Przestrzenne bazy danych. Analizy przestrzenne
|
|
- Mariusz Stachowiak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Przestrzenne bazy danych Analizy przestrzenne
2 Przykładowe analizy przestrzenne Analiza bliskości obiektów Etykietowanie danych Rzutowanie punktów do najbliższych linii Rozdzielanie linii i łączenie obiektów w linie Rozdzielanie i łączenie poligonów Zmienianie, skalowanie i obracanie obiektów geometrycznych Analizy sieciowe Analizy w oparciu o zewnętrzne języki skryptowe np. Python, R Analizy rastra
3 Analiza bliskości: najbliższe sąsiedztwo Relację najbliższego sąsiedztwa realizuje funkcja ST_DWithin Funkcja ST_DWithin zastępuje funkcję ST_Intersects wtedy gdy obiekty są blisko siebie ale nie przecinają się SELECT ST_DWithin( ST_GeomFromText('LINESTRING(1 2, 3 4)'), ST_Point( , ), );
4 Wyszukiwanie najbliższych obiektów w podanym zasięgu select pois.name, ST_Distance(budynki.geom,pois.geom)::numeric(6,2) as dist from budynki inner join pois on ST_DWithin(budynki.geom, pois.geom,500) where budynki.name='poznań Główny' and pois.fclass='bicycle_rental' order by dist asc
5 Metoda KNN (K Nearest Neigbor) <#> operator odległości obwiedni KNN A <#> B zawraca minimalną odległość między obwiedniami obiektów <-> operator odległości centroidy obwiedni KNN A <-> B zwraca odległość między centroidami obwiedni obiektów
6 Wyszukiwanie N najbliższych obiektów przy użyciu KNN select pois.name, ST_Distance(budynki.geom,pois.geom)::numeric(10,2) as dist from budynki cross join pois where budynki.name='poznań Główny' and pois.fclass='bicycle_rental' order by budynki.geom <-> pois.geom asc limit 6
7 Generowanie losowych danych Utworzenie tabeli do przechowywania losowych danych:
8 Generowanie losowych danych Wstawienie zbioru losowych danych
9 Usuwanie zbędnych danych
10 Etykietowanie danych W efekcie każdy punkt otrzymuje dodatkowe etykiety województwa
11 Przyciąganie punktów do najbliższych linii Wyznaczanie najbliższych punktów na linii przy pomocy funkcji ST_LineInterpolatePoint(lina, ST_LocatePoint(linia,punkt))
12 Przyciąganie punktów do najbliższych linii Obliczanie szerokości plaży na podstawie dwóch linii (wody i podstawy wydmy) i punktu kilometrażu przy pomocy funkcji ST_ClosestPoint (linia, punkt)
13 Tworzenie linii z punktów gps: ST_MakeLine
14 Rozdzielanie wielolinii na mniejsze segmenty
15 Analiza poligonów Tworzenie multipoligonu z wielu multipoligonów Funkcje ST_Multi i ST_Union
16 Analiza poligonów Rozdzielanie poligonów ST_SymDifference i ST_Dump
17 Skalowanie obiektów ST_Scale
18 Analiza sieciowa - algorytmy rozszerzenia pgrouting Najkrótsza droga (algorytm Dijkstra) Problem komiwojażera (TSP - ang. travelling salesman problem) Wyznaczanie isochron i inne przykłady:
19 Aktualizacja rozszerzeń CREATE EXTENSION postgis; ALTER EXTENSION postgis UPDATE TO "2.3.0"; CREATE EXTENSION pgrouting; ALTER EXTENSION pgrouting UPDATE TO "2.3.0";
20 PgRouting przygotowanie danych do analizy sieciowej --Do tabeli z siecią dróg dodać specjalne kolumny source, target i length: ALTER TABLE blok_2.drogi ADD COLUMN source integer; ALTER TABLE blok_2.drogi ADD COLUMN target integer; ALTER TABLE blok_2.drogi ADD COLUMN length double precision; --Załadować dane do kolumn sorce i target: SELECT pgr_createtopology('blok_2.drogi', , 'geom_d', 'id_d'); --Wyliczyć długości odcinków UPDATE blok_2.drogi SET length = ST_Length(geom_d); ALTER TABLE blok_2.drogi ADD COLUMN reverse_cost double precision; UPDATE blok_2.drogi SET reverse_cost = length;
21 Kontrola topologii sieci SELECT pgr_analyzegraph('blok_2.drogi', ,'geom_d','id_d');
22 Generowanie poprawionej sieci SELECT pgr_nodenetwork('blok_2.drogi', , 'id_d', 'geom_d'); SELECT pgr_createtopology('blok_2.drogi_noded', , 'geom_d', 'id'); SELECT pgr_analyzegraph('blok_2.drogi_noded', ,'geom_d','id'); ALTER TABLE blok_2.drogi_noded ADD COLUMN length double precision; UPDATE blok_2.drogi_noded SET length = ST_Length(geom_d);
23 pgrouting: Algorytm Dijkstra Uruchomiamy obliczenia najkrótszej drogi wg schematu pgr_costresult[] pgr_dijkstra(text sql, integer source, integer target, boolean directed, boolean has_rcost); SELECT seq, id1 AS node, id2 AS edge, cost FROM pgr_dijkstra('select id_d AS id, source::integer, target::integer, length::double precision AS cost FROM blok_2.drogi_noded',14,8, false,false);
