Programowanie mikroprocesorów w systemie Arduino. Instrukcja do ćwiczenia laboratoryjnego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Programowanie mikroprocesorów w systemie Arduino. Instrukcja do ćwiczenia laboratoryjnego"

Transkrypt

1 Cel ćwiczenia Programowanie mikroprocesorów w systemie Arduino Instrukcja do ćwiczenia laboratoryjnego Patryk Strankowski, Jarosław Guziński, Marcin Morawiec, Arkadiusz Lewicki ver r. Celem ćwiczenia jest zapoznanie się z platformą programowania Arduino oraz systemem mikroprocesorowym Intel Galileo. Wprowadzenie Arduino jest platformą oprogramowania przeznaczoną dla komputerowych systemów wbudowanych wykorzystujących mikroprocesory zamontowane na pojedynczym obwodzie drukowanym. Oprogramowanie i rozwiązania sprzętowe są typu Open-Source a źródła dostępne są w internecie. Platforma Arduino jest przeznaczona do szybkiego programowania metod sterowania, bez konieczności dokładnej znajomości używanego mikrokontrolera. Zazwyczaj programowanie nowego mikrokontrolera jest czasochłonne, z uwagi na różnice w architekturze, czy też inne oznaczenia elementów, np. liczników lub portów wejść-wyjść, które muszą być dokładnie znane, aby umożliwić prawidłowe programowanie. Platforma Arduino służy przede wszystkim do przygotowania aplikacji, które nie wymagają szybkich reakcji procesora. Układ programuje się w języku C, stosując zmienne, które na każdym procesorze są oznaczone tak same lub bardzo podobne. Platforma sprzętowa używana na ćwiczeniach to Intel Galileo, która wyposażona jest w 32 bitowy procesor klasy Pentium typu Intel Quark SoC X1000 rys.1. Rys. 1. Platforma sprzętowa Intel Galileo Platforma Intel Galileo oferuje możliwość rozbudowania o układy peryferyjne, np. łączności WiFi, wyświetlacz LCD, moduł GSM lub sterownik silnika krokowego. Peryferia instalowane są jako dodatkowe płytki, tzw. Arduino-Shield, które dołączane są do wejść platformy Galileo (czerwone prostokąty na rys. 1). 1

2 Układ Galileo programowany jest w języku C, jednakże struktura programu jest nieznacznie zmieniona. Główna funkcja main() jest zastąpiona funkcją {}, która działa jak pętla nieskończona. Wszystkie deklaracje zmiennych, portów, timerów itp. powinny być umieszczone w funkcji {}. Funkcja ta jest jednokrotnie wykonywana przy uruchomieniu programu mikrokontrolera. Poza tymi zmianami, składnia i polecenia są identyczne jak w języku C. Dokumentacja programowania, dokładny opis składni oraz wszystkie wspierane funkcje są dostępne na stronie: 1. Pierwszy przykład Działanie platformy Galileo wymaga podłączenia dedykowanego zasilacza oraz kabla mikro USB do komputera z zainstalowanym oprogramowaniem Arduiono. UWAGA! Płytkę Galileo należy NAJPIERW ZASILANIĆ A DOPIERO NASTĘPNIE PODŁĄCZYĆ DO PORTU USB. Inna kolejność podłączenia może prowadzić do uszkodzenia płytki! Aby sprawdzić działanie platformy Galileo, należy skompilować i załadować pierwszy program. Potrzebne będzie do tego: IDE (z ang. Integrated Development Environment) Arduino - rys. 2. Rys. 2. Okno programu IDE Arduino Program podstawowy realizujący miganie diody LED jest dostępny pod: File -> Examples->Basics->Blink. Kod programu jest następujący: 2

3 // Deklaracja zmiennych int led = 13; // Oznaczenie tzw. Cyfrowego portu. PORT 13 to dioda na płytce // Deklaracja portu. Funkcja będzie raz przetwarzana { } //Port jako wyjście pinmode(led, OUTPUT); // Funkcja główna loop { digitalwrite(led, HIGH); // Włączaj diodę-> PORT = HIGH delay(1000); // Delay jest podany w ms, czyli 1s digitalwrite(led, LOW); // Wyłączaj diodę ->PORT = LOW delay(1000); // Czekaj sekundę } Do kompilacji przykładu należy nacisnąć (skrót Ctr+R). Aby załadować program do procesora należy: sprawdzić czy ustawiony jest poprawny port: Tools ->Serial Port -> COM, sprawdzić czy ustawiona jest prawidłowa płytka Galileo: Tools -> Board -> Intel Galileo. Następnie program można załadować naciskając (skrót Ctr+U). O pomyślniej kompilacji i załadowaniu programu do procesora informuje konsola w dolnej części środowiska Arduino oraz migająca dioda na płytce Galileo. 3

4 2. Ustawianie częstotliwości migania diody za pomocą potencjometru Zadanie polega na przygotowaniu programu od odczytu wartości analogowej z portu A0. Należy zaimplementować procedurę (zgodnie z algorytmem pokazanym na rys. 3), w której częstotliwość migania diody ma być proporcjonalna do nastawy potencjometru podłączonego na wejście analogowe A0. Porty cyfrowe należy zadeklarować poleceniem pinmode(led, OUTPUT). W przypadku portów analogowych nie jest konieczna taka deklaracja. Do programowania będą potrzebne następujące zmienne i funkcje programu 1 : int sensorpin=a0; int analogread(sensorpin); pinmode(led, OUTPUT); digitalwrite(led, HIGH); delay(ms); Wejście analogowe Odczyt wejścia analogowego Deklaracja portu, jako wyjścia (nie jest wymagane przy A0) Wyjście portu 1= HIGH, 0= LOW Opóźnienie w milisekundach zmiennych ADC0, LEDPORT Wyczytaj wartość z analogowego wejścia Włączaj diodę Czekaj proporcjonalnie wartości analogowej Wyłączaj diodę Czekaj proporcjonalnie wartości analogowej Rys. 3. Procedura U~f_led 1 Opisy poleceń są dostępne pod: 4

