J. Ułasiewicz Programowanie aplikacji współbieżnych 1
|
|
- Fabian Kot
- 8 lat temu
- Przeglądów:
Transkrypt
1 J. Ułasiewicz Programowanie aplikacji współbieżnych 1 9. Komunikacja przez pamięć dzieloną Pamięć wirtualna Procesy nie adresują bezpośrednio pamięci fizycznej. Zamiast tego system operacyjny przydziela im wirtualną przestrzeń adresową. Jest ona liniowa, zaczyna się od zera i rośnie aż do wartości maksymalnej. Pamięć składa się z bajtów pogrupowanych w strony. Strony zarządzane są przez MMU (ang. Memory Management Unit). Rozmiar strony zależy od architektury I zwykle wynosi: 4 kb dla maszyn 32 bitowych 8 kb dla maszyn 64 bitowych Strona może być albo obecna w pamięci RAM albo nieobecna, znajduje się w pamięci dyskowej. Odwołanie się do strony nieobecnej powoduje wyjątek błąd strony (ang. Page Fault). Wtedy system operacyjny sprowadza stronę z pamięci dyskowej do pamięci RAM. Jądro rozmieszcza strony w blokach zwanych regionami pamięci. Różnić się one mogą prawami dostepu. W każdym procesie istnieją następujące regiony pamięci: Segment tekstu zawiera kod i dane stałe, literały, tylko do odczytu Segment stosu zawiera zmienne lokalne i dane zwracane z funkcji. Rośnie i maleje w trakcie wykonania programu Segment danych (sterta) zawiera dane dynamiczne przydzielane funkcją malloc. Segment bss zawiera niezainicjowane zmienne globalne Przydzielanie pamięci dynamicznej Pamięć dynamiczna przydzielana jest funkcją malloc void * malloc(size_t size) Funkcja zwraca wskaźnik na przydzielony obszar pamięci lub NULL gdy się nie powiodła.
2 J. Ułasiewicz Programowanie aplikacji współbieżnych 2 typedef struct { int pocz; int kon; int ile; msg_t;... msg_t * buf;... buf = (msg_t *) malloc(sizeof(msg_t)); buf->pocz = 1; Pamięć dynamiczna do tablic przydzielana jest funkcją calloc void * calloc(size_t nr, size_t size) nr size liczba elementów wielkośc elementu Funkcja zwraca wskaźnik na przydzielony obszar pamięci lub NULL gdy się nie powiodła. Zmiana wielkości obszaru void * realloc(void * ptr, size_t size) ptr size wskaźnik na obszar nowa wielkość obszaru Zwalnianie obszaru pamięci void free(void * ptr)
3 J. Ułasiewicz Programowanie aplikacji współbieżnych 3 Blokowanie pamięci int mlock(const void * adr, size_t len); Wykonanie funkcji spowoduje że wskazany obszar pamięci poczynając od adr, wielkości len nie zostanie usunięty z pamięci RAM na dysk. Blokowanie całej pamięci procesu: int mlockall(int flags); Odblokowanie pamięci int munlock(const void * adr, size_t len); int munlockall(void);
4 J. Ułasiewicz Programowanie aplikacji współbieżnych 4 Komunikacja przez pamięć dzieloną Metoda komunikacji przez wspólną pamięć może być użyta gdy procesy wykonywane są na maszynie jednoprocesorowej lub wieloprocesorowej ze wspólną pamięcią. Procesy mają rozdzielone segmenty danych - modyfikacje wykonane na danych w jednym procesie w żaden sposób nie przenoszą się do procesu drugiego. Aby procesy mogły mieć wspólny dostęp do tych samych danych należy: 1. Utworzyć oddzielny segment pamięci. 2. Udostępnić dostęp do segmentu zainteresowanym procesom. Prywatny P2 Segment danych procesu P1 Proces 1 Wspólny Proces 2 Segment danych procesu P1 Prywatny P1 Segment pamięci dzielonej Rys. 9-1 Procesy P1 i P2 komunikuję się poprzez wspólny obszar pamięci Wątki Wątki z natury dzielą obszar danych. Zmienne zadeklarowane jako zmienne globalne będą dostępne dla wątków. Komunikacja poprzez pamięć dzieloną Gdy procesy komunikują się przez wspólną pamięć, należy zadbać o zachowania spójności danych zawartych w dzielonym obszarze pamięci.
5 J. Ułasiewicz Programowanie aplikacji współbieżnych Funkcje operujące na wspólnej pamięci standard Posix Standard Posix funkcje pozwalające na tworzenie i udostępnianie segmentów pamięci: Działanie Utworzenie wspólnego segmentu pamięci Ustalenie rozmiaru segmentu Ustalenie odwzorowanie segmentu Cofnięcie odwzorowania segmentu Zmiana trybu dostępu Skasowanie segmentu pamięci Funkcja shm_open() ftruncate() mmap() munmap() mprotect() shm_unlink() Tabela 9-1 Funkcje POSIX operujące na pamięci wspólnej Tworzenie segmentu pamięci Tworzenie segmentu pamięci podobne jest do tworzenia pliku segment jest plikiem specjalnym. int shm_open(char *name, int oflag, mode_t mode ) name oflag mode Nazwa segmentu pamięci Flaga specyfikująca tryb utworzenia (jak dla plików), np. O_RDONLY, O_RDWR, O_CREAT Specyfikacja trybu dostępu (jak dla plików). Gdy funkcja zwraca liczbę nieujemną jest to uchwyt identyfikujący segment w procesie. Segment widziany jest jako plik specjalny w katalogu /dev/shmem. Ustalanie rozmiaru segmentu pamięci off_t ftruncate(int fdes, off_t offset) fdes offset Uchwyt segmentu zwracany przez poprzednią funkcję shm_open. Wielkość segmentu w bajtach. Funkcja zwraca wielkość segmentu lub 1 gdy błąd.