24 Trasowanie przy pomocy wtyczki QGIS (pgroutinglayer)
25 Trasowanie przy pomocy zapytania w QGIS DB Manager
26 pgrouting: Algorytm DijkstraVia SELECT seq, node, edge, cost, geom_d FROM pgr_dijkstravia('select id, source::integer, target::integer, length::double precision AS cost FROM blok_2.drogi_noded', ARRAY[110, 106, 49])as di join blok_2.drogi_noded pt on di.edge=pt.id;
27 pgrouting: problem komiwojażera Algorytm TSP (travelling salesman problem) Macierz odległości między wybranymi punktami: SELECT dmatrix, ids FROM pgr_makedistancematrix('select cast(id as integer), ST_X(the_geom)as x, ST_Y(the_geom) as y FROM blok_2.drogi_vertices_pgr where id=6 or id=10 or id =11 or id=2');
28 pgrouting: Algorytm TSP SELECT seq, id1, id2, round(cost::numeric, 2) AS cost FROM pgr_tsp('select cast(id as integer), ST_X(the_geom)as x, ST_Y(the_geom) as y FROM blok_2.drogi_vertices_pgr where id=6 or id=10 or id =11 or id=2', 6,2);
29 pgrouting: Algorytm TSP (zapytanie w QGIS)
30 Trasowanie warunkowe wtyczka QGIS
31 Trasowanie warunkowe aplikacja web
32 Wyznaczanie izochron
33 Wyznaczanie izochron aplikacja web
34 Przygotowanie sieci do routingu Przykład Sieć nietrasowalna: create table network (id int, the_geom geometry(linestring) ); insert into network values (1, 'linestring(0 0, 10 10)'::geometry); insert into network values (2, 'linestring(2 0, 8 10)'::geometry); insert into network values (3, 'linestring(1 1, 10 0)'::geometry); insert into network values (4, 'linestring(10 0, 8 10)'::geometry);
35 Nadawanie węzłów w punktach przecięcia sieci
36 Gotowa sieć do trasowania
37 Przykładowa sieć
38 Korekta sieci
39 Prawidłowa trasowalna sieć
Zarządzanie danymi przestrzennymi. Rozwiązywanie problemów przestrzennych
Zarządzanie danymi przestrzennymi Rozwiązywanie problemów przestrzennych Przykładowe problemy przestrzenne Analiza bliskości obiektów Etykietowanie danych Rzutowanie punktów do najbliższych linii Rozdzielanie
Bardziej szczegółowoZarządzanie danymi przestrzennymi. Analizy przestrzenne
Zarządzanie danymi przestrzennymi Analizy przestrzenne Przykładowe problemy przestrzenne Analiza bliskości obiektów Etykietowanie danych Rzutowanie punktów do najbliższych linii Rozdzielanie linii i łączenie
Bardziej szczegółowoPrzestrzenne bazy danych. Funkcje relacji przestrzennych
Przestrzenne bazy danych Funkcje relacji przestrzennych Rodzaje relacji Analiza przecinania się Analiza różnic (ST_Difference, ST_SymDifference) Analiza najbliższego sąsiedztwa (ST_DWithin) Analiza obwiedni
Bardziej szczegółowoJęzyk SQL, zajęcia nr 1
Język SQL, zajęcia nr 1 SQL - Structured Query Language Strukturalny język zapytań Login: student Hasło: stmeil14 Baza danych: st https://194.29.155.15/phpmyadmin/index.php Andrzej Grzebielec Najpopularniejsze
Bardziej szczegółowoPrzestrzenne bazy danych. Funkcje geometryczne
Przestrzenne bazy danych Funkcje geometryczne SQL/MM SQL/MM (SQL Multimedia and Application Packages) standard uzupełniający język SQL o obsługę zaawansowanych typów danych, składa się części: Framework
Bardziej szczegółowoRelacyjne bazy danych. Podstawy SQL
Relacyjne bazy danych Podstawy SQL Język SQL SQL (Structured Query Language) język umożliwiający dostęp i przetwarzanie danych w bazie danych na poziomie obiektów modelu relacyjnego tj. tabel i perspektyw.
Bardziej szczegółowoPrzestrzenne bazy danych. Typy obiektów przestrzennych
Przestrzenne bazy danych Typy obiektów przestrzennych Typy obiektów przestrzennych Obiekty geometryczne Obiekty geograficzne Obiekty rastrowe Typ geometryczny i geograficzny GEOMETRY_COLUMNS opis danych
Bardziej szczegółowoACESS- zadania z wykorzystaniem poleceń SQL
ACESS- zadania z wykorzystaniem poleceń SQL Dane są relacje o schematach: Pracownik ( (nr integer, nazwisko text(12), etat text(10), szef integer, pracuje_od date, placa_pod Currency, placa_dod Currency,
Bardziej szczegółowoWprowadzenie do BD Operacje na bazie i tabelach Co poza zapytaniami? Algebra relacji. Bazy Danych i Systemy informacyjne Wykład 2.