5 3. Modulacja szerokości impulsów Kolejne zadanie polega na generowaniu napięcia na wyjściu portu mikrokontrolera za pomocą modulacji szerokości impulsów (ang. PWM Pulse Width Modulation). Nie wszystkie wyjścia obsługują funkcje PWM. Należy sprawdzić na jakich portach dostępna jest funkcja modulacji i zainicjalizować odpowiedni port. Schemat oraz opis portów jest podany w załączniku. Zmiana napięcia jest widoczna przez zmianę jasności diody LED podłączonej do sterowanego wyjścia. zmiennych ADC0, LEDPORT Do realizacji zadania potrzebna będzie funkcja: analogwrite(led, val); Generowanie napięcia przez PWM dla określonego wyjściu Wyczytaj Wczytaj wartość wartość z analogowego analogowego wejścia wejścia Wydaj wartość do funkcji analogwrite() Rys. 4. Procedura PWM 5

6 4. Wyznaczenie pozycje potencjometru za pomocą czterech diod Celem zadania jest wykorzystanie czterech diod LED do wizualizacji wartości napięcia wejścia analogowego. Diody mają być podzielone na cztery poziomy, np. 0% 25 %, 26%... 50%, 51%... 75% oraz 76%...100%. Struktura programu jest pokazana na rys.5. zmiennych ADC0, LEDPORT Wczytaj wartość z analogowego wejścia Wyłączaj 1. diode Nie Tak > 0? Włączaj 1. diode Wyłączaj 2. diode Nie Tak > 25 %? Włączaj 2. diode Wyłączaj 3. diode Nie Tak > 50 %? Włączaj 3. diode Wyłączaj 4. diode Nie Tak > 75 %? Włączaj 4. diode Rys. 5. Wartość wejścia analogowego przedstawiona za pomocą diod LED 6

7 5. Sterowanie diodą za pomocą wejścia cyfrowego Do realizacji ćwiczenia trzeba użyć płytki rozszerzeń (schemat w załączniku). W Jeden port Arduino zainicjalizowany ma być jako wyjście a drugi jako wejście. Wyjściowy port należy ustawić na wysoki poziom. Za pomocą przewodu należy ręcznie połączyć port wyjściowy z portem wejściowym. Przy takiej konfiguracji stan portu wyjściowego będzie mógł być odczytywany na porcie wejściowym. Stan portu wejściowego ma być wystawiany na diodzie LED. Procedura przedstawiona jest na rys.6. zmiennych ADC0, LEDPORT Do realizacji zadania potrzebna będzie funkcja: pinmode(in, INPUT); Deklaracja portu jako wejście Wyczytaj Wczytaj wartość wartość z wejścia z analogowego cyfrowego wejścia Włączaj diode Rys. 6. Procedura wejścia i wyjścia cyfrowego 7

8 6. Licznik czterobitowy Zadanie polega na programowaniu licznika czterobitowego, którego wartość ma być wyświetlana na czterech diod LED umieszczonych na płytce rozszerzeń. Licznik ma pracować w pętli głównej programu i zliczać liczby od 0 do 15. Prędkość zliczania ma być ustawiana być za pomocą potencjometru. Realizacja zadania wymaga zrozumienia konwersji zmiennej typu integer (zmienna całkowita) na odpowiednią liczbę binarną. W języku C zmienne integer oznaczane są słowem kluczowym int i w systemie Arduino są zapisywane jako 16-bitowa liczba binarna. Przykład: int var = 1537; var jako liczba binarna to: Do opracowania programu potrzebne jest zapoznanie się ze sposobem maskowania bitów. artykuł można o tym przeczytać, np. w artykule: zmiennych ADC0, LEDPORT Wyczytaj Wczytaj wartość wartość z analogowego analogowego wejścia wejścia Czekaj proporcjonalnie do wartości analogowej Proponowany algorytm rys. 7 programu pokazano na Licznik +1 Licznik > 15? Tak Licznik=0 Wydaj wartość licznika zapisując go do stanów diod Rys. 7. Procedura licznika czterobitowego 8

9 7. Podgląd pozycji potencjometru za pomocą terminala PuTTy i komunikacji szeregowej Następne zadanie polega na opracowaniu programu do odczytu stanu wejścia analogowego z wykorzystaniem komunikacji szeregowej USB PC i terminala portu szeregowego. Do komunikacji terminalowej będzie potrzebne wejście USB oraz program PuTTy (wybrany tryb połączenia Serial). Można wykorzystać też wbudowany do Arduino monitor portu szeregowego (menu Narzędzia, skrót Ctrl_Shift+M), Uwaga - jednoczesne korzystanie z USB w dwóch programach (Putty i Arduino) nie jest możliwe. Algorytm programu przedstawiono na rys. 8. Do realizacji zadania potrzebne są funkcje: zmiennych zmiennych LEDPORT Baudrate, LEDPORT ADC0 Serial(baud); Serial.begin(baudrate); Inicjalizacja portu szeregowego, (baudrate to prędkość transmisji, np. 9600) Serial.available() Wynik=1 jeśli odebrany został znak z portu szeregowego, jeśli nie to wynik=0 Serial.print(c[i]) Wysłanie znaku na port szeregowy Serial.println((char)13); Znak Enter, nowa linia Wczytaj wartość z analogowego wejścia i zapisz Wyslji wartość do terminału Czekaj 500ms Rys. 8. Procedura podglądu pozycji potencjometru w terminalu 9

10 8. Ustawianie jasności diody za pomocą terminala PuTTy i komunikacji szeregowej Podobnie jak w punkcie 3. jasność diody LED ma być ustawiona z wykorzystaniem funkcji PWM oraz komunikacji szeregowej. Za pomocą programu PuTTy wczytany ma być jeden znak ASCII (z ang. American Standard Code for Information Interchange) do procesora, którego wartość ma wpływać na jasność diody LED. Wartości znaków ASCII jest podana w załączniku. Struktura programu jest przedstawiona na rys.9. zmiennych zmiennych LEDPORT Baudrate, LEDPORT ADC0 Do realizacji zadania potrzebna będzie funkcja: Serial.read(); Odczyt znaku (jednego bajtu) z portu szeregowego Serial(baud); Wczytaj wartość znaku ASCII z terminału Wyslji wartość napięcia na diode Rys. 9. Procedura PWM przez terminal 10

