4 Literatura. c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24
|
|
- Maja Pawlak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wymagania proceduralnych języków wysokiego poziomu ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH modele programowe procesorów ASK MP.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/ Wymagania proceduralnych języków wysokiego poziomu 2 Pamięć i procesor 3 I II podzbiór x86 4 Literatura c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 Wymagania proceduralnych języków wysokiego poziomu Wymagania proceduralnych języków wysokiego poziomu lata 60. XX w.: Algol Fortran lata 80. XX w.: rozwój języków proceduralnych: Pascal, C obecnie: języki obiektowe: C++, C#, Java, Eiffel,... struktura komputera zaprojektowana, by łatwo i wydajnie wykonywać programy tłumaczone z języka wysokiego pozimu na język natywny procesora int x, y; // zmienne globalne char * p; int myadd(int a, int b){ int r; // zmienna lokalna r = a + b; return r;} void cleanup(void){ free(p);} // dealokacja zmiennej dynamicznej int main (void){ p = malloc(1000); x = myadd(20,3); cleanup();} // alokacja // dealokacja c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24
2 Pamięć i procesor Pamięć i procesor 1 Wymagania proceduralnych języków wysokiego poziomu 2 Pamięć i procesor 3 I II podzbiór x86 4 Literatura - sekcje Kod programu (TEXT) Dane statyczne stałe zmienne zainicjalizowane zmienne niezainicjalizowane (BSS) Dane dynamiczne automatyczne argumenty wywołania procedur zmienne lokalne procedur umieszczane na stosie Dane dynamiczne kontrolowane jawnie tworzone i usuwane umieszczane na stercie Kod współdzielony Dane współdzielone c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 PC Pamięć i procesor 1 Wymagania proceduralnych języków wysokiego poziomu rejestr przechowujący adres instrukcji, która ma być (jako następna) pobrana z pamięci celem wykonania nextpc adres w obrębie sekcji kodu programu inkrementowany po pobraniu i zdekodowaniu instrukcji w ramach wykonywania instrukcji skoku ładowany nową wartością adresu docelowego skoku niezbędny w maszynie von Neumanna 2 Pamięć i procesor 3 I II podzbiór x86 4 Literatura c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24
3 wywołanie procedury za pomocą instrukcji skoku ze śladem zapamiętuje wartość nextpc (na stosie) do PC wpisuje adres procedury powrót z procedury za pomocą instrukcji return zdejmuje ze stosu adres powrotny do PC wpisuje adres powrotny stos przechowuje argumenty wywołań adres powrotny zmienne lokalne inne informacje przechowywane w trakcie wykonywania procedury rejestry PC licznik rozkazów A akumulator stos (abstrakcyjny) dostęp do danych za pośrednictwem nazw lub wartości model wysoce nierealistyczny! c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 Lista instrukcji procesora I Kompilacja dla procesora I load data A = data store data data = A do pamięci add data A += data push data data na stos pop data zdjęcie ze stosu call addr push PC, PC = addr skok ze śladem return pop PC powrót po śladzie create data alokacja miejsca na stosie destroy data usuwanie ze stosu konwencja języka C argumenty funkcji w kolejności odwrotnej argument na stos za pomocą instrukcji PUSH po zapamiętaniu argumentów funkcji na stosie wywołanie funkcji za pomocą CALL adres powrotny na stosie (adres instrukcji występującej jako następna za CALL) ostatnią instrukcją funkcji musi być RETURN c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24
4 Rezultat kompilacji wywołania funkcji Kompilacja funkcji ; x = myadd(20,3); push 3 push 20 call myadd destroy destroy store x alokacja zmiennych lokalnych dostęp do danych przez nazwy (taki model!) wartość funkcji zwracana przez rejestr A przed zakończeniem podprogramu deallokacja zmiennych lokalnych powrót za pomocą RETURN c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 I Rezultat kompilacji funkcji I ; prolog ; int r; create r ; ciało ; r = a + b; load a add b store r ; return r; load r ; epilog destroy r return c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 model procesora I wzbogacony o implementację stosu w pamięci dodatkowy rejestr wskaźnika stosu: SP (ang. stack pointer) SP zawiera adres danej ostatnio umieszczonej w pamięci stos pełny schodzący (ang. full descending) rośnie w kierunku malejących adresów operacje na stosie jawnie zdefiniowane w postaci odrębnych instrukcji interpretowanych przez procesor PUSH umieszcza dane na stosie wstępnie dekrementując SP POP zdejmuje dane ze stosu a następnie inkrementuje SP dostęp do parametrów i zmiennych poprzez nazwy koncepcja trudna do implementacji! c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24