Bazy Danych i Systemy informacyjne Wykład 2 Piotr Syga 16.10.2017 Dodawanie, usuwanie i zmienianie rekordów Wstawianie rekordu wstawianie do tabeli INSERT INTO A VALUES ( fioletowy, okrągły, słodko-kwaśny
Bardziej szczegółowoRelacyjne bazy danych. Podstawy SQL
Relacyjne bazy danych Podstawy SQL Język SQL SQL (Structured Query Language) język umoŝliwiający dostęp i przetwarzanie danych w bazie danych na poziomie obiektów modelu relacyjnego tj. tabel i perspektyw.
Bardziej szczegółowoBazy danych i usługi sieciowe
Bazy danych i usługi sieciowe Ćwiczenia I Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) BDiUS ćw. I Jesień 2014 1 / 16 Strona wykładu http://bioexploratorium.pl/wiki/ Bazy_danych_i_usługi_sieciowe_-_2014z
Bardziej szczegółowoBazy Danych i Usługi Sieciowe
Bazy Danych i Usługi Sieciowe Ćwiczenia I Paweł Daniluk Wydział Fizyki Jesień 2011 P. Daniluk (Wydział Fizyki) BDiUS ćw. I Jesień 2011 1 / 15 Strona wykładu http://bioexploratorium.pl/wiki/ Bazy_Danych_i_Usługi_Sieciowe_-_2011z
Bardziej szczegółowoPrzykłady najlepiej wykonywać od razu na bazie i eksperymentować z nimi.
Marek Robak Wprowadzenie do języka SQL na przykładzie baz SQLite Przykłady najlepiej wykonywać od razu na bazie i eksperymentować z nimi. Tworzenie tabeli Pierwsza tabela W relacyjnych bazach danych jedna
Bardziej szczegółowoBazy danych 7. SQL podstawy
Bazy danych 7. SQL podstawy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Structured Query Language Używane standardy: SQL92 SQL99 SQL:2003 Żaden dostawca nie jest w pełni zgodny
Bardziej szczegółowoPrzestrzenne bazy danych. Definicja i cechy przestrzennych baz danych
Przestrzenne bazy danych Definicja i cechy przestrzennych baz danych Zakres wykładów Wstęp do przestrzennych baz danych Typy geometryczne Funkcje geometryczne Modelowanie danych Metody rozwiązywania problemów
Bardziej szczegółowoWykład 05 Bazy danych
Wykład 05 Bazy danych Tabela składa się z: Kolumn Wierszy Wartości Nazwa Wartości Opis INT [UNSIGNED] -2^31..2^31-1 lub 0..2^32-1 Zwykłe liczby całkowite VARCHAR(n) n = długość [1-255] Łańcuch znaków o
Bardziej szczegółowoPawel@Kasprowski.pl Bazy danych. Bazy danych. Podstawy języka SQL. Dr inż. Paweł Kasprowski. pawel@kasprowski.pl
Bazy danych Podstawy języka SQL Dr inż. Paweł Kasprowski pawel@kasprowski.pl Plan wykładu Relacyjne bazy danych Język SQL Zapytania SQL (polecenie select) Bezpieczeństwo danych Integralność danych Współbieżność
Bardziej szczegółowoPrzestrzenne bazy danych. Wstęp do przestrzennych baz danych
Przestrzenne bazy danych Wstęp do przestrzennych baz danych Zakres wykładów Definicja i cechy przestrzennych baz danych Typy przestrzenne Funkcje przestrzenne Modelowanie danych Metody rozwiązywania problemów
Bardziej szczegółowoWykład 5. SQL praca z tabelami 2
Wykład 5 SQL praca z tabelami 2 Wypełnianie tabel danymi Tabele można wypełniać poprzez standardową instrukcję INSERT INTO: INSERT [INTO] nazwa_tabeli [(kolumna1, kolumna2,, kolumnan)] VALUES (wartosc1,
Bardziej szczegółowoWykład 6. SQL praca z tabelami 3
Wykład 6 SQL praca z tabelami 3 Łączenie wyników zapytań Język SQL zawiera mechanizmy pozwalające na łączenie wyników kilku pytań. Pozwalają na to instrukcje UNION, INTERSECT, EXCEPT o postaci: zapytanie1
Bardziej szczegółowoBazy danych. dr inż. Arkadiusz Mirakowski
Bazy danych dr inż. Arkadiusz Mirakowski Początek pracy z Transact SQL (T-SQL) 153.19.7.13,1401 jkowalski nr indeksu 2 Perspektywa - tabela tymczasowa - grupowanie Perspektywa (widok) Perspektywa (widok)
Bardziej szczegółowostrukturalny język zapytań używany do tworzenia i modyfikowania baz danych oraz do umieszczania i pobierania danych z baz danych
SQL SQL (ang. Structured Query Language): strukturalny język zapytań używany do tworzenia strukturalny język zapytań używany do tworzenia i modyfikowania baz danych oraz do umieszczania i pobierania danych
Bardziej szczegółowoLAB 3 (część 1 Projektu)
Informatyka sem. III studia inżynierskie Transport 2018/19 LAB 3 (część 1 Projektu) Na zajęciach należy zaprojektować schemat bazy danych oraz przygotować dokument zawierający: Temat: Autor: 1. Opis 2.