6 J. Ułasiewicz Programowanie aplikacji współbieżnych 6 Odwzorowanie segmentu pamięci wspólnej w obszar procesu, void *mmap(void * addr, size_t len, int prot, int flags, int fdes, off_t off) addr len prot flags fdes off Zmienna wskaźnikowa w procesie której wartość będzie przez funkcję zainicjowana. Może być 0. Wielkość odwzorowywanego obszaru. Specyfikacja dostępu do obszaru opisana w <sys/mman.h>. Może być PROT_READ PROT_WRITE Specyfikacja użycia segmentu, np. MAP_SHARED. Uchwyt segmentu wspólnej pamięci. Początek obszaru we wspólnej pamięci (musi to być wielokrotność strony 4K) Funkcja zwraca adres odwzorowanego obszaru lub 1 gdy błąd. typedef struct { int typ; char text[size]; buf_t;... buf_t *buf; buf = malloc(sizeof(buf_t)); buf->typ = 1;... Przykład 1 Pamięć zawierająca strukturę znajduje się na stercie buf typ text sterta Rys. 9-2 Struktura buf na stercie
7 J. Ułasiewicz Programowanie aplikacji współbieżnych 7 buf proces 1 typ text bufor buf proces 2 pamięć dzielona Rys. 9-3 Struktura buf w pamięci dzielonej typedef struct { int typ; char text[size]; buf_t;... buf_t *buf;... fd=shm_open("bufor",o_rdwr O_CREAT,0664);... buf = (buf_t *)mmap(0,sizeof(buf_t),prot_read PROT_WRITE, MAP_SHARED, fd, 0); buf->typ = 1;... Przykład 2 Pamięć zawierająca strukturę znajduje się w pamięci dzielonej Odłączenie się od segmentu pamięci shm_unlink(char *name) name Nazwa segmentu pamięci. Każde wywołanie tej funkcji zmniejsza licznik udostępnień segmentu. Gdy osiągnie on wartość 0 czyli segment nie jest używany już przez żaden proces, segment jest kasowany. Schemat utworzenia i udostępnienia segmentu podano na poniższym rysunku. // Kompilacja gcc pam-dziel.c -o pam-dziel -lrt #include <sys/mman.h> #include <stdio.h>
8 J. Ułasiewicz Programowanie aplikacji współbieżnych 8 #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <string.h> #define SIZE 60 // Rozmiar bufora typedef struct { int typ; char text[size]; buf_t; main(int argc,char *argv[]) { int i,stat,pid,k,res; buf_t *buf; char name[16]; int fd; // Deskryptor segmentu strcpy(name,"bufor"); shm_unlink(name); // Utworzenie segmentu pamieci if((fd=shm_open(name,o_rdwr O_CREAT,0664))==-1) { perror("shm_open"); exit(-1); printf("fh = %d\n",fd); // Okreslenie rozmiaru obszaru pamieci res = ftruncate(fd,sizeof(buf_t)); if(res < 0) { perror("ftrunc"); return 0; // Odwzorowanie segmentu fd w obszar pamieci procesow buf = (buf_t *) mmap(0,sizeof(buf_t), PROT_READ PROT_WRITE,MAP_SHARED, fd, 0); if(buf == NULL) { perror("mmap"); exit(-1); printf("start\n"); // Proces potomny P2 - pisze do pamieci wspolnej if(fork() == 0) { buf-> typ = 1; for(k=0;k<10;k++) { // Zapis do bufora printf("zapis - Komunikat %d\n",k); sprintf(buf->text,"komunikat %d",k); sleep(1); exit(0); // Proces macierzysty P1 czyta z pamięci wspólnej - for(i=0;i<10;i++) { printf("odczyt %s\n",buf->text); sleep(1);
9 J. Ułasiewicz Programowanie aplikacji współbieżnych 9 // Czekam na potomny -- pid = wait(&stat); return 0; Przykład 1 Procesy P1 i P2 komunikują się przez wspólny obszar pamięci Deklaracja zmiennej wskaźnikowej buf_t * buf Nazwa segmentu - "Bufor" Utworzenie segmentu fd = shm_open("bufor",...) Ustalenie wielkości segmentu ftruncate(fd,...) Odwzorowanie segmentu fd w przestrzeń adresową procesu buf = (buf_t *) mmap(...,fd,...) Zapis / odczyt bufora buf Rys. 9-4 Schemat użycia segmentu pamięci dzielonej
10 J. Ułasiewicz Programowanie aplikacji współbieżnych 10 Sposób wykorzystania wspólnej pamięci do komunikacji pomiędzy procesami. Proces macierzysty P1: 1. Deklaruje zmienną wskaźnikową buf do struktury buf_t. 2. Tworzy segment pamięci o nazwie Bufor - funkcja shm_open. 3. Ustala jego wielkość na sizeof(buf_t) - funkcją ftrunc. 4. Udostępnia segment w przestrzeni adresowej inicjując zmienną buf funkcja mmap. 5. Tworzy proces potomny P2 funkcja fork. 6. Czyta znaki z bufora buf. Proces potomny P2: 1. Korzysta z utworzonego, udostępnionego i odwzorowanego jako buf segmentu pamięci. 2. Pisze komunikaty do bufora buf.