5 I Lista instrukcji procesora II procedury load data A = data store data data = A do pamięci add data A += data push data *--SP = data data na stos pop data data = *SP++ zdjęcie ze stosu call addr *--SP = PC, PC = addr skok ze śladem return PC = *SP++ powrót po śladzie create data SP -= sizeof(data) alokacja miejsca na stosie destroy data SP += sizeof(data) usuwanie ze stosu Translacja przykładowego programu identyczna jak w modelu I rozwiązanie problemu dostępu do zmiennych na stosie procedura posługuje się niewielkim fragmentem stosu po przekazaniu sterowania do procedury na stosie znajduje się rekord aktywacji procedury: parametry wywołania ślad powrotu procedura może tworzyć swoje zmienne lokalne umieszczając je na stosie ramka stosu (ang. stack frame) rekord aktywacji procedury zmienne lokalne inne wartości odkładane na stosie w trakcie realizacji procedury c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 Wskaźnik ramki stosu II podzbiór x86 II podzbiór x86 dodatkowy rejestr procesora FP (ang. frame pointer) wskazuje ramkę bieżącej procedury zawartość FP stała w trakcie wykonywania procedury wywołana procedura musi ustalić zawartość FP zachować poprzednią zawartość FP na stosie wpisać do FP adres aktualnej ramki stosu FP = SP przed instrukcją RETURN procedura odtwarza uprzednią wartość FP w trakcie wykonywania procedury dane umieszczone w ramce stosu są adresowane względem FP akumulator / rejestr wartości: EAX rejestr wskaźnika stosu: ESP wskaźnik ramki: EBP licznik instrukcji: EIP instrukcje (w większości) dwuargumentowe pierwszy argument: docelowy następne: źródłowe dostępne adresowanie rejestrowe pośrednie z przemieszczeniem adres danej jest sumą zawartości rejestru i stałej ze znakiem np. [EBP+4] zawartość komórki pamięci c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24
6 Lista instrukcji procesora III II podzbiór x86 Rezultat kompilacji wywołania funkcji II podzbiór x86 mov d,s d = s przesłanie danych mov EAX,d EAX = d mov d,eax d = EAX add EAX,d EAX += d push d *--ESP = d d na stos pop d d = *ESP++ zdjęcie ze stosu call addr *--ESP = EIP, EIP = addr skok ze śladem ret EIP = *ESP++ powrót po śladzie sub ESP,size ESP -= size alokacja miejsca na stosie add ESP,size ESP += size usuwanie ze stosu ; x = myadd(20,3); push 3 push 20 call myadd add esp, 8 mov [x], eax c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 Rezultat kompilacji funkcji II podzbiór x86 Literatura Literatura ; prolog push ebp mov ebp, esp ; int r; sub esp,4 ; ciało ; r = a + b; mov eax, [ebp+8]; add eax, [ebp+12]; mov [ebp-4], eax; ; return r; mov eax, [ebp-4] ; epilog mov esp, ebp pop ebp ret EAX = a EAX += b r = EAX A. S. Tanenbaum, Strukturalna organizacja systemów komputerowych, Helion, J. Biernat, Architektura komputerów, OWPW, R. Hyde, Profesjonalne programowanie, Helion, R. Hyde, Asembler. Sztuka programowania, Helion, G. Mazur, Programowanie niskopoziomowe, P.A. Carter, PC Assembly Language, D.W. Lewis, Między asemblerem a językiem C. Podstawy oprogramowania wbudowanego, RM, c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.01 Rok akad. 2011/ / 24
PROGRAMOWANIE NISKOPOZIOMOWE. Adresowanie pośrednie rejestrowe. Stos PN.04. c Dr inż. Ignacy Pardyka. Rok akad. 2011/2012
PROGRAMOWANIE NISKOPOZIOMOWE PN.04 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 3 Ćwiczenia laboratoryjne c Dr inż. Ignacy Pardyka (Inf.UJK) PN.04 Rok akad.
Bardziej szczegółowo2 Literatura. c Dr inż. Ignacy Pardyka (Inf.UJK) ASK MP.02 Rok akad. 2011/ / 24
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH modele programowe komputerów ASK MP.02 c Dr inż. Ignacy Pardyka 1 UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach 2 Literatura Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka
Bardziej szczegółowoProgramowanie Niskopoziomowe
Programowanie Niskopoziomowe Wykład 11: Procedury zaawansowane Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Wstęp Ramki stosu Rekurencja INVOKE, ADDR, PROC,
Bardziej szczegółowoProgramowanie Niskopoziomowe
Programowanie Niskopoziomowe Wykład 8: Procedury Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Wstęp Linkowanie z bibliotekami zewnętrznymi Operacje na stosie
Bardziej szczegółowoPROGRAMOWANIE NISKOPOZIOMOWE. Struktury w C. Przykład struktury PN.06. c Dr inż. Ignacy Pardyka. Rok akad. 2011/2012
PROGRAMOWANIE NISKOPOZIOMOWE PN.06 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Ćwiczenia laboratoryjne c Dr inż. Ignacy Pardyka (Inf.UJK) PN.06 Rok akad.