11 9. Ustawianie częstotliwości migania diody za pomocą terminala PuTTy i komunikacji szeregowej Następne zadanie polega na opracowaniu programu do sterowania częstotliwością migania diody LED z wykorzystaniem komunikacji szeregowej USB PC i terminala portu szeregowego. Podobnie jak w punkcie 2 należy zaimplementować procedurę, która będzie sterowała częstotliwością migania diody. W tym przypadku należy odczytać cztery cyfry (liczba ms), które odpowiadają okresowi migania diody. Algorytm programu przedstawiono na rys. 10. Do realizacji zadania potrzebne są funkcje: zmiennych zmiennych LEDPORT LEDPORT Baudrate Serial(baud); Serial.begin(baudrate); Inicjalizacja portu szeregowego, (baudrate to prędkość transmisji, np. 9600) pinmode(led, OUTPUT); Inicjalizacja wyjścia cyfrowego o numerze led Serial.available() Wynik=1 jeśli odebrany został znak z portu szeregowego, jeśli nie to wynik=0 Serial.print(c[i]) Wysłanie znaku na port szeregowy atoi(c) Konwersja znaku ASCII na liczbę całkowitą digitalwrite(led, HIGH) Wyjście portu 1= HIGH, 0= LOW delay(delay_ms) Opóźnienie w milisekundach Serial.println((char)13); Znak Enter, nowa linia Serial.read(); Odczyt znaku (jednego bajtu) z portu szeregowego Tak Nie Jest znak? Tak Zapisz byte i przepisz jako char oraz wyślij do terminalu Czwarty znak? Tak Nie Przekształć znaki do jednego int, dodaj Enter do terminału Jest znak? Nie Włącz diodę Czekaj ms Wyłącz diodę Czekaj ms Rys. 10. Procedura T_Led sterowania diodą LED przez terminal PuTTy i komunikacji szeregowej 11

12 10. Kalkulator czterobitowy Zadanie polega na opracowaniu programu kalkulatora czterobitowego. Program ma działac tak, że przez łącze szeregowe maja być wysyłane dwie liczby oraz operator. Wynik operacji należy zwrócić do programu terminala oraz wyświetlić za pomocą czterech diod LED. Struktura programu przedstawiona jest na rys.11. zmiennych zmiennych LEDPORT Baudrate, LEDPORT ADC0 Czekaj na znak Serial(baud); Wczytaj drugą liczbe z terminału i wydaj ją do terminału Operator Czekaj na znak Wczytaj pierwszą liczbe z terminału i wydaj ją do terminału + - Dodaj liczby Odejmij liczby Czekaj na znak * Mnóż liczby Wczytaj i wydaj operanda z terminału / Dziel liczby Wyslji wynik do terminału oraz do wyjścia diod Rys. 11. Procedura kalkulatora czterobitowego 12

13 Załącznik Schemat ideowy płytki rozszerzeń do systemu Intel Galileo 1: 13

14 Rozkład złącz i elementów płytki rozszerzeń do systemu Intel Galileo 1: Numer Port 1 SCL (I 2 C) 2 SDA (I 2 C) 3 AREF 4 GND 5 Digital Output 11(PWM) 6 Digital Output 10 (PWM) 7 GND 8 Digital Output 7 9 Digital Output 6 (PWM) 10 Digital Output 5 (PWM) 11 Digital Output 4 12 Digital Output 2 13 PWM GND 14 PWM+15V(Digital Output 3) 15 GND 16 Analog Input 5 17 Analog Input 4 18 Analog Input 3 19 Analog Input 2 20 Analog Input 1 21 Analog Input 0 (Potencjometr) 22 Digital Output 13 (LED1) 23 Digital Output 12 (LED2) 24 Digital Output 9 (LED3/PWM) 25 Digital Output 8 (LED4) 14

15 Rozkład złącz i elementów płytki rozszerzeń do systemu Intel Galileo 2: Numer Port 1 SCL (I 2 C) 2 SDA (I 2 C) 3 AREF 4 GND 5 Digital Output 11 (PWM / LED 3) 6 Digital Output 10 (PWM / LED 4) 7 GND 8 Digital Output 7 (LED 7) 9 Digital Output 6 (PWM/ LED 8) 10 Digital Output 5 (PWM) 11 Digital Output 4 12 Digital Output 2 13 GND 14 Analog Input 5 15 Analog Input 4 16 Analog Input 3 17 Analog Input 2 18 Analog Input 1 19 Analog Input 0 (Potencjometr) 20 Digital Output 13 (LED1) 21 Digital Output 12 (LED2) 22 Digital Output 9 (LED5/PWM) 23 Digital Output 8 (LED6) 15

16 Tabela ASCII Zródło: 16

Uwaga: dioda na wyjściu 13 świeci gdy na wyjście podamy 0.

Uwaga: dioda na wyjściu 13 świeci gdy na wyjście podamy 0. Podstawowe funkcje sterowania pinami cyfrowymi pinmode(8, OUTPUT); //ustawienie końcówki jako wyjście pinmode(8, INPUT); // ustawienie końcówki jako wejście pinmode(8, INPUT_PULLUP); // ustawienie końcówki

Bardziej szczegółowo

1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33

1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33 Spis treści 3 1. Wprowadzenie...11 1.1. Wstęp...12 1.2. Mikrokontrolery rodziny ARM...13 1.3. Architektura rdzenia ARM Cortex-M3...15 1.3.1. Najważniejsze cechy architektury Cortex-M3... 15 1.3.2. Rejestry

Bardziej szczegółowo

KATEDRA SYSTEMÓW MULTIMEDIALNYCH SEMINARIUM MULTIMEDIALNE SYSTEMY MEDYCZNE

KATEDRA SYSTEMÓW MULTIMEDIALNYCH SEMINARIUM MULTIMEDIALNE SYSTEMY MEDYCZNE KATEDRA SYSTEMÓW MULTIMEDIALNYCH SEMINARIUM MULTIMEDIALNE SYSTEMY MEDYCZNE Seminarium nr 1: Wprowadzenie do platformy Intel Galileo Opracowanie: mgr inż. Janusz Cichowski 1. WPROWADZENIE Celem ćwiczenia

Bardziej szczegółowo

Rafał Staszewski Maciej Trzebiński, Dominik Derendarz

Rafał Staszewski Maciej Trzebiński, Dominik Derendarz R Staszewski Rafał Staszewski Maciej Trzebiński, Dominik Derendarz Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN Cracow) Zagraj w Naukę 27 października 2014 1

Bardziej szczegółowo

LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program

LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program Przygotował: Jakub Wawrzeńczak 1. Wprowadzenie Lekcja przedstawia wykorzystanie środowiska LabVIEW 2016