Bardziej szczegółowoWykład 8. SQL praca z tabelami 5
Wykład 8 SQL praca z tabelami 5 Podzapytania to mechanizm pozwalający wykorzystywać wyniki jednego zapytania w innym zapytaniu. Nazywane często zapytaniami zagnieżdżonymi. Są stosowane z zapytaniami typu
Bardziej szczegółowoDMX DMX DMX DMX: CREATE MINING STRUCTURE. Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
DMX DMX DMX Data Mining Extensions jest językiem do tworzenia i działania na modelach eksploracji danych w Microsoft SQL Server Analysis Services SSAS. Za pomocą DMX można tworzyć strukturę nowych modeli
Bardziej szczegółowoOdnawialne Źródła Energii I rok. Tutorial PostgreSQL
Tutorial PostgreSQL 1. Instalacja na własnym komputerze: a. Zainstaluj program ze strony: https://www.postgresql.org/download/ Wersja odpowiednia dla systemu operacyjnego Linux, Mac, Windows Przy pierwszym
Bardziej szczegółowoP o d s t a w y j ę z y k a S Q L
P o d s t a w y j ę z y k a S Q L Adam Cakudis IFP UAM Użytkownicy System informatyczny Aplikacja Aplikacja Aplikacja System bazy danych System zarządzania baz ą danych Schemat Baza danych K o n c e p
Bardziej szczegółowoBazy danych. Dr inż. Paweł Kasprowski
Plan wykładu Bazy danych Podstawy relacyjnego modelu danych Dr inż. Paweł Kasprowski pawel@kasprowski.pl Relacyjne bazy danych Język SQL Zapytania SQL (polecenie select) Bezpieczeństwo danych Integralność
Bardziej szczegółowoJerzy Nawrocki, Wprowadzenie do informatyki
Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Baza danych Bazy danych = zorganizowana kolekcja danych Bazy danych (2) Cel Agenda Przedstawić relacyjny model baz danych Era przed-relacyjna
Bardziej szczegółowoInformatyka (5) SQL. dr inż. Katarzyna Palikowska Katedra Transportu Szynowego p. 4 Hydro
Informatyka (5) SQL dr inż. Katarzyna Palikowska Katedra Transportu Szynowego p. 4 Hydro katpalik@pg.gda.pl katarzyna.palikowska@wilis.pg.gda.pl Język zapytań SQL Język deklaratywny (regułowy) - SQL, ProLog,
Bardziej szczegółowoModelowanie hierarchicznych struktur w relacyjnych bazach danych
Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego
Bardziej szczegółowoJęzyk DML. Instrukcje DML w różnych implementacjach SQL są bardzo podobne. Podstawowymi instrukcjami DML są: SELECT INSERT UPDATE DELETE
Język DML Instrukcje DML w różnych implementacjach SQL są bardzo podobne. Podstawowymi instrukcjami DML są: SELECT INSERT UPDATE DELETE Systemy Baz Danych, Hanna Kleban 1 INSERT Instrukcja INSERT dodawanie
Bardziej szczegółowoRef. 7 - Język SQL - polecenia DDL i DML
Ref. 7 - Język SQL - polecenia DDL i DML Wprowadzenie do języka SQL. Polecenia generujące strukturę bazy danych: CREATE, ALTER i DROP. Polecenia: wprowadzające dane do bazy - INSERT, modyfikujące zawartość
Bardziej szczegółowoBazy danych 10. SQL Widoki
Bazy danych 10. SQL Widoki P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Widoki, AKA Perspektywy W SQL tabela, która utworzono za pomoca zapytania CREATE TABLE, nazywa się tabela
Bardziej szczegółowoDECLARE VARIABLE zmienna1 typ danych; BEGIN
Procedury zapamiętane w Interbase - samodzielne programy napisane w specjalnym języku (właściwym dla serwera baz danych Interbase), który umożliwia tworzenie zapytań, pętli, instrukcji warunkowych itp.;
Bardziej szczegółowoBaza danych dla potrzeb zgłębiania DMX
Baza danych dla potrzeb zgłębiania DMX ID Outlook Temperature Humidity Windy PLAY 1 sunny hot high false N 2 sunny hot high true N 3 overcast hot high false T 4rain mild high false T 5rain cool normal
Bardziej szczegółowoInformatyka sem. III studia inżynierskie Transport 2018/19 LAB 2. Lab Backup bazy danych. Tworzenie kopii (backup) bazy danych
Informatyka sem. III studia inżynierskie Transport 2018/19 Lab 2 LAB 2 1. Backup bazy danych Tworzenie kopii (backup) bazy danych Odtwarzanie bazy z kopii (z backup u) 1. Pobieramy skrypt Restore 2. Pobieramy
Bardziej szczegółowoJęzyk SQL. Rozdział 10. Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne.