11 J. Ułasiewicz Programowanie aplikacji współbieżnych Rozwiązanie problemu producenta i konsumenta semafory nienazwane Producenci buf[bsize] Konsumenci P1 BSIZE-1 K1 P2 Pk full head x x x empty tail K2 Km cnt mutex segment pamieci dzielonej #include <sys/mman.h> #include <fcntl.h> #include <semaphore.h> #define BSIZE 4 // Rozmiar bufora #define LSIZE 80 // Dlugosc linii typedef struct { char buf[bsize][lsize]; int head; int tail; int cnt; sem_t mutex; sem_t empty; sem_t full; bufor_t; main(int argc,char *argv[]) { int i,stat,k, pid, size, fd,res; bufor_t *wbuf ; char c; // Utworzenie segmentu shm_unlink("bufor"); if((fd=shm_open("bufor", O_RDWR O_CREAT, 0774)) == -1){ perror("open"); exit(-1); printf("fd: %d\n",fd); size = ftruncate(fd, BSIZE); if(size < 0) {perror("trunc"); exit(-1);
12 J. Ułasiewicz Programowanie aplikacji współbieżnych 12 // Odwzorowanie segmentu fd w obszar pamieci procesow wbuf = (bufor_t *)mmap(0,bsize,prot_read PROT_WRITE, MAP_SHARED, fd, 0); if(wbuf == NULL) {perror("map"); exit(-1); // Inicjacja obszaru wbuf-> cnt = 0; wbuf->head = 0; wbuf->tail = 0; if(sem_init(&(wbuf->mutex),1,1)){ perror("mutex");exit(0); if(sem_init(&(wbuf->empty),1,bsize)) { perror("empty"); exit(0); if(sem_init(&(wbuf->full),1,0)) { perror("full"); exit(0); // Tworzenie procesow if(fork() == 0) { // Producent for(i=0;i<10;i++) { // printf("producent: %i\n",i); printf("producent - cnt:%d head: %d tail: %d\n", wbuf-> cnt,wbuf->head,wbuf->tail); sem_wait(&(wbuf->empty)); sem_wait(&(wbuf->mutex)); sprintf(wbuf->buf[wbuf->head],"komunikat %d",i); wbuf-> cnt ++; wbuf->head = (wbuf->head +1) % BSIZE; sem_post(&(wbuf->mutex)); sem_post(&(wbuf->full)); sleep(1); shm_unlink("bufor"); exit(i); // Konsument for(i=0;i<10;i++) { printf("konsument - cnt: %d odebrano %s\n",wbuf->cnt,wbuf->buf[wbuf->tail]); sem_wait(&(wbuf->full)); sem_wait(&(wbuf->mutex)); wbuf-> cnt --; wbuf->tail = (wbuf->tail +1) % BSIZE; sem_post(&(wbuf->mutex)); sem_post(&(wbuf->empty)); sleep(1);
13 J. Ułasiewicz Programowanie aplikacji współbieżnych 13 pid = wait(&stat); shm_unlink("bufor"); sem_close(&(wbuf->mutex)); sem_close(&(wbuf->empty)); sem_close(&(wbuf->full)); return 0; Przykład 9-2 Rozwiązanie problemu producenta i konsumenta za pomocą semaforów nienazwanych
14 J. Ułasiewicz Programowanie aplikacji współbieżnych Rozwiązanie problemu producenta i konsumenta semafory nazwane Producenci P1 buf[bsize] BSIZE-1 Konsumenci K1 P2 Pk head x x x tail K2 Km cnt segment pamieci dzielonej full mutex empty #include <sys/mman.h> #include <fcntl.h> #include <semaphore.h> #define BSIZE 4 // Rozmiar bufora #define LSIZE 80 // Dlugosc linii typedef struct { // Obszar wspólny char buf[bsize][lsize]; int head; int tail; int cnt; bufor_t; main(int argc,char *argv[]) { int i,stat,k, pid, size, fd,res; bufor_t *wbuf ; char c; sem_t *mutex; sem_t *empty; sem_t *full; // Utworzenie segmentu shm_unlink("bufor"); if((fd=shm_open("bufor", O_RDWR O_CREAT, 0774)) == -1){ perror("open"); exit(-1); printf("fd: %d\n",fd);
15 J. Ułasiewicz Programowanie aplikacji współbieżnych 15 size = ftruncate(fd, BSIZE); if(size < 0) {perror("trunc"); exit(-1); // Odwzorowanie segmentu fd w obszar pamieci procesow wbuf = ( bufor_t *)mmap(0,bsize, PROT_READ PROT_WRITE, MAP_SHARED, fd, 0); if(wbuf == NULL) {perror("map"); exit(-1); // Inicjacja obszaru wbuf-> cnt = 0; wbuf->head = 0; wbuf->tail = 0; // Utworzenie semaforw mutex = sem_open("mutex",o_creat,s_irwxu,1); empty = sem_open("empty",o_creat,s_irwxu,bsize); full = sem_open("full",o_creat,s_irwxu,0); // Utworzenie procesow if(fork() == 0) { // Producent for(i=0;i<10;i++) { // printf("producent: %i\n",i); sem_wait(empty); sem_wait(mutex); printf("producent - cnt:%d head: %d tail: %d\n", wbuf-> cnt,wbuf->head,wbuf->tail); sprintf(wbuf->buf[wbuf->head],"komunikat %d",i); wbuf-> cnt ++; wbuf->head = (wbuf->head +1) % BSIZE; sem_post(mutex); sem_post(full); sleep(1); shm_unlink("bufor"); exit(i);
16 J. Ułasiewicz Programowanie aplikacji współbieżnych 16 // Konsument for(i=0;i<10;i++) { sem_wait(full); sem_wait(mutex); printf("konsument - cnt: %d odebrano %s\n", wbuf->cnt,wbuf->buf[wbuf->tail]); wbuf-> cnt --; wbuf->tail = (wbuf->tail +1) % BSIZE; sem_post(mutex); sem_post(empty); sleep(1); pid = wait(&stat); shm_unlink("bufor"); sem_close(mutex); sem_close(empty); sem_close(full); sem_unlink("mutex"); sem_unlink("empty"); sem_unlink("full"); return 0; Przykład 9-3 Rozwiązanie problemu producenta i konsumenta za pomocą semaforów nazwanych
Rys. 9-1 Procesy P1 i P2 komunikuję się poprzez wspólny obszar. pamięci.