Bardziej szczegółowo

Zmierzyć się z żywiołami, czyli jak zbudować własną stację badawczą! Zaczynamy! Pole komunikatów programu. Nawigacja w programie Arduino

Zmierzyć się z żywiołami, czyli jak zbudować własną stację badawczą! Zaczynamy! Pole komunikatów programu. Nawigacja w programie Arduino Zaczynamy! Lista zadań Menu programu sprawdzanie kodu Skróty wybranych poleceń wgrywanie kodu nowy program otwieranie zapisanych prog. Pole do wprowadzania kodu zapisywanie zmian wywołanie podglądu portu

Bardziej szczegółowo

Parametryzacja przetworników analogowocyfrowych

Parametryzacja przetworników analogowocyfrowych Parametryzacja przetworników analogowocyfrowych wersja: 05.2015 1. Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC analog-to-digital converter),

Bardziej szczegółowo

MultiTool instrukcja użytkownika 2010 SFAR

MultiTool instrukcja użytkownika 2010 SFAR MultiTool instrukcja użytkownika 2010 SFAR Tytuł dokumentu: MultiTool instrukcja użytkownika Wersja dokumentu: V1.0 Data: 21.06.2010 Wersja urządzenia którego dotyczy dokumentacja: MultiTool ver. 1.00

Bardziej szczegółowo

Schemat blokowy architektury AVR

Schemat blokowy architektury AVR Schemat blokowy architektury AVR Rejestry procesora AVR dostępne programowo Rejestry procesora AVR związane z pobraniem i wykonaniem rozkazu Schemat blokowy procesora ATMega 2560 ATMEL ATMEGA328P MEMORY

Bardziej szczegółowo

Spis treści. Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Spis treści. Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego El ektroni ka cyfrow a Aut orpr ogr amuz aj ęć: mgri nż.mar ci njuki ewi cz Pr oj ektwspół f i nansowanyześr odkówuni ieur opej ski ejwr amacheur opej ski egofunduszuspoł ecznego Spis treści Zajęcia 1:

Bardziej szczegółowo

Kod produktu: MP01611

Kod produktu: MP01611 CZYTNIK RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi tani i prosty w zastosowaniu czytnik RFID dla transponderów UNIQUE 125kHz, umożliwiający szybkie konstruowanie urządzeń do bezstykowej

Bardziej szczegółowo

1.2. Architektura rdzenia ARM Cortex-M3...16

1.2. Architektura rdzenia ARM Cortex-M3...16 Od Autora... 10 1. Wprowadzenie... 11 1.1. Wstęp...12 1.1.1. Mikrokontrolery rodziny ARM... 14 1.2. Architektura rdzenia ARM Cortex-M3...16 1.2.1. Najważniejsze cechy architektury Cortex-M3... 16 1.2.2.

Bardziej szczegółowo

Kod produktu: MP01105

Kod produktu: MP01105 MODUŁ INTERFEJSU KONTROLNO-POMIAROWEGO DLA MODUŁÓW Urządzenie stanowi bardzo łatwy do zastosowania gotowy interfejs kontrolno-pomiarowy do podłączenia modułów takich jak czujniki temperatury, moduły przekaźnikowe,

Bardziej szczegółowo

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza

Bardziej szczegółowo

Programowanie Układów Logicznych kod kursu: ETD6203. Szczegóły realizacji projektu indywidualnego W dr inż.

Programowanie Układów Logicznych kod kursu: ETD6203. Szczegóły realizacji projektu indywidualnego W dr inż. Programowanie Układów Logicznych kod kursu: ETD6203 Szczegóły realizacji projektu indywidualnego W1 24.02.2016 dr inż. Daniel Kopiec Projekt indywidualny TERMIN 1: Zajęcia wstępne, wprowadzenie TERMIN

Bardziej szczegółowo

Konfiguracja i programowanie PLC Siemens SIMATIC S7 i panelu tekstowego w układzie sterowania napędami elektrycznymi. Przebieg ćwiczenia

Konfiguracja i programowanie PLC Siemens SIMATIC S7 i panelu tekstowego w układzie sterowania napędami elektrycznymi. Przebieg ćwiczenia Ćwiczenie VIIN Konfiguracja i programowanie PLC Siemens SIMATIC S7 i panelu tekstowego w układzie sterowania napędami elektrycznymi Przebieg ćwiczenia 1. Rozpoznać elementy stanowiska (rys.1,2,3) i podłączyć

Bardziej szczegółowo

LabVIEW PLATFORMA EDUKACYJNA Lekcja 6 LabVIEW i Arduino programy wykorzystujące wyświetlacz LCD, czujnik temperatury, PWM i diodę LED

LabVIEW PLATFORMA EDUKACYJNA Lekcja 6 LabVIEW i Arduino programy wykorzystujące wyświetlacz LCD, czujnik temperatury, PWM i diodę LED LabVIEW PLATFORMA EDUKACYJNA Lekcja 6 LabVIEW i Arduino programy wykorzystujące wyświetlacz LCD, czujnik temperatury, PWM i diodę LED Przygotował: Jakub Wawrzeńczak 1. Wprowadzenie Lekcja przedstawia wykorzystanie

Bardziej szczegółowo

Kod produktu: MP01611-ZK

Kod produktu: MP01611-ZK ZAMEK BEZSTYKOWY RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi gotowy do zastosowania bezstykowy zamek pracujący w technologii RFID dla transponderów UNIQUE 125kHz, zastępujący z powodzeniem

Bardziej szczegółowo

Laboratorium 1 Wprowadzenie do programowania Intel Galileo

Laboratorium 1 Wprowadzenie do programowania Intel Galileo Laboratorium 1 Wprowadzenie do programowania Intel Galileo Zakres: Laboratorium obejmuje wprowadzenie do programowania Intel Galileo Gen2 z wykorzystaniem środowiska Arduino. Celem laboratorium jest zapoznanie

Bardziej szczegółowo

Uczeń/Uczennica po zestawieniu połączeń zgłasza nauczycielowi gotowość do sprawdzenia układu i wszystkich połączeń.

