznej; umie obliczyć średnią arytmetyczną; zna pojęcie danych statystycznych; umie zebrać dane statystyczne; zna pojęcie zdarzenia losowego; umie odczytać informacje z tabeli, wykresu, diagramu; umie ułożyć pytania do prezentowanych danych; umie obliczyć średnią arytmetyczną; tekstowe związane ze średnią; umie opracować dane statystyczne; umie prezentować dane statystyczne; umie określić zdarzenia losowe w doświadczeniu; umie interpretować prezentowane informacje; umie obliczyć średnią arytmetyczną; e średnią arytmetyczną; umie opracować dane statystyczne; umie prezentować dane statystyczne; umie określić zdarzenia losowe w umie obliczyć prawdopodobieństwo zna pojęcie doświadczeniu; zdarzenia; prawdopodobieństwa zdarzenia losowego; umie określić zdarzenia losowe w doświadczeniu; umie obliczyć prawdopodobieństwo zdarzenia; umie interpretować prezentowane informacje; umie prezentować dane w korzystnej formie; e średnią arytmetyczną; umie opracować dane statystyczne; umie prezentować dane statystyczne; umie obliczyć prawdopodobieństwo zdarzenia; e średnią arytmetyczną; umie obliczyć prawdopodobieństwo zdarzenia; 13