Bardziej szczegółowoPROGRAMOWANIE NISKOPOZIOMOWE. Systemy liczbowe. Pamięć PN.01. c Dr inż. Ignacy Pardyka. Rok akad. 2011/2012
PROGRAMOWANIE NISKOPOZIOMOWE PN.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 4 c Dr inż. Ignacy Pardyka (Inf.UJK) PN.01 Rok akad. 2011/2012 1 / 27 c Dr
Bardziej szczegółowoĆwiczenie nr 6. Programowanie mieszane
Ćwiczenie nr 6 Programowanie mieszane 6.1 Wstęp Współczesne języki programowania posiadają bardzo rozbudowane elementy językowe, co pozwala w większości przypadków na zdefiniowanie całego kodu programu
Bardziej szczegółowo2.1. W architekturze MIPS, na liście instrukcji widzimy dwie instrukcje dotyczące funkcji: .text main: la $a0, string1 # drukuj pierwszy łańcuch
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH: Instrukcja do laboratorium 4, (2x2h) Opracowanie i prowadzenie: dr inż. Ignacy Pardyka, Uniwersytet Jana Kochanowskiego w Kielcach Temat: Architektura MIPS: wywołanie
Bardziej szczegółowo3 Literatura. c Dr inż. Ignacy Pardyka (Inf.UJK) ASK SP.06 Rok akad. 2011/2012 2 / 22
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH struktury procesorów ASK SP.06 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 Maszyny wirtualne 2 3 Literatura c Dr inż. Ignacy
Bardziej szczegółowoPROGRAMOWANIE NISKOPOZIOMOWE
PROGRAMOWANIE NISKOPOZIOMOWE PN.06 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) PN.06 Rok akad. 2011/2012 1 / 22 1 Asembler
Bardziej szczegółowoPROGRAMOWANIE NISKOPOZIOMOWE
PROGRAMOWANIE NISKOPOZIOMOWE PN.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) PN.01 Rok akad. 2011/2012 1 / 27 Wprowadzenie
Bardziej szczegółowoArchitektura komputerów
Architektura komputerów Wykład 3 Jan Kazimirski 1 Podstawowe elementy komputera. Procesor (CPU) 2 Plan wykładu Podstawowe komponenty komputera Procesor CPU Cykl rozkazowy Typy instrukcji Stos Tryby adresowania
Bardziej szczegółowoInstrukcja do ćwiczenia P4 Analiza semantyczna i generowanie kodu Język: Ada
Instrukcja do ćwiczenia P4 Analiza semantyczna i generowanie kodu Język: Ada Spis treści 1 Wprowadzenie 1 2 Dane i kod 2 3 Wyrażenia 2 3.1 Operacje arytmetyczne i logiczne.................. 2 3.2 Podstawowe
Bardziej szczegółowoJAK DZIAŁAJĄ FUNKCJE PODZIAŁ PAMIĘCI
JAK DZIAŁAJĄ FUNKCJE PODZIAŁ PAMIĘCI Gdy wywołujesz daną funkcję, program przechodzi do tej funkcji, przekazywane są parametry i następuje wykonanie ciała funkcji. Gdy funkcja zakończy działanie, zwracana
Bardziej szczegółowoCo to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom).
Zarządzanie pamięcią Pamięć: stos i sterta Statyczny i dynamiczny przydział pamięci Funkcje ANSI C do zarządzania pamięcią Przykłady: Dynamiczna tablica jednowymiarowa Dynamiczna tablica dwuwymiarowa 154
Bardziej szczegółowoAssembler w C++ Syntaksa AT&T oraz Intela
Ponownie dodaję artykuł zahaczający o temat assemblera. Na własnej skórze doświadczyłem dzisiaj problemów ze wstawką assemblerową w kodzie C++, dlatego postanowiłem stworzyć artykuł, w którym zbiorę w
Bardziej szczegółowoJęzyk programowania: Lista instrukcji (IL Instruction List)
Język programowania: Lista instrukcji (IL Instruction List) Wykład w ramach przedmiotu: Sterowniki programowalne Opracował dr inż. Jarosław Tarnawski 08.12.2009 Norma IEC 1131 Języki tekstowe Języki graficzne
Bardziej szczegółowoMetody Realizacji Języków Programowania
Metody Realizacji Języków Programowania Realizacja funkcji, procedur i metod Marcin Benke MIM UW 6 grudnia 2010 Marcin Benke (MIM UW) Metody Realizacji Języków Programowania 6 grudnia 2010 1 / 1 Realizacja
Bardziej szczegółowoProgramowanie niskopoziomowe
Programowanie niskopoziomowe Programowanie niskopoziomowe w systemie operacyjnym oraz poza nim Tworzenie programu zawierającego procedury asemblerowe 1 Programowanie niskopoziomowe w systemie operacyjnym
Bardziej szczegółowoProgramowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat
Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Program, to lista poleceń zapisana w jednym języku programowania zgodnie z obowiązującymi w nim zasadami. Celem programu jest przetwarzanie
Bardziej szczegółowoWstęp do informatyki. Architektura co to jest? Architektura Model komputera. Od układów logicznych do CPU. Automat skończony. Maszyny Turinga (1936)
Wstęp doinformatyki Architektura co to jest? Architektura Model komputera Dr inż Ignacy Pardyka Slajd 1 Slajd 2 Od układów logicznych do CPU Automat skończony Slajd 3 Slajd 4 Ile jest automatów skończonych?