Język SQL. Rozdział 10. Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne. 1 Perspektywa Perspektywa (ang. view) jest strukturą
Bardziej szczegółowoPRZESTRZENNE BAZY DANYCH WYKŁAD 2
PRZESTRZENNE BAZY DANYCH WYKŁAD 2 Baza danych to zbiór plików, które fizycznie przechowują dane oraz system, który nimi zarządza (DBMS, ang. Database Management System). Zadaniem DBMS jest prawidłowe przechowywanie
Bardziej szczegółowoProgramowanie MSQL. show databases; - pokazanie jakie bazy danych są dostępne na koncie
Programowanie MSQL show databases; - pokazanie jakie bazy danych są dostępne na koncie show databases; - wyświetlenie wszystkich baz danych na serwerze create database nazwa; - za nazwa wstawiamy wybraną
Bardziej szczegółowoPodstawy języka SQL. SQL Structured Query Languagestrukturalny
Podstawy języka SQL SQL Structured Query Languagestrukturalny język zapytań DDL Język definicji danych (np. tworzenie tabel) DML Język manipulacji danych (np. tworzenie zapytań) DCL Język kontroli danych
Bardziej szczegółowoĆwiczenia laboratoryjne nr 11 Bazy danych i SQL.
Prezentacja Danych i Multimedia II r Socjologia Ćwiczenia laboratoryjne nr 11 Bazy danych i SQL. Celem ćwiczeń jest poznanie zasad tworzenia baz danych i zastosowania komend SQL. Ćwiczenie I. Logowanie
Bardziej szczegółowoPrzestrzenne bazy danych Podstawy języka SQL
Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured
Bardziej szczegółowoKOLEKCJE - to typy masowe,zawierające pewną liczbę jednorodnych elementów
KOLEKCJE - to typy masowe,zawierające pewną liczbę jednorodnych elementów SQL3 wprowadza następujące kolekcje: zbiory ( SETS ) - zestaw elementów bez powtórzeń, kolejność nieistotna listy ( LISTS ) - zestaw
Bardziej szczegółowoSchemat funkcji. BODY dla plpgsql: declare deklaracje begin instrukcje end;
Funkcje PostgreSQL Schemat funkcji CREATE OR REPLACE FUNCTION func_name( arg1 arg1_datatype) RETURNS some_type setof sometype TABLE (..) AS BODY of function LANGUAGE language_of_function BODY dla plpgsql:
Bardziej szczegółowoAby uruchomić program klienta i połączyć się z serwerem, należy komendę:
Bazy danych. Komunikacja z serwerem Aby połączyć się z serwerem i móc wykonywać czynności związane z obsługą baz, potrzebny jest program klienta. Razem z serwerem MySQL dostępny jest działający w wierszu
Bardziej szczegółowoKonstruowanie Baz Danych SQL UNION, INTERSECT, EXCEPT
Studia podyplomowe Inżynieria oprogramowania współfinansowane przez Unię Europejska w ramach Europejskiego Funduszu Społecznego Projekt Studia podyplomowe z zakresu wytwarzania oprogramowania oraz zarządzania
Bardziej szczegółowo77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.
77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele
Bardziej szczegółowo3 Przygotowali: mgr inż. Barbara Łukawska, mgr inż. Maciej Lasota
Laboratorium nr 3 1 Bazy Danych Instrukcja laboratoryjna Temat: Wprowadzenie do języka SQL, tworzenie, modyfikacja, wypełnianie tabel 3 Przygotowali: mgr inż. Barbara Łukawska, mgr inż. Maciej Lasota 1)
Bardziej szczegółowoSystemy GIS Tworzenie zapytań w bazach danych
Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE
Bardziej szczegółowoBazy danych dla producenta mebli tapicerowanych. Bartosz Janiak Marcin Sikora Wrocław 9.06.2015 r.