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 9. Komunikacja przez pamięć dzieloną Metoda komunikacji przez wspólną pamięć może być użyta gdy procesy wykonywane są na maszynie jednoprocesorowej
J. Ułasiewicz Programowanie aplikacji współbieżnych 1
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 9. Komunikacja przez pamięć dzieloną Pamięć wirtualna Procesy nie adresują bezpośrednio pamięci fizycznej. Zamiast tego system operacyjny przydziela
10. Synchronizacja użycia zasobów, Semafory Problem producenta i konsumenta
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 10. użycia zasobów, Semafory 10.1 Problem producenta i konsumenta Zagadnienie kontroli użycia jednostek zasobu W systemie istnieje pula N jednostek
10. Synchronizacja użycia zasobów, Semafory
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 10. użycia zasobów, Semafory 10.1 Problem producenta i konsumenta Zagadnienie kontroli użycia jednostek zasobu W systemie istnieje pula N jednostek
10. Synchronizacja użycia zasobów, Semafory
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 10. użycia zasobów, Semafory 10.1 Problem producenta i konsumenta Zagadnienie kontroli użycia jednostek zasobu W systemie istnieje pula N jednostek
J. Ułasiewicz Programowanie aplikacji współbieżnych 1
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 9. Komunikacja przez pamięć dzieloną Metoda komunikacji przez wspólną pamięć może być użyta gdy procesy wykonywane są na maszynie jednoprocesorowej
10. Synchronizacja użycia zasobów, Semafory
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 10. użycia zasobów, Semafory 10.1 Problem producenta i konsumenta Zagadnienie kontroli użycia jednostek zasobu W systemie istnieje pula N jednostek
Laboratorium Systemów Operacyjnych. Ćwiczenie 4. Operacje na plikach
Laboratorium Systemów Operacyjnych Ćwiczenie 4. Operacje na plikach Wykonanie operacji wymaga wskazania pliku, na którym operacja ma zostać wykonana. Plik w systemie LINUX identyfikowany jest przez nazwę,
1. Kolejki komunikatów POSIX
Jędrzej Ułasiewicz IIAiR Politechnika Wrocławska 1 1. Kolejki komunikatów POSIX 1.1 Podstawowe własności Kolejki FIFO maja następujące wady: Komunikaty pozbawione struktury Nie można testować stanu kolejki
Obsługa plików. Systemy Operacyjne 2 laboratorium. Mateusz Hołenko. 25 września 2011
Obsługa plików Systemy Operacyjne 2 laboratorium Mateusz Hołenko 25 września 2011 Plan zajęć 1 Pliki w systemie Linux i-węzły deskryptory plików 2 Operacje na plikach otwieranie i zamykanie zapis i odczyt
Kolejki komunikatów POSIX
Jędrzej Ułasiewicz IIAiR Politechnika Wrocławska 1 Kolejki komunikatów POSIX 1 Wstęp Kolejka komunikatów Q posiada następujące własności: - Posiada określoną pojemność N komunikatów (długość bufora komunikatów).
Pliki. Funkcje tworzące pliki i operujące na nich opisane są w części 2 pomocy systemowej. Tworzenie i otwieranie plików:
Pliki W celu wykonania jakiejkolwiek operacji na istniejącym pliku, plik ten musi zostać otwarty, natomiast jeśli plik jeszcze nie istnieje, to musi zostać utworzony. Plik może zostać otwarty w trybie:
13. Kolejki komunikatów POSIX
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 13. POSIX 13.1 Wstęp (mailboxy, bufory) są bardzo popularnym mechanizmem komunikacji międzyprocesowej. Występują w prawie każdym systemie operacyjnym.
Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom).
Zarządzanie pamięcią Pamięć: stos i sterta Statyczny i dynamiczny przydział pamięci Funkcje ANSI C do zarządzania pamięcią Przykłady: Dynamiczna tablica jednowymiarowa Dynamiczna tablica dwuwymiarowa 154
Problem producentakonsumenta
Problem producentakonsumenta dr inż. Sławomir Samolej Katedra Informatyki i Automatyki Politechnika Rzeszowska Program przedmiotu oparto w części na materiałach opublikowanych na: http://wazniak.mimuw.edu.pl/
Obsługa plików Procesy
Obsługa plików Procesy Systemy Operacyjne 2 laboratorium Mateusz Hołenko 15 października 2011 Plan zajęć 1 Obsługa plików 1 Pliki w systemie Linux i-węzły deskryptory plików 2 Operacje na plikach 3 Operacje
Semafory, pamięć dzielona i kolejki komunikatów
Semafory, pamięć dzielona i kolejki komunikatów dr inż. Sławomir Samolej Katedra Informatyki i Automatyki Politechnika Rzeszowska Program przedmiotu oparto w części na materiałach opublikowanych na: http://wazniak.mimuw.edu.pl/
Podstawy programowania komputerów
Podstawy programowania komputerów Wykład 10: Sterowanie pamięcią w C Pamięć na stosie!każdy program napisany w języku C ma dostęp do dwóch obszarów pamięci - stosu i sterty, w których może być przechowywana
Wskaźniki. Przemysław Gawroński D-10, p marca Wykład 2. (Wykład 2) Wskaźniki 8 marca / 17
Wskaźniki Przemysław Gawroński D-10, p. 234 Wykład 2 8 marca 2019 (Wykład 2) Wskaźniki 8 marca 2019 1 / 17 Outline 1 Wskaźniki 2 Tablice a wskaźniki 3 Dynamiczna alokacja pamięci (Wykład 2) Wskaźniki 8
Przedmowa... 7. Wstęp...9. 1. Wprowadzenie podstawowe pojęcia... 15
Spis treści Przedmowa... 7 Wstęp...9 1. Wprowadzenie podstawowe pojęcia... 15 Programowanie systemowe 15 API i ABI 18 Standardy 20 Pojęcia dotyczące programowania w Linuksie 23 Początek programowania systemowego
Podstawy programowania. Wykład 6 Wskaźniki. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład 6 Wskaźniki Krzysztof Banaś Podstawy programowania 1 Adresy zmiennych Język C pozwala na operowanie adresami w pamięci stąd, między innymi, kwalifikowanie C jako języka relatywnie
Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.
Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,
Pamięć dzielona i kolejki komunikatów
Pamięć dzielona i kolejki komunikatów dr inż. Sławomir Samolej Katedra Informatyki i Automatyki Politechnika Rzeszowska Program przedmiotu oparto w części na materiałach opublikowanych na: http://wazniak.mimuw.edu.pl/
Tablice, funkcje - wprowadzenie
Tablice, funkcje - wprowadzenie Przemysław Gawroński D-10, p. 234 Wykład 5 25 marca 2019 (Wykład 5) Tablice, funkcje - wprowadzenie 25 marca 2019 1 / 12 Outline 1 Tablice jednowymiarowe 2 Funkcje (Wykład
eć dzielona standardu POSIX
c Wies law P laczek 25 6 Pami eć dzielona standardu POSIX 6.1 Wprowadzenie Pami eć dzielona inaczej wspólna (ang. shared memory) jestzasobemumożliwiaj acym najszybszy sposób komunikacji mi edzy procesami
Podstawy programowania w języku C++
Podstawy programowania w języku C++ Część ósma Zmienne wskaźnikowe koncepcja, podstawowe zastosowania Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie
Pamięć współdzielona
Pamięć współdzielona Systemy Operacyjne 2 Piotr Zierhoffer 17 listopada 2011 Mechanizmy IPC IPC Inter Process Communication kolejki komunikatów, pamięć współdzielona semafory polecenia bash: ipcs, ipcrm
Łącza nienazwane(potoki) Łącza nienazwane mogą być używane tylko pomiędzy procesami ze sobą powiązanymi.
Przykład: $ ls more Łącza nienazwane(potoki) Łącza nienazwane mogą być używane tylko pomiędzy procesami ze sobą powiązanymi. Tworzenie łącza #include int pipe(int filedes[2]); Przykład: int
Struktury czyli rekordy w C/C++
Struktury czyli rekordy w C/C++ Wprowadzenie do programowania w języku C struktury. pola bitowe, unie Struktury (rekordy) są złożonymi zmiennymi, składającymi się z elementów różnych typów zwanych polami,
Wskaźniki. Informatyka
Materiały Wskaźniki Informatyka Wskaźnik z punktu widzenia programisty jest grupą komórek pamięci (rozmiar wskaźnika zależy od architektury procesora, najczęściej są to dwa lub cztery bajty ), które mogą
4. Tablica dwuwymiarowa to jednowymiarowa tablica wskaźników do jednowymiarowych tablic danego typu.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 6. Tablice znakowe o dwóch indeksach, przekazywanie tablic do funkcji cd., dynamiczna alokacja pamięci, funkcje przetwarzające ciągi
wykład III uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - zarządzanie pamięcią, struktury,
, Programowanie, uzupełnienie notatek: dr Jerzy Białkowski , 1 2 3 4 , Wczytywanie liczb , Wczytywanie liczb 1 #include 2 #include < s t d l i b. h> 3 4 int main ( ) { 5 int rozmiar, numer
J. Ułasiewicz Łącza nienazwane, nazwane, select 1
J. Ułasiewicz Łącza nienazwane, nazwane, select 1 4. Komunikacja pomiędzy procesami przez łącza nienazwane i nazwane Łącza nienazwane (ang. Unnamed Pipes) i nazwane (ang. Unnamed Pipes) - jedna z historycznie
4. Komunikacja pomiędzy procesami przez łącza nienazwane i nazwane
Jędrzej Ułasiewicz Łącza nienazwane, nazwane, funkcja select 1 4. Komunikacja pomiędzy procesami przez łącza nienazwane i nazwane Łącza nienazwane (ang. Unnamed Pipes) i nazwane (ang. Named Pipes) - jedna
Wykład 10 10. Tryby adresowania i modele pamięci adres_logiczny = segment : offset. 10.1. Tryb adresowania rzeczywistego
Wykład 10 10. Tryby adresowania i modele pamięci 10.1. Tryb adresowania rzeczywistego 10.2. Tryb adresowania wirtualnego 10.3. Interpretacja pamięci 10.4. Stronicowanie pamięci 10.5. Modele pamięci 10.6.
Spis treści WSKAŹNIKI. DYNAMICZNY PRZYDZIAŁ PAMIĘCI W JĘZYKU C. Informatyka 2. Instrukcja do pracowni specjalistycznej z przedmiotu
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 2 Kod przedmiotu: ES1C300 016 (studia stacjonarne)
Semafor ustaw_semafor(key_t nazwa, int start); Semafor usun_semafor(semafor sem); void signal(semafor sem); void wait(semafor sem);
Semafory przypomnienie semafory służą ochronie dostępu procesów do sekcji krytycznej; na semaforach dostępne są dwie operacje: podniesienie semafora signal, opuszczenie semafora wait opuszczony semafor
Komunikacja mi edzyprocesowa (IPC)
Komunikacja miedzyprocesowa (IPC) Procesy tworzone w ramach systemu operacyjnego moga sie komunikować. Jeżeli duża aplikacja jest budowana z wielu wspó lpracuj acych procesów, to ta komunikacja może być
// Liczy srednie w wierszach i kolumnach tablicy "dwuwymiarowej" // Elementy tablicy są generowane losowo #include <stdio.h> #include <stdlib.
Wykład 10 Przykłady różnych funkcji (cd) - przetwarzanie tablicy tablic (tablicy "dwuwymiarowej") - sortowanie przez "selekcję" Dynamiczna alokacja pamięci 1 // Liczy srednie w wierszach i kolumnach tablicy
Uzupełnienie dot. przekazywania argumentów
Uzupełnienie dot. przekazywania argumentów #include #include struct nowa { int f; char line[20000]; int k; } reprezentant; int main() { void funkcja7( struct nowa x); reprezentant.k=17;
KURS C/C++ WYKŁAD 6. Wskaźniki
Wskaźniki KURS C/C++ WYKŁAD 6 Każda zmienna ma unikalny adres wskazujący początkowy obszar pamięci zajmowany przez tą zmienną. Ilość pamięci zajmowanej przez zmienną zależy od typu zmiennej. Adres można
Poniższe funkcje opisane są w 2 i 3 części pomocy systemowej.