Bardziej szczegółowoPraktycznie całe zamieszanie dotyczące konwencji wywoływania funkcji kręci się w okół wskaźnika stosu.
Krótki artykuł opisujący trzy podstawowe konwencje wywoływania funkcji C++ (a jest ich więcej). Konwencje wywoływania funkcji nie są tematem, na który można się szeroko rozpisać, jednak należy znać i odróżniać
Bardziej szczegółowokiedy znowu uzyska sterowanie, to podejmuje obliczenie od miejsca, w którym poprzednio przerwała, i z dotychczasowymi wartościami zmiennych,
Korutyny Wykład13,str1 tak działa podprogram: PROGRAM GŁÓWNY wywołanie PODPROGRAM tak działają korutyny: KORUTYNA A resume B resume B KORUTYNA B resume A Korutyny Wykład13,str2 Korutyny mają zwykle więcej
Bardziej szczegółowoOrganizacja typowego mikroprocesora
Organizacja typowego mikroprocesora 1 Architektura procesora 8086 2 Architektura współczesnego procesora 3 Schemat blokowy procesora AVR Mega o architekturze harwardzkiej Wszystkie mikroprocesory zawierają
Bardziej szczegółowoMetody Realizacji Języków Programowania
Metody Realizacji Języków Programowania Bardzo krótki kurs asemblera x86 Marcin Benke MIM UW 10 stycznia 2011 Marcin Benke (MIM UW) Metody Realizacji Języków Programowania 10 stycznia 2011 1 / 22 Uwagi
Bardziej szczegółowo4 Literatura. c Dr inż. Ignacy Pardyka (Inf.UJK) ASK SP.01 Rok akad. 2011/2012 2 / 27
ARCHITEKTURA SYSTEÓW KOPUTEROWYCH strktry procesorów ASK SP. c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2/22 Założenia konstrkcyjne Układ pobierania instrkcji Układ przygotowania
Bardziej szczegółowoStruktura i działanie jednostki centralnej
Struktura i działanie jednostki centralnej ALU Jednostka sterująca Rejestry Zadania procesora: Pobieranie rozkazów; Interpretowanie rozkazów; Pobieranie danych Przetwarzanie danych Zapisywanie danych magistrala
Bardziej szczegółowozmienne stanowią abstrakcję komórek pamięci: programista może przechowywać dane w pamięci, nie martwiąc się o techniczne szczegóły (np.
ZMIENNE 39 zmienne stanowią abstrakcję komórek pamięci: programista może przechowywać dane w pamięci, nie martwiąc się o techniczne szczegóły (np. przydział pamięci). 40 Nazewnictwo zmiennych Dozwolone
Bardziej szczegółowoProgramowanie niskopoziomowe. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl
Programowanie niskopoziomowe dr inż. Paweł Pełczyński ppelczynski@swspiz.pl 1 Literatura Randall Hyde: Asembler. Sztuka programowania, Helion, 2004. Eugeniusz Wróbel: Praktyczny kurs asemblera, Helion,
Bardziej szczegółowoMOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW
MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW Projektowanie urządzeń cyfrowych przy użyciu układów TTL polegało na opracowaniu algorytmu i odpowiednim doborze i zestawieniu układów realizujących różnorodne funkcje
Bardziej szczegółowoArchitektura komputerów
Architektura komputerów Tydzień 5 Jednostka Centralna Zadania realizowane przez procesor Pobieranie rozkazów Interpretowanie rozkazów Pobieranie danych Przetwarzanie danych Zapisanie danych Główne zespoły
Bardziej szczegółowoProgramowanie hybrydowe C (C++) - assembler. MS Visual Studio Inline Assembler
Programowanie hybrydowe C (C++) - assembler MS Visual Studio Inline Assembler Wprowadzenie Możliwość wprowadzania kodu asemblerowego bezpośrednio w kodzie źródłowym w języku C lub C++ Nie wymagany MASM
Bardziej szczegółowoPodstawy programowania 2. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 2 Podstawy programowania 2 Temat: Zmienne dynamiczne tablica wskaźników i stos dynamiczny Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Tablice wskaźników Tablice
Bardziej szczegółowoCel wykładu. Przedstawienie działania exploitów u podstaw na przykładzie stack overflow.