Bazy danych dla producenta mebli tapicerowanych Bartosz Janiak Marcin Sikora Wrocław 9.06.2015 r. Założenia Stworzyć system bazodanowy dla małej firmy produkującej meble tapicerowane. Projekt ma umożliwić
Bardziej szczegółowoBazy danych 5. Samozłaczenie SQL podstawy
Bazy danych 5. Samozłaczenie SQL podstawy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Przykład kolejowy Tworzymy bazę danych zawierajac a (uproszczony) rozkład jazdy pociagów
Bardziej szczegółowoBAZA DANYCH SIECI HOTELI
Paulina Gogół s241906 BAZA DANYCH SIECI HOTELI Baza jest częścią systemu zarządzającego pewną siecią hoteli. Składa się z tabeli powiązanych ze sobą różnymi relacjami. Służy ona lepszemu zorganizowaniu
Bardziej szczegółowoJęzyk SQL, zajęcia nr 2
Język SQL, zajęcia nr 2 SQL - Structured Query Language Strukturalny język zapytań Login: student Hasło: stmeil14 Baza danych: st https://194.29.155.15/phpmyadmin/index.php Andrzej Grzebielec Funkcja agregująca
Bardziej szczegółowoSQL (ang. Structured Query Language)
SQL (ang. Structured Query Language) SELECT pobranie danych z bazy, INSERT umieszczenie danych w bazie, UPDATE zmiana danych, DELETE usunięcie danych z bazy. Rozkaz INSERT Rozkaz insert dodaje nowe wiersze
Bardziej szczegółowoPodstawy języka SQL. standardy SQL formułowanie zapytań operacje na strukturach danych manipulowanie danymi. Bazy danych s.5-1
Podstawy języka SQL standardy SQL formułowanie zapytań operacje na strukturach danych manipulowanie danymi Bazy danych s.5-1 Język SQL SQL (ang. Structured Query Language, strukturalny język zapytań) język
Bardziej szczegółowo1 Zaznacz poprawne stwierdzenia dotyczące grup plików (filegroup) możemy określić do której grupy plików trafi
1 Zaznacz poprawne stwierdzenia dotyczące grup plików (filegroup) Tworząc tabelę nie możemy określić, do którego pliku trafi, lecz możemy określić do której grupy plików trafi Zawsze istnieje grupa zawierająca
Bardziej szczegółowoBlaski i cienie wyzwalaczy w relacyjnych bazach danych. Mgr inż. Andrzej Ptasznik
Blaski i cienie wyzwalaczy w relacyjnych bazach danych. Mgr inż. Andrzej Ptasznik Technologia Przykłady praktycznych zastosowań wyzwalaczy będą omawiane na bazie systemu MS SQL Server 2005 Wprowadzenie
Bardziej szczegółowoPlan bazy: Kod zakładający bazę danych: DROP TABLE noclegi CASCADE; CREATE TABLE noclegi( id_noclegu SERIAL NOT NULL,
Mój projekt przedstawia bazę danych noclegów składającą się z 10 tabel. W projekcie wykorzystuje program LibreOffice Base do połączenia psql z graficznym interfejsem ( kilka formularzy przedstawiających
Bardziej szczegółowoStruktura drzewa w MySQL. Michał Tyszczenko
Struktura drzewa w MySQL Michał Tyszczenko W informatyce drzewa są strukturami danych reprezentującymi drzewa matematyczne. W naturalny sposób reprezentują hierarchię danych toteż głównie do tego celu
Bardziej szczegółowoPrzydatne sztuczki - sql. Na przykładzie postgres a.
Przydatne sztuczki - sql. Na przykładzie postgres a. M. Wiewiórko 05/2014 Plan Uwagi wstępne Przykład Rozwiązanie Tabela testowa Plan prezentacji: Kilka uwag wstępnych. Operacje na typach tekstowych. Korzystanie
Bardziej szczegółowoBAZY DANYCH wprowadzenie do języka SQL. Opracował: dr inż. Piotr Suchomski
BAZY DANYCH wprowadzenie do języka SQL Opracował: dr inż. Piotr Suchomski Wprowadzenie Język SQL używany jest do pracy z relacyjną bazą danych. Jest to język nieproceduralny, należący do grupy języków
Bardziej szczegółowoBazy danych 4. SQL podstawy. P. F. Góra
Bazy danych 4. SQL podstawy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Structured Query Language Używane standardy: SQL92 SQL99 SQL:2003 SQL:2006 (dialekt) SQL:2008 (dialekt) SQL:2011 (dialekt)
Bardziej szczegółowoBazy danych i usługi sieciowe
Bazy danych i usługi sieciowe Wstęp do problematyki baz danych Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) BDiUS w. I Jesień 2014 1 / 17 Plan wykładu 1 Bazy danych 1 Motywacja
Bardziej szczegółowoBazy danych SQL Server 2005
Bazy danych SQL Server 2005 TSQL Michał Kuciapski Typ zadania: Podstawowe zapytania Select Zadanie 1: Wyświetl następujące informacje z bazy: A. 1. Wyświetl informacje o klientach: nazwa firmy, imie, nazwisko,
Bardziej szczegółowoInstytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska
Instytut Mechaniki i Inżynierii Obliczeniowej www.imio.polsl.pl fb.com/imiopolsl @imiopolsl Wydział Mechaniczny Technologiczny Politechnika Śląska Laboratorium 1 Wprowadzenie, podstawowe informacje o obsłudze
Bardziej szczegółowoFunkcjonalność systemów zarządzania bazami danych przestrzennych w kartografii internetowej (PosrtgreSQL/PostGIS) Krzysztof Kuśnierek
Funkcjonalność systemów zarządzania bazami danych przestrzennych w kartografii internetowej (PosrtgreSQL/PostGIS) Krzysztof Kuśnierek Program referatu Przedstawienie program referatu Wprowadzenie Przestrzenne
Bardziej szczegółowoWstęp do relacyjnych baz danych. Jan Bartoszek