Procesy Proces (zwany też zadaniem) jest jednostką aktywną, kontrolowaną przez system operacyjny i związaną z wykonywanym programem. Proces ma przydzielone zasoby typu pamięć (segment kodu, segment danych,
Język ANSI C. część 11. Jarosław Gramacki Instytut Informatyki i Elektroniki
Wpisy zaliczeń: 18.02.2011, godz. 12:00, sala 503 Język ANSI C część 11 tablice 2D, alokacja pamięci Jarosław Gramacki Instytut Informatyki i Elektroniki Było: Alokacja pamięci, stos i sterta Stałe, zmienne
Programowanie w języku C++
Programowanie w języku C++ Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi
1. Kolejki komunikatów POSIX
Jędrzej Ułasiewicz IIAiR Politechnika Wrocławska 1 1. Kolejki komunikatów POSIX 1.1 Podstawowe własności Kolejki FIFO maja następujące wady: Komunikaty pozbawione struktury Nie można testować stanu kolejki
dynamiczny przydział pamięci calloc() memset() memcpy( ) (wskaźniki!! )
dynamiczny przydział pamięci malloc() free() realloc() calloc() memset() memcpy( ) mempcpy( ) memmove() (wskaźniki!! ) 1 dynamiczny przydział pamięci void * memccpy (void * to, void * from, int c, int
1. Procesy i współbieżność
1. Procesy i współbieżność Opracował: Sławomir Samolej Politechnika Rzeszowska, Katedra Informatyki i Automatyki, Rzeszów, 2013. 1.1. Wprowadzenie Proces to przestrzeń adresowa i pojedynczy wątek sterujący,
Wskaźniki. Programowanie Proceduralne 1
Wskaźniki Programowanie Proceduralne 1 Adresy zmiennych Sterta 1 #include 2 3 int a = 2 ; 4 5 int main ( ) 6 { 7 int b = 3 ; 8 9 printf ( " adres zmiennej a %p\n", &a ) ; 10 printf ( " adres
Procesy. Systemy Operacyjne 2 laboratorium. Mateusz Hołenko. 9 października 2011
Procesy Systemy Operacyjne 2 laboratorium Mateusz Hołenko 9 października 2011 Plan zajęć 1 Procesy w systemie Linux proces procesy macierzyste i potomne procesy zombie i sieroty 2 Funkcje systemowe pobieranie
Model pamięci w systemie Linux
Model pamięci w systemie Linux Patryk Konopka Paweł Piecyk Wydział Fizyki i Informatyki Stosowanej 2013.05.08 Plan prezentacji 1. Tryb rzeczywisty i segmentowy model pamięci 2. Tryb chroniony i płaski
Spis treści JĘZYK C - WSKAŹNIKI, DYNAMICZNY PRZYDZIAŁ PAMIĘCI. Informatyka 2. Instrukcja do pracowni specjalistycznej z przedmiotu
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 2 Kod przedmiotu: ES1D300 017 (studia stacjonarne)
J. Ułasiewicz Łącza nienazwane, nazwane, select 1
J. Ułasiewicz Łącza nienazwane, nazwane, select 1 4. Komunikacja pomiędzy procesami przez łącza nienazwane i nazwane Łącza nienazwane (ang. Unnamed Pipes) i nazwane (ang. Unnamed Pipes) - jedna z historycznie
Spis treści WSKAŹNIKI. DYNAMICZNY PRZYDZIAŁ PAMIĘCI W JĘZYKU C. Informatyka 2. Instrukcja do pracowni specjalistycznej z przedmiotu
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 2 Kod przedmiotu: ES1C300 016 (studia stacjonarne)
Języki i metody programowania I
Języki i metody programowania I dr inż. Piotr Szwed Katedra Informatyki Stosowanej C2, pok. 403 e-mail: pszwed@agh.edu.pl http://home.agh.edu.pl/~pszwed/ Aktualizacja: 2013-01-24 10. Dynamiczna alokacja
Podstawy programowania w języku C++
Podstawy programowania w języku C++ Część ósma Zmienne wskaźnikowe koncepcja, podstawowe zastosowania Wersja skrócona, tylko C++ Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski
Podział programu na moduły
Materiały Podział programu na moduły Informatyka Szczegółowe informacje dotyczące wymagań odnośnie podziału na moduły: http://www.cs.put.poznan.pl/wcomplak/bfiles/c_w_5.pdf Podział programu na moduły pozwala
Wskaźniki w C. Anna Gogolińska
Wskaźniki w C Anna Gogolińska Zmienne Zmienną w C można traktować jako obszar w pamięci etykietowany nazwą zmiennej i zawierający jej wartość. Przykład: kod graficznie int a; a a = 3; a 3 Wskaźniki Wskaźnik
Zarządzanie pamięcią w systemie operacyjnym
Zarządzanie pamięcią w systemie operacyjnym Cele: przydział zasobów pamięciowych wykonywanym programom, zapewnienie bezpieczeństwa wykonywanych procesów (ochrona pamięci), efektywne wykorzystanie dostępnej
DYNAMICZNE PRZYDZIELANIE PAMIECI
DYNAMICZNE PRZYDZIELANIE PAMIECI Pamięć komputera, dostępna dla programu, dzieli się na cztery obszary: kod programu, dane statyczne ( np. stałe i zmienne globalne programu), dane automatyczne zmienne
1.1 Przykład znajdowanie liczb pierwszych leżących w zadanym zakresie, tryb bezpołączeniowy
1.1 Przykład znajdowanie liczb pierwszych leżących w zadanym zakresie, tryb bezpołączeniowy Należy znaleźć liczby pierwsze w zakresie od 2 do N na P komputerach. Zarządca pocz[i], kon[i] wykonawca 1 wykonawca
1. Utwórz blok pamięci współdzielonej korzystając z poniższego kodu:
6 Pamięć współdzielona 6.1 Dostęp do pamięci współdzielonej 1. Utwórz blok pamięci współdzielonej korzystając z poniższego kodu: #include #include #include #include
Wskaźniki i dynamiczna alokacja pamięci. Spotkanie 4. Wskaźniki. Dynamiczna alokacja pamięci. Przykłady
Wskaźniki i dynamiczna alokacja pamięci. Spotkanie 4 Dr inż. Dariusz JĘDRZEJCZYK Wskaźniki Dynamiczna alokacja pamięci Przykłady 11/3/2016 AGH, Katedra Informatyki Stosowanej i Modelowania 2 Wskaźnik to
Temat zajęć: Obsługa systemu plików.