Exploity w praktyce Plan prelekcji Powtórka assembly x86 32. Pamięć uruchamianych programów. Prosty stack overflow exploit. Tworzenie shellcode i jego uruchomienie. Wstrzykiwanie shellcode wykorzystując
Bardziej szczegółowoWprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera
Dariusz Wawrzyniak Plan wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działania systemu operacyjnego (2) Definicja systemu operacyjnego (1) Miejsce,
Bardziej szczegółowoWprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera
Dariusz Wawrzyniak Plan wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działania systemu operacyjnego (2) Miejsce, rola i zadania systemu operacyjnego
Bardziej szczegółowoArchitektura komputerów. Asembler procesorów rodziny x86
Architektura komputerów Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Rozkazy mikroprocesora Rozkazy mikroprocesora 8086 można podzielić na siedem funkcjonalnych
Bardziej szczegółowoProcesor ma architekturę rejestrową L/S. Wskaż rozkazy spoza listy tego procesora. bgt Rx, Ry, offset nand Rx, Ry, A add Rx, #1, Rz store Rx, [Rz]
Procesor ma architekturę akumulatorową. Wskaż rozkazy spoza listy tego procesora. bgt Rx, Ry, offset or Rx, Ry, A add Rx load A, [Rz] push Rx sub Rx, #3, A load Rx, [A] Procesor ma architekturę rejestrową
Bardziej szczegółowoSystemy operacyjne. Wprowadzenie. Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak
Wprowadzenie Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Plan wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działania systemu operacyjnego
Bardziej szczegółowoProgramowanie współbieżne Wykład 2. Iwona Kochańska
Programowanie współbieżne Wykład 2 Iwona Kochańska Miary skalowalności algorytmu równoległego Przyspieszenie Stały rozmiar danych N T(1) - czas obliczeń dla najlepszego algorytmu sekwencyjnego T(p) - czas
Bardziej szczegółowoTechniki mikroprocesorowe i systemy wbudowane
Techniki mikroprocesorowe i systemy wbudowane Wykład 1 Procesory rodziny AVR ATmega. Wstęp Wojciech Kordecki wojciech.kordecki@pwsz-legnica.eu Państwowa Wyższa Szkoła Zawodowa im. Witelona w Legnicy Wydział
Bardziej szczegółowoProgramowanie niskopoziomowe
Programowanie niskopoziomowe ASSEMBLER Teodora Dimitrova-Grekow http://aragorn.pb.bialystok.pl/~teodora/ Program ogólny Rok akademicki 2011/12 Systemy liczbowe, budowa komputera, procesory X86, organizacja
Bardziej szczegółowo14. Elementy systemu wykonawczego
14. Elementy systemu wykonawczego 14.1 Wprowadzenie system wykonawczy (ang. run-time system) stanowi zestaw danych i operacji realizujących tzw. maszynę wirtualną języka programowania (na maszynie tej
Bardziej szczegółowoDYNAMICZNE PRZYDZIELANIE PAMIECI
DYNAMICZNE PRZYDZIELANIE PAMIECI Pamięć komputera, dostępna dla programu, dzieli się na cztery obszary: kod programu, dane statyczne ( np. stałe i zmienne globalne programu), dane automatyczne zmienne
Bardziej szczegółowoZaawansowane programowanie w języku C++ Zarządzanie pamięcią w C++
Zaawansowane programowanie w języku C++ Zarządzanie pamięcią w C++ Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
Bardziej szczegółowoWstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer
Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny
Bardziej szczegółowoJęzyki i metodyka programowania
Języki i metodyka programowania www.ee.pw.edu.pl/~slawinsm Dr inż. Maciej Sławiński M.Slawinski@ee.pw.edu.pl GE518l Konsultacje: śr. 13 00-13 45 SK201/GE518l pt. 10 15-11 00 GE518l/SK201 Algorytmika Literatura
Bardziej szczegółowoLogiczny model komputera i działanie procesora. Część 1.
Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.
Bardziej szczegółowoUTK Można stwierdzić, że wszystkie działania i operacje zachodzące w systemie są sterowane bądź inicjowane przez mikroprocesor.
Zadaniem centralnej jednostki przetwarzającej CPU (ang. Central Processing Unit), oprócz przetwarzania informacji jest sterowanie pracą pozostałych układów systemu. W skład CPU wchodzą mikroprocesor oraz
Bardziej szczegółowoTemat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.
Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,
Bardziej szczegółowoPodstawy techniki mikroprocesorowej. Dr inż. Grzegorz Kosobudzki p.311a A-5. Tel
Podstawy techniki mikroprocesorowej Dr inż. Grzegorz Kosobudzki p.311a A-5. Tel. 071 3203746 grzegorz.kosobudzki@pwr.wroc.pl 2 Terminy zajęć Wykłady: niedziela 7.30 12.00 s.312 Kolokwium przedostatnie
Bardziej szczegółowoPodstawy programowania komputerów
Podstawy programowania komputerów Wykład 10: Sterowanie pamięcią w C Pamięć na stosie!każdy program napisany w języku C ma dostęp do dwóch obszarów pamięci - stosu i sterty, w których może być przechowywana
Bardziej szczegółowoPodstawy programowania. Wykład: 7. Funkcje Przekazywanie argumentów do funkcji. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD
programowania Wykład: 7 Funkcje Przekazywanie argumentów do funkcji 1 dr Artur Bartoszewski - programowania, sem 1 - WYKŁAD programowania w C++ Funkcje 2 dr Artur Bartoszewski - programowania sem. 1 -
Bardziej szczegółowoJęzyki i metodyka programowania. Wskaźniki i tablice.