Wstęp do relacyjnych baz danych Jan Bartoszek Agenda 1. 2. 3. 4. 5. 6. 7. Po co i dlaczego? Bazy danych & DBMS Relacje i powiązania Redundancja i jak jej uniknąć Diagramy ERD SQL Podsumowanie Czym są są
Bardziej szczegółowoCREATE TABLE logika (p BOOLEAN); INSERT INTO logika VALUES(true); INSERT INTO logika VALUES(false); INSERT INTO logika VALUES(NULL);
1. Zaªó» tabel logika o trzech atrybutach p,q,r typu BOOLEAN. Uzupeªnij j wszystkimi mo»liwymi waluacjami logiki SQL (oczywi±cie nie rób tego r cznie). Nast pnie przy u»yciu komend SQLa sprawd¹, dla jakich
Bardziej szczegółowoSQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, Spis treści
SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, 2017 Spis treści O autorze 9 Wprowadzenie 11 Lekcja 1. Zrozumieć SQL 15 Podstawy baz danych 15 Język SQL
Bardziej szczegółowoSELECT * FROM tabela WHERE warunek wybiera dane spełniające podany warunek
SELECT SELECT kolumna1, kolumna2,, kolumnan FROM tabela wybrane kolumny SELECT * FROM tabela wszystkie kolumny select * from Orders select CustomerID, CompanyName, Country from Customers WHERE SELECT *
Bardziej szczegółowoGrupowanie i funkcje agregujące
Grupowanie i funkcje agregujące Zadanie 1. Stwórz odpowiednią tabelę Test_agr i wprowadź odpowiednie rekordy tak, aby wynik zapytania SELECT AVG(kol) avg_all, AVG(DISTINCT kol) avg_dist, COUNT(*) count_gw,
Bardziej szczegółowoOracle11g: Wprowadzenie do SQL
Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom
Bardziej szczegółowoSQL :: Data Definition Language
SQL :: Data Definition Language 1. Zaproponuj wydajną strukturę danych tabela) do przechowywania macierzy o dowolnych wymiarach w bazie danych. Propozycja struktury powinna zostać zapisana z wykorzystaniem
Bardziej szczegółowoUPDATE Studenci SET Rok = Rok + 1 WHERE Rodzaj_studiow =' INŻ_ST'; UPDATE Studenci SET Rok = Rok 1 WHERE Nr_albumu IN ( '111345','100678');
polecenie UPDATE służy do aktualizacji zawartości wierszy tabel lub perspektyw składnia: UPDATE { } SET { { = DEFAULT NULL}, {
Bardziej szczegółowoPerspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne, perspektywy wbudowane.
Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne, perspektywy wbudowane. 1 Perspektywa Perspektywa (ang. view) jest strukturą logiczną
Bardziej szczegółowoLAB 6 BEGIN TRANSACTION, COMMIT, ROLLBACK, SET TRANSACTION ISOLATION LEVEL,
Informatyka sem. III studia inżynierskie Transport 2018/19 Lab 6 LAB 6 TRANSACTION, COMMIT, ROLLBACK, SET TRANSACTION ISOLATION LEVEL, UPDATE, INSERT INTO, ALTER TABLE, CREATE VIEW, CREATE TRIGGER, FUNCTION,
Bardziej szczegółowoPaweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/
Paweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/ Wprowadzenie Historia i standardy Podstawy relacyjności Typy danych DDL tabele, widoki, sekwencje zmiana struktury DML DQL Podstawy, złączenia,
Bardziej szczegółowoPrzestrzenne bazy danych PostGIS
Przestrzenne bazy danych PostGIS OGC (ang. Open Geospatial Consortium) OGC międzynarodowa organizacja standaryzacyjna w dziedzinie GIS. Powstała w roku 1994 roku. W jej skład wchodzą organizacje komercyjne,
Bardziej szczegółowoCzęść 1: OLAP. Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych
Łukasz Przywarty 171018 Wrocław, 05.12.2012 r. Grupa: CZW/N 10:00-13:00 Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych Część 1: OLAP Prowadzący: dr inż. Henryk Maciejewski
Bardziej szczegółowoZałącznik nr 8. do Studium Wykonalności projektu Sieć Szerokopasmowa Polski Wschodniej województwo podkarpackie
MINISTERSTWO ROZWOJU REGIONALNEGO Załącznik nr 8 do Studium Wykonalności projektu Sieć Szerokopasmowa Polski Wschodniej Instrukcja obliczania wskaźnika pokrycia. Strona 2 z 24 Studium Wykonalności projektu
Bardziej szczegółowoHurtownia Świętego Mikołaja projekt bazy danych
Aleksandra Kobusińska nr indeksu: 218366 Hurtownia Świętego Mikołaja projekt bazy danych Zaprezentowana poniżej baza jest częścią większego projektu bazy danych wykorzystywanej w krajowych oddziałach wiosek
Bardziej szczegółowoJęzyki programowania wysokiego poziomu. PHP cz.4. Bazy danych
Języki programowania wysokiego poziomu PHP cz.4. Bazy danych PHP i bazy danych PHP może zostać rozszerzony o mechanizmy dostępu do różnych baz danych: MySQL moduł mysql albo jego nowsza wersja mysqli (moduł
Bardziej szczegółowoBazy Danych - Instrukcja do Ćwiczenia laboratoryjnego nr 8
Bazy Danych - Instrukcja do Ćwiczenia laboratoryjnego nr 8 Bazowy skrypt PHP do ćwiczeń z bazą MySQL: Utwórz skrypt o nazwie cw7.php zawierający następującą treść (uzupełniając go o właściwą nazwę uŝytkownika
Bardziej szczegółowoBazy danych Ćwiczenia projektowe
Bazy danych Ćwiczenia projektowe Przygotował: Piotr Hajder Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej, AGH Agenda 01. Powtórka 02. Interfejs CRUD
Bardziej szczegółowoIntro. I.Wojnicki, ZTB:XML ZTB: XML. Igor Wojnicki. Katedra Informatyki Stosowanej, Akademia Górniczo-Hutnicza w Krakowie.