Temat zajęć: Obsługa systemu plików. Czas realizacji zajęć: 90 min. Zakres materiału, jaki zostanie zrealizowany podczas zajęć: I. Operacje na plikach zwykłych. Tworzenie i otwieranie plików, deskryptory
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Inżynierii Elektrycznej i Komputerowej Politechnika Krakowska programowanie usług sieciowych IPC Systemu V laboratorium: 08 Kraków, 2014 08. Programowanie Usług Sieciowych
Wskaźniki. nie są konieczne, ale dają językowi siłę i elastyczność są języki w których nie używa się wskaźników typ wskaźnikowy typ pochodny:
Wskaźniki nie są konieczne, ale dają językowi siłę i elastyczność są języki w których nie używa się wskaźników typ wskaźnikowy typ pochodny: typ nw; /* definicja zmiennej nw typu typ */ typ *w_nw; /* definicja
ZASADY PROGRAMOWANIA KOMPUTERÓW
POLITECHNIKA WARSZAWSKA Instytut Automatyki i i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW Język Język programowania: C/C++ Środowisko programistyczne: C++Builder 6 Wykład 9.. Wskaźniki i i zmienne dynamiczne.
Stałe, tablice dynamiczne i wielowymiarowe
Stałe, tablice dynamiczne i wielowymiarowe tylko do odczytu STAŁE - CONST tablice: const int dni_miesiaca[12]=31,28,31,30,31,30,31,31,30,31,30,31; const słowo kluczowe const sprawia, że wartość zmiennej
Wstęp do Programowania, laboratorium 02
Wstęp do Programowania, laboratorium 02 Zadanie 1. Napisać program pobierający dwie liczby całkowite i wypisujący na ekran największą z nich. Zadanie 2. Napisać program pobierający trzy liczby całkowite
Laboratorium z systemów operacyjnych. System plików - funkcje systemowe. Anna Wojak
Laboratorium z systemów operacyjnych System plików - funkcje systemowe Anna Wojak 1 Zagadnienia do samodzielnego przygotowania: podstawowe polecenia linux, podstawy programowania w jezyku C, deskryptor
Futex (Fast Userspace Mutex) Łukasz Białek
Futex (Fast Userspace Mutex) Łukasz Białek Futex informacje podstawowe Stworzony w 2002 roku przez Hubertusa Franke, Matthew Kirkwooda, Ingo Molnára i Rustiego Russella. Jest mechanizmem w Linuxie, który
3. Identyfikacja. SKŁADNIA #include <sys/socket.h> int getpeername(int socket, struct sockaddr *addr, int *addrlen);
3.1. Określanie adresu połączonego hosta 3. #include int getpeername(int socket, struct sockaddr *addr, int *addrlen); Funkcja getpeername dostarcza adresu drugiej strony połączenia. Parametry:
Programowanie na poziomie sprzętu. Tryb chroniony cz. 1
Tryb chroniony cz. 1 Moduł zarządzania pamięcią w trybie chronionym (z ang. PM - Protected Mode) procesorów IA-32 udostępnia: - segmentację, - stronicowanie. Segmentacja mechanizm umożliwiający odizolowanie
1.1 Definicja procesu
1 Procesy pojęcia podstawowe 1 1.1 Definicja procesu Proces jest czymś innym niż program. Program jest zapisem algorytmu wraz ze strukturami danych na których algorytm ten operuje. Algorytm zapisany bywa
Wątki. S. Samolej: Wątki, producent - konsument 1
Wątki dr inż. Sławomir Samolej Katedra Informatyki i Automatyki Politechnika Rzeszowska Program przedmiotu oparto w części na materiałach opublikowanych na: http://wazniak.mimuw.edu.pl/ oraz na materiałach
Temat zajęć: Tworzenie i obsługa wątków.
Temat zajęć: Tworzenie i obsługa wątków. Czas realizacji zajęć: 180 min. Zakres materiału, jaki zostanie zrealizowany podczas zajęć: Tworzenie wątków, przekazywanie parametrów do funkcji wątków i pobieranie
Temat zajęć: Obsługa łączy komunikacyjnych
Temat zajęć: Obsługa łączy komunikacyjnych Czas realizacji zajęć: 180 min. Zakres materiału, jaki zostanie zrealizowany podczas zajęć: I. Łącza komunikacyjne Potoki nienazwane, potoki nazwane, przykłady
Języki i metodyka programowania. Wskaźniki i tablice.
Wskaźniki i tablice. Zmienna1 Zmienna2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Zmienna to fragment pamięci o określonym rozmiarze identyfikowany za pomocą nazwy, w którym może być przechowywana
Pomoc dla użytkowników systemu asix 6 i 7. Drajwer Bufor. Dok. Nr PLP6021 Wersja:
Pomoc dla użytkowników systemu asix 6 i 7 www.asix.com.pl Drajwer Bufor Dok. Nr PLP6021 Wersja: 2012-03-16 ASKOM i asix to zastrzeżone znaki firmy ASKOM Sp. z o. o., Gliwice. Inne występujące w tekście
9. Problem wzajemnego wykluczania i sekcji krytycznej
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 9. Problem wzajemnego wykluczania i sekcji krytycznej 9.1 Przeplot i współużywalność zasobów Wyróżniamy dwa rodzaje zasobów: 1. Zasoby współużywalne
Podstawy Programowania. Zmienne dynamiczne, struktury, moduły programowe
Podstawy Programowania Wykład VII Zmienne dynamiczne, struktury, moduły programowe Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: zmienne dynamiczne, tablice dynamiczne, struktury, wskaźniki
Tablice, funkcje, wskaźniki - wprowadzenie
Tablice, funkcje, wskaźniki - wprowadzenie Przemysław Gawroński D-10, p. 234 Wykład 4 19 listopada 2018 (Wykład 4) Tablice, funkcje, wskaźniki - wprowadzenie 19 listopada 2018 1 / 37 Outline 1 Tablice
Globalne / Lokalne. Wykład 15. Podstawy programowania (język C) Zmienne globalne / lokalne (1) Zmienne globalne / lokalne (2)
Podstawy programowania (język C) Globalne / Lokalne Wykład 15. Tomasz Marks - Wydział MiNI PW -1- Tomasz Marks - Wydział MiNI PW -2- Zmienne globalne / lokalne (1) int A, *Q; // definicja zmiennych globalnych
Schematy zarzadzania pamięcia
Schematy zarzadzania pamięcia Segmentacja podział obszaru pamięci procesu na logiczne jednostki segmenty o dowolnej długości. Postać adresu logicznego: [nr segmentu, przesunięcie]. Zwykle przechowywana
Gniazda BSD. komunikacja bezpołączeniowa
Gniazda BSD komunikacja bezpołączeniowa Użycie gniazd w transmisji bezpołączeniowej socket() socket() bind() bind() STOP! recv() żądanie send() send() odpowiedź recv() STOP! recvfrom() #include
Zaawansowane programowanie w języku C++ Zarządzanie pamięcią w C++
Zaawansowane programowanie w języku C++ Zarządzanie pamięcią w C++ Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
Ćwiczenie 4. Obsługa plików. Laboratorium Podstaw Informatyki. Kierunek Elektrotechnika. Laboratorium Podstaw Informatyki Strona 1.