Wskaźniki i tablice. Zmienna1 Zmienna2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Zmienna to fragment pamięci o określonym rozmiarze identyfikowany za pomocą nazwy, w którym może być przechowywana
Bardziej szczegółowoJęzyk programowania: Lista instrukcji (IL Instruction List) Wykład w ramach przedmiotu: Sterowniki programowalne Opracował dr inż. Jarosław Tarnawski
Język programowania: Lista instrukcji (IL Instruction List) Wykład w ramach przedmiotu: Sterowniki programowalne Opracował dr inż. Jarosław Tarnawski Norma IEC 1131 Języki tekstowe Języki graficzne Języki
Bardziej szczegółowoParę słów o przepełnieniu bufora.
Parę słów o przepełnieniu bufora. Łukasz Pejas Styczeń 2006 1 Bufor na stosie. Stos służy między innymi do przekazywania parametrów do funkcji i do tworzenia zmiennych lokalnych funkcji. Jest czymś w rodzaju
Bardziej szczegółowoJęzyki i paradygmaty programowania. I. Wprowadzenie
Języki i paradygmaty programowania I. Wprowadzenie O źródłach wykład został przygotowany w ogromnej części w oparciu o serwis http://wazniak.mimuw.edu.pl/ (zgodnie z licencją serwisu) inne źródła: Wikipedia:
Bardziej szczegółowoArchitektura komputerów. Komputer Procesor Mikroprocesor koncepcja Johna von Neumanna
Architektura komputerów. Literatura: 1. Piotr Metzger, Anatomia PC, wyd. IX, Helion 2004 2. Scott Mueller, Rozbudowa i naprawa PC, wyd. XVIII, Helion 2009 3. Tomasz Kowalski, Urządzenia techniki komputerowej,
Bardziej szczegółowoProgramowanie obiektowo zorientowane. Mirosław Głowacki Wykład w języku C++
Programowanie obiektowo zorientowane Mirosław Głowacki Wykład w języku C++ Literatura B. Meyer, Programowanie zorientowane obiektowo, Helion Gliwice, 2005 J. Grębosz, Symfonia C++ Standard, Oficyna Kallimach,
Bardziej szczegółowoRozszerzalne kody operacji (przykład)
Tryby adresowania natychmiastowy (ang. immediate) bezpośredni (ang. direct) pośredni (ang. indirect) rejestrowy (ang. register) rejestrowy pośredni (ang. register indirect) z przesunieciem (indeksowanie)
Bardziej szczegółowoPodstawy programowania obiektowego
Podstawy programowania obiektowego Technologie internetowe Wykład 5 Program wykładu Podejście obiektowe kontra strukturalne do tworzenie programu Pojęcie klasy i obiektu Składowe klasy: pola i metody Tworzenie
Bardziej szczegółowoArchitektura Systemów Komputerowych. Jednostka ALU Przestrzeń adresowa Tryby adresowania
Architektura Systemów Komputerowych Jednostka ALU Przestrzeń adresowa Tryby adresowania 1 Jednostka arytmetyczno- logiczna ALU ALU ang: Arythmetic Logic Unit Argument A Argument B A B Ci Bit przeniesienia
Bardziej szczegółowoĆwiczenie 3. Konwersja liczb binarnych
1 Laboratorium Architektury Komputerów Ćwiczenie 3 Konwersja liczb binarnych Komputery wykonują operacje przetwarzania danych na wartościach binarnych, podczas gdy współczesna cywilizacja posługuje się
Bardziej szczegółowoPodstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład Funkcje Krzysztof Banaś Podstawy programowania 1 Programowanie proceduralne Pojęcie procedury (funkcji) programowanie proceduralne realizacja określonego zadania specyfikacja
Bardziej szczegółowoArgumenty wywołania programu, operacje na plikach
Temat zajęć: Argumenty wywołania programu, operacje na plikach Autor: mgr inż. Sławomir Samolej Zagadnienie 1. (Zmienne statyczne) W języku C można decydować o sposobie przechowywania zmiennych. Decydują
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW
POLITECHNIKA WARSZAWSKA Instytut Automatyki i i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW Język Język programowania: C/C++ Środowisko programistyczne: C++Builder 6 Wykład 9.. Wskaźniki i i zmienne dynamiczne.