Uczeń/Uczennica po zestawieniu połączeń zgłasza nauczycielowi gotowość do sprawdzenia układu i wszystkich połączeń. Nazwa implementacji: Termometr cyfrowy - pomiar temperatury z wizualizacją pomiaru na wyświetlaczu LCD Autor: Krzysztof Bytow Opis implementacji: Wizualizacja działania elementu zestawu modułu-interfejsu

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i Mikrokontrolery Dostęp do portów mikrokontrolera ATmega32 język C laboratorium: 10 autorzy: dr

Bardziej szczegółowo

CV3. Instrukcja obsługi. Opis. Funkcje

CV3. Instrukcja obsługi. Opis. Funkcje Funkcje Opis CV3 Instrukcja obsługi BarieraCV3 jest fotokomórką pozwalającą na zliczanie z detekcją odległości osoby od czujnika. Bariera CV3 powstała głównie z myślą o zastosowaniu w obiekatach gdzie

Bardziej szczegółowo

Sprawozdanie z projektu MARM. Część druga Specyfikacja końcowa. Prowadzący: dr. Mariusz Suchenek. Autor: Dawid Kołcz. Data: r.

Sprawozdanie z projektu MARM. Część druga Specyfikacja końcowa. Prowadzący: dr. Mariusz Suchenek. Autor: Dawid Kołcz. Data: r. Sprawozdanie z projektu MARM Część druga Specyfikacja końcowa Prowadzący: dr. Mariusz Suchenek Autor: Dawid Kołcz Data: 01.02.16r. 1. Temat pracy: Układ diagnozujący układ tworzony jako praca magisterska.

Bardziej szczegółowo

Język C. Wykład 9: Mikrokontrolery cz.2. Łukasz Gaweł Chemia C pokój 307

Język C. Wykład 9: Mikrokontrolery cz.2. Łukasz Gaweł Chemia C pokój 307 Język C Wykład 9: Mikrokontrolery cz.2 Łukasz Gaweł Chemia C pokój 307 lukasz.gawel@pg.edu.pl Pierwszy program- powtórka Częstotliwość zegara procesora μc (należy sprawdzić z kartą techniczną μc) Dodaje

Bardziej szczegółowo

DOKUMENTACJA PROJEKTU

DOKUMENTACJA PROJEKTU Warszawa, dn. 16.12.2015r. Student: Artur Tynecki (E.EIM) atynecki@stud.elka.pw.edu.pl Prowadzący: dr inż. Mariusz Jarosław Suchenek DOKUMENTACJA PROJEKTU Projekt wykonany w ramach przedmiotu Mikrokontrolery

Bardziej szczegółowo

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem

Bardziej szczegółowo

WIZUALIZACJA DANYCH SENSORYCZNYCH Sprawozdanie z wykonanego projektu. Jakub Stanisz

WIZUALIZACJA DANYCH SENSORYCZNYCH Sprawozdanie z wykonanego projektu. Jakub Stanisz WIZUALIZACJA DANYCH SENSORYCZNYCH Sprawozdanie z wykonanego projektu Jakub Stanisz 19 czerwca 2008 1 Wstęp Celem mojego projektu było stworzenie dalmierza, opierającego się na czujniku PSD. Zadaniem dalmierza

Bardziej szczegółowo

Laboratorium 2 Sterowanie urządzeniami z wykorzystaniem systemu plików Intel Galileo

Laboratorium 2 Sterowanie urządzeniami z wykorzystaniem systemu plików Intel Galileo Laboratorium 2 Sterowanie urządzeniami z wykorzystaniem systemu plików Intel Galileo Zakres: Laboratorium obrazuje podstawy sterowania urządzeń z wykorzystaniem wirtualnego systemu plików sysfs z poziomu

Bardziej szczegółowo

Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100. Zestaw do samodzielnego montażu.

Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100. Zestaw do samodzielnego montażu. E113 microkit Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100 1.Opis ogólny. Zestaw do samodzielnego montażu. Edukacyjny sterownik silnika krokowego przeznaczony jest

Bardziej szczegółowo

IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych

IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych wrzesieo 2010 UWAGA: Moduł jest zasilany napięciem do 3.3V i nie może współpracowad z wyjściami układów zasilanych z wyższych napięd. Do pracy

Bardziej szczegółowo

Laboratorium Procesorów Sygnałowych

Laboratorium Procesorów Sygnałowych Laboratorium Procesorów Sygnałowych Moduł STM32F407 Discovery GPIO, C/A, akcelerometr I. Informacje wstępne Celem ćwiczenia jest zapoznanie z: Budową i programowaniem modułu STM32 F4 Discovery Korzystaniem

Bardziej szczegółowo

Politechnika Wrocławska

Politechnika Wrocławska Politechnika Wrocławska Instytut Cybernetyki Technicznej Wizualizacja Danych Sensorycznych Projekt Kompas Elektroniczny Prowadzący: dr inż. Bogdan Kreczmer Wykonali: Tomasz Salamon Paweł Chojnowski Wrocław,

Bardziej szczegółowo

2. Architektura mikrokontrolerów PIC16F8x... 13

2. Architektura mikrokontrolerów PIC16F8x... 13 Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator

Bardziej szczegółowo

ze względu na jego zaokrąglony kształt musimy go umieścić w innych bloczkach np. ze zmienną: lub jeśli chcemy sprawdzić jaki właśnie znak odczytujemy:

ze względu na jego zaokrąglony kształt musimy go umieścić w innych bloczkach np. ze zmienną: lub jeśli chcemy sprawdzić jaki właśnie znak odczytujemy: Ostatnio kontynuowaliśmy temat "rozmawiania" z Arduino (komunikacji z wykorzystaniem portu szeregowego), która jest nam o tyle potrzebna, że właśnie w ten sposób później będziemy rozmawiać z płytką wykorzystując

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo

Instrukcja obsługi programatora AVR Prog USB v2

Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2 Strona 1 Zawartość 1. Instalacja... 3 2. Instalacja sterowników w trybie HID.... 3 3. Programowanie

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Kod przedmiotu: TS1C 622 388 Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Elektronika samochodowa Temat: Programowanie

Bardziej szczegółowo

Przetwornik analogowo-cyfrowy

Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy A/C (ang. A/D analog to digital; lub angielski akronim ADC - od słów: Analog to Digital Converter), to układ służący do zamiany sygnału analogowego

Bardziej szczegółowo

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów2 2. ISP..2 3. I/O Ports..3 4. External Interrupts..4 5. Analog Comparator5 6. Analog-to-Digital Converter.6 7.