Intro Igor Wojnicki (AGH, KIS) XML 18 grudnia 2013 1 / 37 ZTB: XML Igor Wojnicki Katedra Informatyki Stosowanej, Akademia Górniczo-Hutnicza w Krakowie 18 grudnia 2013 Intro Igor Wojnicki (AGH, KIS) XML
Bardziej szczegółowoBazy Danych. SQL Podstawy języka III: powtórzenie. Krzysztof Regulski WIMiIP, KISiM, B5, pok. 408
Bazy Danych SQL Podstawy języka III: powtórzenie Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408 Modyfikacja schematu relacji Utwórz tabelę wg schematu: CREATE TABLE ODDZIAL ( numer_oddzialu
Bardziej szczegółowoGIS. Grzegorz Chilkiewicz
GIS Grzegorz Chilkiewicz Przestrzenna baza danych Przestrzenna baza danych (ang. spatial database) - jest bazą danych zoptymalizowaną do składowania i odpytywania danych powiązanych z obiektami w przestrzeni,
Bardziej szczegółowoa) ile wynosiła populacja najbardziej i najmniej ludnego z województw (oraz jakie były ich nazwy)
Spis treści 1 TI:WTBD/Ćwiczenia 14 1.1 Sprawdzian 2 - SQL. 1.1.1 Grupa 1 1.1.2 przykład rozwiązania dla zadania gr. 1 1.1.3 Grupa 2 1.1.4 przykład rozwiązania dla gr. 2 TI:WTBD/Ćwiczenia 14 Sprawdzian
Bardziej szczegółowoProjektowanie systemów baz danych
Projektowanie systemów baz danych Seweryn Dobrzelewski 4. Projektowanie DBMS 1 SQL SQL (ang. Structured Query Language) Język SQL jest strukturalnym językiem zapewniającym możliwość wydawania poleceń do
Bardziej szczegółowoInstrukcja podwaja zarobki osób, których imiona zaczynają się P i dalsze litery alfabetu zakładamy, że takich osbób jest kilkanaście.
Rodzaje triggerów Triggery DML na tabelach INSERT, UPDATE, DELETE Triggery na widokach INSTEAD OF Triggery DDL CREATE, ALTER, DROP Triggery na bazie danych SERVERERROR, LOGON, LOGOFF, STARTUP, SHUTDOWN
Bardziej szczegółowoSystemy internetowe. Wykład 4 mysql. West Pomeranian University of Technology, Szczecin; Faculty of Computer Science
Systemy internetowe Wykład 4 mysql MySQL - wstęp SZBD: komercyjne: Microsoft SQL Server, Oracle, DB2... darmowe: MySQL, PostgreSQL, Firebird... MySQL darmowy (użytek niekomercyjny) Wady: niska wydajność
Bardziej szczegółowoI. Język manipulowania danymi - DML (Data Manipulation Language). Polecenia INSERT, UPDATE, DELETE
Wykład 9 Implementacja języka SQL w systemach baz danych Oracle manipulowanie danymi (DML), tworzenie, modyfikowanie i usuwanie obiektów bazy danych: tabel i perspektyw, więzów integralności, komentarzy
Bardziej szczegółowoBazy danych. Polecenia SQL
Bazy danych Baza danych, to miejsce przechowywania danych. Dane w bazie danych są podzielone na tabele. Tabele składają się ze ściśle określonych pól i rekordów. Każde pole w rekordzie ma ściśle ustalony
Bardziej szczegółowoKolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Rozszerzenie obiektowe w SZBD Oracle
Rozszerzenie obiektowe w SZBD Oracle Cześć 2. Kolekcje Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Malinowski Nowak Kowalski tablica zagnieżdżona (ang.
Bardziej szczegółowoLaboratorium nr 4. Temat: SQL część II. Polecenia DML
Laboratorium nr 4 Temat: SQL część II Polecenia DML DML DML (Data Manipulation Language) słuŝy do wykonywania operacji na danych do ich umieszczania w bazie, kasowania, przeglądania, zmiany. NajwaŜniejsze
Bardziej szczegółowoProjekt inżynierski Przestrzenna baza danych
Projekt inżynierski Przestrzenna baza danych PostGIS Rozszerzenie relacyjno-obiektowej bazy danych PostgreSQL, dodające możliwość zapisywania danych geograficznych wprost do bazy danych zgodnie ze specyfikacją
Bardziej szczegółowoPo prawidłowym podłączeniu do serwera MySQL należy wybrać bazę, na której będziesz pracować:
Język SQL (Structured Query Language} służy do manipulowania danymi umieszczonymi w relacyjnych bazach danych. Jest językiem uniwersalnym, dzięki czemu praca na różnych systemach baz danych sprowadza się
Bardziej szczegółowo