Bardziej szczegółowoProgramowanie w asemblerze Aspekty bezpieczeństwa
Programowanie w asemblerze Aspekty bezpieczeństwa 20 grudnia 2016 Ochrona stron pamięci Najstarsze(?) ataki: modyfikacja kodu programu. Lekarstwo: W XOR X (Write XOR execute) Oznacza to, że w atrybutach
Bardziej szczegółowoSprzęt komputera - zespół układów wykonujących programy wprowadzone do pamięci komputera (ang. hardware) Oprogramowanie komputera - zespół programów
Sprzęt komputera - zespół układów wykonujących programy wprowadzone do pamięci komputera (ang. hardware) Oprogramowanie komputera - zespół programów przeznaczonych do wykonania w komputerze (ang. software).
Bardziej szczegółowoPodstawy programowania
Podstawy programowania Część pierwsza Od języka symbolicznego do języka wysokiego poziomu Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót
Bardziej szczegółowoProjektowanie. Projektowanie mikroprocesorów
WYKŁAD Projektowanie mikroprocesorów Projektowanie układ adów w cyfrowych - podsumowanie Algebra Boole a Bramki logiczne i przerzutniki Automat skończony System binarny i reprezentacja danych Synteza logiczna
Bardziej szczegółowoPodstawy programowania. Wykład PASCAL. Zmienne wskaźnikowe i dynamiczne. dr Artur Bartoszewski - Podstawy prograowania, sem.
Podstawy programowania Wykład PASCAL Zmienne wskaźnikowe i dynamiczne 1 dr Artur Bartoszewski - Podstawy prograowania, sem. 1- WYKŁAD Rodzaje zmiennych Zmienne dzielą się na statyczne i dynamiczne. Zmienna
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Przemysław Gawroński D-10, p. 234 Wykład 1 8 października 2018 (Wykład 1) Wstęp do programowania 8 października 2018 1 / 12 Outline 1 Literatura 2 Programowanie? 3 Hello World (Wykład
Bardziej szczegółowodr inż. Konrad Sobolewski Politechnika Warszawska Informatyka 1
dr inż. Konrad Sobolewski Politechnika Warszawska Informatyka 1 Cel wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działanie systemu operacyjnego
Bardziej szczegółowoPrzepełnienie bufora i łańcuchy formatujace
Metody włamań do systemów komputerowych Przepełnienie bufora i łańcuchy formatujace Bogusław Kluge, Karina Łuksza, Ewa Makosa b.kluge@zodiac.mimuw.edu.pl, k.luksza@zodiac.mimuw.edu.pl, e.makosa@zodiac.mimuw.edu.pl
Bardziej szczegółowoJerzy Nawrocki, Wprowadzenie do informatyki
Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Cel wykładu Programowanie imperatywne i język C Zaprezentować paradygmat programowania imperatywnego
Bardziej szczegółowoWykład 8: klasy cz. 4
Programowanie obiektowe Wykład 8: klasy cz. 4 Dynamiczne tworzenie obiektów klas Składniki statyczne klas Konstruktor i destruktory c.d. 1 dr Artur Bartoszewski - Programowanie obiektowe, sem. 1I- WYKŁAD
Bardziej szczegółowoJAVA. Java jest wszechstronnym językiem programowania, zorientowanym. apletów oraz samodzielnych aplikacji.
JAVA Java jest wszechstronnym językiem programowania, zorientowanym obiektowo, dostarczającym możliwość uruchamiania apletów oraz samodzielnych aplikacji. Java nie jest typowym kompilatorem. Źródłowy kod
Bardziej szczegółowoMikroprocesor Operacje wejścia / wyjścia
Definicja Mikroprocesor Operacje wejścia / wyjścia Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz Operacjami wejścia/wyjścia nazywamy całokształt działań potrzebnych
Bardziej szczegółowoWstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 6. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 6 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Funkcje w języku C Zasięg zmiennych Przekazywanie
Bardziej szczegółowoĆwiczenie nr 3. Wyświetlanie i wczytywanie danych
Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie
Bardziej szczegółowoProgramowanie w języku C++ Podstawowe paradygmaty programowania
Programowanie w języku C++ Podstawowe paradygmaty programowania Mirosław Głowacki 1 1 Akademia Górniczo-Hutnicza im. Stanisława Staszica w Ktrakowie Wydział Inżynierii Metali i Informatyki Stosowanej Katedra
Bardziej szczegółowoWykład V. Rzut okiem na języki programowania. Studia Podyplomowe INFORMATYKA Podstawy Informatyki
Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład V Rzut okiem na języki programowania 1 Kompilacja vs. interpretacja KOMPILACJA Proces, który przetwarza program zapisany w języku programowania,
Bardziej szczegółowoPodstawy Programowania. Wykład 1