Bardziej szczegółowo

Electronic Infosystems

Electronic Infosystems Department of Optoelectronics and Electronic Systems Faculty of Electronics, Telecommunications and Informatics Gdansk University of Technology Electronic Infosystems Microserver TCP/IP with CS8900A Ethernet

Bardziej szczegółowo

PROJECT OF FM TUNER WITH GESTURE CONTROL PROJEKT TUNERA FM STEROWANEGO GESTAMI

PROJECT OF FM TUNER WITH GESTURE CONTROL PROJEKT TUNERA FM STEROWANEGO GESTAMI Bartosz Wawrzynek I rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy PROJECT OF FM TUNER WITH GESTURE CONTROL PROJEKT TUNERA FM STEROWANEGO GESTAMI Keywords: gesture control,

Bardziej szczegółowo

Kod produktu: MP01105T

Kod produktu: MP01105T MODUŁ INTERFEJSU DO POMIARU TEMPERATURY W STANDARDZIE Właściwości: Urządzenie stanowi bardzo łatwy do zastosowania gotowy interfejs do podłączenia max. 50 czujników temperatury typu DS18B20 (np. gotowe

Bardziej szczegółowo

Pomiar odległości z Arduino czujniki, schematy, przykładowe kody

Pomiar odległości z Arduino czujniki, schematy, przykładowe kody Pomiar odległości z Arduino czujniki, schematy, przykładowe kody W robotyce, mechatronice czy modelarstwie do rozwiązania jest problem pomiaru odległości do czegoś, na przykład do ściany lub do kogoś idącego

Bardziej szczegółowo

Instrukcja obsługi programatora AVR Prog USB v2

Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2 www.and-tech.pl Strona 1 Zawartość Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2

Bardziej szczegółowo

Pracownia Transmisji Danych, Instytut Fizyki UMK, Toruń. Instrukcja do ćwiczenia nr 10. Transmisja szeregowa sieciami energetycznymi

Pracownia Transmisji Danych, Instytut Fizyki UMK, Toruń. Instrukcja do ćwiczenia nr 10. Transmisja szeregowa sieciami energetycznymi Pracownia Transmisji Danych, Instytut Fizyki UMK, Toruń Instrukcja do ćwiczenia nr 10 Transmisja szeregowa sieciami energetycznymi I. Cel ćwiczenia poznanie praktycznego wykorzystania standardu RS232C

Bardziej szczegółowo

LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2

LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2 LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2 1. Cel ćwiczenia Celem ćwiczenia jest pokazanie budowy systemów opartych na układach Arduino. W tej części nauczymy się podłączać różne czujników,

Bardziej szczegółowo

MiniModbus 4DO. Moduł rozszerzający 4 wyjścia cyfrowe. Wyprodukowano dla. Instrukcja użytkownika

MiniModbus 4DO. Moduł rozszerzający 4 wyjścia cyfrowe. Wyprodukowano dla. Instrukcja użytkownika Wersja 1.1 Wyprodukowano dla Dziękujemy za wybór naszego produktu. Niniejsza instrukcja ułatwi Państwu prawidłową obsługę i poprawną eksploatację opisywanego urządzenia. Informacje zawarte w niniejszej

Bardziej szczegółowo

INSTRUKCJA UŻYTKOWNIKA MPCC

INSTRUKCJA UŻYTKOWNIKA MPCC V1.0.0 (10.14.2015) 1 (7) INSTALACJA UWAGA: Produkt działa jako urządzenie nadrzędne Modbus. Dlatego w przypadku podłączania narzędzia do istniejącej sieci Modbus konieczne może okazać się odłączenie innego

Bardziej szczegółowo

ĆWICZENIE 5 WPŁYW KONWEKCJI NA ROZKŁAD TEMPERATURY W POMIESZCZENIU

ĆWICZENIE 5 WPŁYW KONWEKCJI NA ROZKŁAD TEMPERATURY W POMIESZCZENIU ĆWICZENIE 5 WPŁYW KONWEKCJI NA ROZKŁAD TEMPERATURY W POMIESZCZENIU Cel ćwiczenia. Celem ćwiczenia jest badanie rozkładu temperatur w pomieszczeniu oraz określenie wpływu czynników zaburzających. Zakres

Bardziej szczegółowo

MSP&IRED&Energia /6. Rys. xx Rozmieszczenie wyprowadzeń procesora [xx]

MSP&IRED&Energia /6. Rys. xx Rozmieszczenie wyprowadzeń procesora [xx] MSP&IRED&Energia 18.04.2015 1/6 Rys. xx Rozmieszczenie wyprowadzeń procesora [xx] MSP&IRED&Energia 18.04.2015 2/6 MSP&IRED&Energia 18.04.2015 3/6 Rys. 4 Pierwsze okno środowiska Energia Rys. 5 Wybór portu

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA

TECHNIKA MIKROPROCESOROWA LABORATORIUM TECHNIKA MIKROPROCESOROWA Port transmisji szeregowej USART MCS'51 Opracował: Tomasz Miłosławski 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobami komunikacji mikrokontrolera

Bardziej szczegółowo

Notatka lekcja_#3_1; na podstawie W.Kapica 2017 Strona 1

Notatka lekcja_#3_1; na podstawie  W.Kapica 2017 Strona 1 Na poprzednich zajęciach zajmowaliśmy się odczytywaniem sygnałów cyfrowych. Dzięki temu mogliśmy np.: sprawdzić, czy przycisk został wciśnięty. Świat, który nas otacza nie jest jednak cyfrowy, czasami

Bardziej szczegółowo

Kod produktu: MP01611-ZK

Kod produktu: MP01611-ZK ZAMEK BEZSTYKOWY RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi gotowy do zastosowania bezstykowy zamek pracujący w technologii RFID dla transponderów UNIQUE 125kHz, zastępujący z powodzeniem

Bardziej szczegółowo

NARZĘDZIE KONFIGURACYJNE VNX SETUP TOOL MODUŁÓW RODZINY VNX ADVANCED

NARZĘDZIE KONFIGURACYJNE VNX SETUP TOOL MODUŁÓW RODZINY VNX ADVANCED NARZĘDZIE KONFIGURACYJNE VNX SETUP TOOL MODUŁÓW RODZINY VNX ADVANCED WSTĘP Nowa generacja modułów rodziny VNX ADVANCED posiada znacznie większe możliwości, niż dotychczas oferowane moduły. Jednym z istotnych