Laboratorium Podstaw Informatyki Strona 1 Laboratorium Podstaw Informatyki Kierunek Elektrotechnika Ćwiczenie 4 Obsługa plików Kraków 2010 Laboratorium Podstaw Informatyki Strona 2 Obsługa plików Zanim
Laboratorium 6: Dynamiczny przydział pamięci. dr inż. Arkadiusz Chrobot dr inż. Grzegorz Łukawski
Laboratorium 6: Dynamiczny przydział pamięci dr inż. Arkadiusz Chrobot dr inż. Grzegorz Łukawski 15 maja 2015 1. Wprowadzenie Instrukcja poświęcona jest dynamicznemu przydziałowi i zwalnianiu pamięci w
Lab 9 Podstawy Programowania
Lab 9 Podstawy Programowania (Kaja.Gutowska@cs.put.poznan.pl) Wszystkie kody/fragmenty kodów dostępne w osobnym pliku.txt. Materiały pomocnicze: Wskaźnik to specjalny rodzaj zmiennej, w której zapisany
Tablice w argumentach funkcji. Tablicy nie są przekazywane po wartości Tablicy są przekazywane przez referencje lub po wskaźniku
Tablice w argumentach funkcji Tablicy nie są przekazywane po wartości Tablicy są przekazywane przez referencje lub po wskaźniku Przykład: char str[] = abcdef ;... fun(str); // argument faktyczny to id
4.2 Sposób korzystania z l acza
4.2 Sposób korzystania z l acza 31 Opis programu: Program procesu potomnego (linie 16 19) jest taki sam, jak w przyk ladzie na listingu 3. W procesie macierzystym nastepuje z kolei przekierowanie standardowego
SUMA KONTROLNA (icmp_cksum) NUMER KOLEJNY (icmp_seq)
Program my_ping: wysłanie komunikatu ICMP z żądaniem echa Struktura icmp (plik netinet/ip_icmp.h) 0 7 8 15 16 31 TYP (icmp_type) KOD (icmp_code) IDENTYFIKATOR (icmp_id) SUMA KONTROLNA (icmp_cksum) NUMER
Procesy pojęcia podstawowe. 1.1 Jak kod źródłowy przekształca się w proces
Procesy pojęcia podstawowe 1 1.1 Jak kod źródłowy przekształca się w proces W języku wysokiego poziomu tworzy się tak zwany kod źródłowy który po zapisaniu będzie plikiem z programem źródłowym. Plik źródłowy
Problemy czytelników i pisarzy oraz 5 ucztujących filozofów
Problemy czytelników i pisarzy oraz 5 dr inż. Sławomir Samolej Katedra Informatyki i Automatyki Politechnika Rzeszowska Program przedmiotu oparto w części na materiałach opublikowanych na: http://wazniak.mimuw.edu.pl/
Materiał uzupełniający do ćwiczen z przedmiotu: Programowanie w C ++ - ćwiczenia na wskaźnikach
Materiał uzupełniający do ćwiczen z przedmiotu: Programowanie w C ++ - ćwiczenia na wskaźnikach 27 kwietnia 2012 Wiedząc, że deklarowanie typu rekordowego w języku C/ C++ wygląda następująco: struct element
Struktury. Przykład W8_1
Struktury Struktury pozwalają na grupowanie zmiennych różnych typów pod wspólną nazwą. To istotnie ułatwia organizacje danych, które okazują się w jednym miejscu kodu programu. To jest bardzo ważne dla
Systemy operacyjne III
Systemy operacyjne III WYKŁAD Jan Kazimirski Pamięć wirtualna Stronicowanie Pamięć podzielona na niewielki bloki Bloki procesu to strony a bloki fizyczne to ramki System operacyjny przechowuje dla każdego
J. Ułasiewicz Programowanie aplikacji współbieżnych 1
J. Ułasiewicz Programowanie aplikacji współbieżnych 1 1 1.1 Prosty przykład zakleszczenia (ang. Mexican standoff) W systemach w których wykonywane jest wiele współbieżnych procesów które operują na wspólnych
Wstęp do programowania 1
Wstęp do programowania 1 Struktury Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Struktura dla dat - przykład #include struct Date { int y; short m; short
Język ANSI C tablice wielowymiarowe
Język ANSI C tablice wielowymiarowe Gdy tablica wielowymiarowa jest parametrem funkcji, to w standardzie ANSI C konieczne jest podanie wszystkich wymiarów poza pierwszym. Przykład. Napisać program wczytujący
Literatura uzupełniająca: W. Richard Stevens, Programowanie zastosowań sieciowych w systemie Unix WNT 1998
Gniazda BSD Literatura uzupełniająca: W. Richard Stevens, Programowanie zastosowań sieciowych w systemie Unix WNT 1998 socket() Użycie gniazd w transmisji połączeniowej bind() listen() socket() accept()