Podstawy Programowania Wykład 1 Jak się uczyć programowania? Wykład i laboratorium Literatura Jerzy Grębosz Symfonia C++ Bjarne Stroustrup Język C++ Bruce Eckel Thinking in C++ Tony L. Hansen C++ zadania
Bardziej szczegółowoJerzy Nawrocki, Wprowadzenie do informatyki
Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Cel wykładu Programowanie imperatywne i język C Zaprezentować paradygmat programowania imperatywnego
Bardziej szczegółowoHistoria modeli programowania
Języki Programowania na Platformie.NET http://kaims.eti.pg.edu.pl/ goluch/ goluch@eti.pg.edu.pl Maszyny z wbudowanym oprogramowaniem Maszyny z wbudowanym oprogramowaniem automatyczne rozwiązywanie problemu
Bardziej szczegółowoTablice, funkcje - wprowadzenie
Tablice, funkcje - wprowadzenie Przemysław Gawroński D-10, p. 234 Wykład 5 25 marca 2019 (Wykład 5) Tablice, funkcje - wprowadzenie 25 marca 2019 1 / 12 Outline 1 Tablice jednowymiarowe 2 Funkcje (Wykład
Bardziej szczegółowoWykład 14. Środowisko przetwarzania
Wykład 14 Środowisko przetwarzania Środowisko przetwarzania Przed generacją kodu, musimy umieć powiązać statyczny kod źródłowy programu z akcjami, wykonywanymi w trakcie działania i implementującymi program;
Bardziej szczegółowoGlobalne / Lokalne. Wykład 15. Podstawy programowania (język C) Zmienne globalne / lokalne (1) Zmienne globalne / lokalne (2)
Podstawy programowania (język C) Globalne / Lokalne Wykład 15. Tomasz Marks - Wydział MiNI PW -1- Tomasz Marks - Wydział MiNI PW -2- Zmienne globalne / lokalne (1) int A, *Q; // definicja zmiennych globalnych
Bardziej szczegółowoWstęp do programowania
wykład 8 Agata Półrola Wydział Matematyki i Informatyki UŁ semestr zimowy 2018/2019 Podprogramy Czasami wygodnie jest wyodrębnić jakiś fragment programu jako pewną odrębną całość umożliwiają to podprogramy.
Bardziej szczegółowoJava EE produkcja oprogramowania
Java EE produkcja oprogramowania PPJ PODSTAWY PROGRAMOWANIA W JAVIE PODSTAWY JĘZYKA JAVA 1 Warszawa, 2016Z 2 Ogólna charakterystyka języka Java 3 Java 1/2 Język programowania Java został opracowany przez
Bardziej szczegółowoUkład sterowania, magistrale i organizacja pamięci. Dariusz Chaberski
Układ sterowania, magistrale i organizacja pamięci Dariusz Chaberski Jednostka centralna szyna sygnałow sterowania sygnały sterujące układ sterowania sygnały stanu wewnętrzna szyna danych układ wykonawczy
Bardziej szczegółowoĆwiczenie nr 4. Zasady kodowania podprogramów
Ćwiczenie nr 4 Zasady kodowania podprogramów 4.1 Wstęp W praktyce programowania spotykamy się często z sytuacjami, gdy identyczne czynności wykonywane są w wielu miejscach programu. W takich przypadkach
Bardziej szczegółowoPodstawy Programowania Obiektowego
Podstawy Programowania Obiektowego Wprowadzenie do programowania obiektowego. Pojęcie struktury i klasy. Spotkanie 03 Dr inż. Dariusz JĘDRZEJCZYK Tematyka wykładu Idea programowania obiektowego Definicja
Bardziej szczegółowoDynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Bardziej szczegółowoPodstawy programowania w języku C
Podstawy programowania w języku C WYKŁAD 1 Proces tworzenia i uruchamiania programów Algorytm, program Algorytm przepis postępowania prowadzący do rozwiązania określonego zadania. Program zapis algorytmu
Bardziej szczegółowo4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych
Bardziej szczegółowoTechnika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2
Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2 Literatura: www.zilog.com Z80 Family, CPU User Manual Cykle magistrali w mikroprocesorze Z80 -odczyt kodu rozkazu, -odczyt-zapis pamięci,
Bardziej szczegółowoPrzydział pamięci. Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki
Przydział pamięci Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Terminologia Program s(input,output) {SORT} program główny można traktować także jako procedurę var a: array[0..10] of integer;
Bardziej szczegółowoInstytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska
Instytut Mechaniki i Inżynierii Obliczeniowej www.imio.polsl.pl fb.com/imiopolsl @imiopolsl Wydział Mechaniczny Technologiczny Politechnika Śląska Języki programowania z programowaniem obiektowym Laboratorium
Bardziej szczegółowoKurs programowania. Wstęp - wykład 0. Wojciech Macyna. 22 lutego 2016
Wstęp - wykład 0 22 lutego 2016 Historia Simula 67 język zaprojektowany do zastosowan symulacyjnych; Smalltalk 80 pierwszy język w pełni obiektowy; Dodawanie obiektowości do języków imperatywnych: Pascal
Bardziej szczegółowo