Bardziej szczegółowo

PLUTO Sterownik bezpieczeństwa Skrócona Instrukcja obsługi oprogramowania. PlutoProgrammingManualPL_v7A.pdf 1

PLUTO Sterownik bezpieczeństwa Skrócona Instrukcja obsługi oprogramowania. PlutoProgrammingManualPL_v7A.pdf 1 PLUTO Sterownik bezpieczeństwa Skrócona Instrukcja obsługi oprogramowania PlutoProgrammingManualPL_v7A.pdf 1 www.jokabsafety.com Spis treści 1. Instalacja oprogramowania 3 2. Podłączenie do komputera..5

Bardziej szczegółowo

RS485 MODBUS Module 6RO

RS485 MODBUS Module 6RO Wersja 2.0 19.12.2012 Dystrybutor Dziękujemy za wybór naszego produktu. Niniejsza instrukcja ułatwi Państwu prawidłową obsługę i poprawną eksploatację opisywanego urządzenia. Informacje zawarte w niniejszej

Bardziej szczegółowo

Programowanie mikrokontrolerów. 8 listopada 2007

Programowanie mikrokontrolerów. 8 listopada 2007 Programowanie mikrokontrolerów Marcin Engel Marcin Peczarski 8 listopada 2007 Alfanumeryczny wyświetlacz LCD umożliwia wyświetlanie znaków ze zbioru będącego rozszerzeniem ASCII posiada zintegrowany sterownik

Bardziej szczegółowo

Podstawy techniki mikroprocesorowej

Podstawy techniki mikroprocesorowej Podstawy techniki mikroprocesorowej Temat 2 Obsługa wyświetlaczy v.1.0 Uniwersytet Pedagogiczny, Instytut Techniki Dominik Rzepka, dominik.rzepka@agh.edu.pl, 2014 1. Obsługa pinów mikroprocesora i wyświetlacze

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 9-236 Łódź, Pomorska 49/53 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo

NX700 PLC www.atcontrol.pl

NX700 PLC www.atcontrol.pl NX700 PLC NX700 Podstawowe cechy Rozszerzalność, niezawodność i łatwość w integracji Szybki procesor - zastosowanie technologii ASIC pozwala wykonywać CPU proste instrukcje z prędkością 0,2 us/1 krok Modyfikacja

Bardziej szczegółowo

Uniwersalny sterownik silnika krokowego z portem szeregowym RS232 z procesorem AT90S2313 na płycie E200. Zestaw do samodzielnego montażu.

Uniwersalny sterownik silnika krokowego z portem szeregowym RS232 z procesorem AT90S2313 na płycie E200. Zestaw do samodzielnego montażu. microkit E3 Uniwersalny sterownik silnika krokowego z portem szeregowym RS3 z procesorem AT90S33 na płycie E00. Zestaw do samodzielnego montażu..opis ogólny. Sterownik silnika krokowego przeznaczony jest

Bardziej szczegółowo

Instrukcja do oprogramowania ENAP DEC-1

Instrukcja do oprogramowania ENAP DEC-1 Instrukcja do oprogramowania ENAP DEC-1 Do urządzenia DEC-1 dołączone jest oprogramowanie umożliwiające konfigurację urządzenia, rejestrację zdarzeń oraz wizualizację pracy urządzenia oraz poszczególnych

Bardziej szczegółowo

Wizualizacja stanu czujników robota mobilnego. Sprawozdanie z wykonania projektu.

Wizualizacja stanu czujników robota mobilnego. Sprawozdanie z wykonania projektu. Wizualizacja stanu czujników robota mobilnego. Sprawozdanie z wykonania projektu. Maciek Słomka 4 czerwca 2006 1 Celprojektu. Celem projektu było zbudowanie modułu umożliwiającego wizualizację stanu czujników

Bardziej szczegółowo

STEROWNIK ŚWIATEŁ i SZLABANÓW SWS-4/485K/UK

STEROWNIK ŚWIATEŁ i SZLABANÓW SWS-4/485K/UK STEROWNIK ŚWIATEŁ i SZLABANÓW SWS-4/485K/UK Dziękujemy za wybór naszego produktu. Niniejsza instrukcja pomoże państwu w prawidłowym podłączeniu urządzenia, uruchomieniu, oraz umożliwi prawidłowe z niego

Bardziej szczegółowo

LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy:

LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy: LITEcompLPC1114 Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Bezpłatny zestaw dla Czytelników książki Mikrokontrolery LPC1100. Pierwsze kroki LITEcompLPC1114 jest doskonałą platformą mikrokontrolerową

Bardziej szczegółowo

Instrukcja obsługi programatora AVR Prog USB v2

Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2 www.and-tech.pl Strona 1 Zawartość Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2

Bardziej szczegółowo

Instrukcja dla: Icomsat v1.0 SIM900 GSM/GPRS shield for Arduino oraz dla GPRS Shield produkcji Seeedstudio.

Instrukcja dla: Icomsat v1.0 SIM900 GSM/GPRS shield for Arduino oraz dla GPRS Shield produkcji Seeedstudio. Instrukcja dla: Icomsat v1.0 SIM900 GSM/GPRS shield for Arduino oraz dla GPRS Shield produkcji Seeedstudio. IComsat jest to shield GSM/GPRS współpracujący z Arduino oparty o moduł SIM900 firmy SIMCOM.

Bardziej szczegółowo

Poradnik programowania procesorów AVR na przykładzie ATMEGA8

Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Wersja 1.0 Tomasz Pachołek 2017-13-03 Opracowanie zawiera opis podstawowych procedur, funkcji, operatorów w języku C dla mikrokontrolerów AVR

Bardziej szczegółowo

Sterowniki Programowalne Sem. V, AiR

Sterowniki Programowalne Sem. V, AiR Katedra Inżynierii Systemów Sterowania Sterowniki Programowalne Sem. V, AiR Opis stanowiska sterowania prędkością silnika 3-fazowego Opracował: mgr inż. Arkadiusz Cimiński Data: październik, 2016 r. Opis

Bardziej szczegółowo

SYSTEMY CZASU RZECZYWISTEGO (SCR)

SYSTEMY CZASU RZECZYWISTEGO (SCR) Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SYSTEMY CZASU RZECZYWISTEGO (SCR) Podstawy programowanie systemów wbudowanych na bazie platformy sprzętowo-programowej

Bardziej szczegółowo

RS485 MODBUS Module 6RO

RS485 MODBUS Module 6RO Wersja 1.2 15.10.2012 wyprodukowano dla Dziękujemy za wybór naszego produktu. Niniejsza instrukcja ułatwi Państwu prawidłową obsługę i poprawną eksploatację opisywanego urządzenia. Informacje zawarte w

Bardziej szczegółowo

Mikrokontrolery AVR Wprowadzenie

Mikrokontrolery AVR Wprowadzenie Mikrokontrolery AVR Wprowadzenie Komunikacja z otoczeniem mikrokontrolera Każdy z mikrokontrolerów posiada pewna liczbę wyprowadzeń cyfrowych które służą do wprowadzania i odbierania informacji z mikrokontrolera.

Bardziej szczegółowo

Moduł licznika położenia LP 2.

Moduł licznika położenia LP 2. Pracownia Elektroniki i Automatyki W.J. Dubiński ul. Krzyszkowicka 16 32-020 WIELICZKA tel./fax (12) 278 29 11 NIP 676-010-37-14 Moduł licznika położenia LP 2. 1. Przeznaczenie. Licznik rewersyjny LP 2

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

Sterownik procesorowy S-2 Komunikacja RS485 MODBUS

Sterownik procesorowy S-2 Komunikacja RS485 MODBUS Sterownik procesorowy S-2 Komunikacja RS485 MODBUS Sterownik centrali wentylacyjnej PRO-VENT S2 umożliwia komunikację z innymi urządzeniami poprzez interfejs szeregowy RS485. Zapis i odczyt danych realizowany

Bardziej szczegółowo

Systemy Wbudowane. Arduino - rozszerzanie. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD

Systemy Wbudowane. Arduino - rozszerzanie. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD Wymagania: V, GND Zasilanie LED podswietlenia (opcjonalne) Regulacja kontrastu (potencjometr) Enable Register Select R/W (LOW) bity szyny danych Systemy Wbudowane Arduino - rozszerzanie mgr inż. Marek

Bardziej szczegółowo

1.1 Co to jest USBCOM?... 3 1.2 Budowa oraz parametry techniczne... 3

1.1 Co to jest USBCOM?... 3 1.2 Budowa oraz parametry techniczne... 3 2014 Konwerter USBCOM Instrukcja obsługi www.barion-st.com 2014-09-30 2 SPIS TREŚCI 1. WSTĘP... 3 1.1 Co to jest USBCOM?... 3 1.2 Budowa oraz parametry techniczne... 3 2. OBSŁUGA URZĄDZENIA... 5 2.1 Instalacja

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo

Centrala alarmowa ALOCK-1

Centrala alarmowa ALOCK-1 Centrala alarmowa ALOCK-1 http://www.alarmlock.tv 1. Charakterystyka urządzenia Centrala alarmowa GSM jest urządzeniem umożliwiającym monitorowanie stanów wejść (czujniki otwarcia, czujki ruchu, itp.)

Bardziej szczegółowo

ZL8AVR. Płyta bazowa dla modułów dipavr

ZL8AVR. Płyta bazowa dla modułów dipavr ZL8AVR Płyta bazowa dla modułów dipavr Zestaw ZL8AVR to płyta bazowa dla modułów dipavr (np. ZL7AVR z mikrokontrolerem ATmega128 lub ZL12AVR z mikrokontrolerem ATmega16. Wyposażono ją w wiele klasycznych

Bardziej szczegółowo

Systemy Wbudowane. Arduino, AVR. Arduino. Arduino. Arduino. Oprogramowanie. Mikrokontroler. Mikrokontroler Platforma Arduino. Arduino IDE: Arduino C:

Systemy Wbudowane. Arduino, AVR. Arduino. Arduino. Arduino. Oprogramowanie. Mikrokontroler. Mikrokontroler Platforma Arduino. Arduino IDE: Arduino C: Mikrokontroler Platforma Systemy Wbudowane IDE:, AVR mgr inż. Marek Wilkus Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Kraków Mikrokontroler AVR Uno Środowisko Terminal Uruchamianie http://home.agh.edu.pl/~mwilkus

Bardziej szczegółowo

dokument DOK 02-05-12 wersja 1.0 www.arskam.com

dokument DOK 02-05-12 wersja 1.0 www.arskam.com ARS3-RA v.1.0 mikro kod sterownika 8 Linii I/O ze zdalną transmisją kanałem radiowym lub poprzez port UART. Kod przeznaczony dla sprzętu opartego o projekt referencyjny DOK 01-05-12. Opis programowania

Bardziej szczegółowo

RS485 MODBUS Module 6RO

RS485 MODBUS Module 6RO Wersja 2.0 19.12.2012 wyprodukowano dla Dziękujemy za wybór naszego produktu. Niniejsza instrukcja ułatwi Państwu prawidłową obsługę i poprawną eksploatację opisywanego urządzenia. Informacje zawarte w

Bardziej szczegółowo

Instrukcja obsługi programatora AVR Prog USB v2

Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2 Strona 1 Spis treści 1. Instalacja...3 2. Instalacja sterowników w trybie HID....3 3. Programowanie w trybie HID...4 4. Instalacja w trybie COM....5 5. Programowanie

Bardziej szczegółowo

Instrukcja aktualizacji oprogramowania

Instrukcja aktualizacji oprogramowania Strona 1 / 8 SPIS TREŚCI 1. INSTALACJA STEROWNIKA USB ORAZ OPROGRAMOWANIA FLASHER... 3 1.1. Instalacja sterownika USB... 3 1.2. Instalacja oprogramowania Flasher... 3 2. OPIS PROCEDURY AKTUALIZACJI OPROGRAMOWANIA

Bardziej szczegółowo

Moduł Komunikacyjny MCU42 do systemu AFS42

Moduł Komunikacyjny MCU42 do systemu AFS42 Moduł Komunikacyjny MCU42 do systemu AFS42 IOT - Instrukcja Obsługi - Informacja Techniczna Aktualizacja 2015-05-05 13:04 www.lep.pl biuro@lep.pl 32-300 Olkusz, ul. Wspólna 9, tel/fax (32) 754 54 54, 754

Bardziej szczegółowo

Laboratorium Komputerowe Systemy Pomiarowe

Laboratorium Komputerowe Systemy Pomiarowe Jarosław Gliwiński, Łukasz Rogacz Laboratorium Komputerowe Systemy Pomiarowe ćw. Zastosowanie standardu VISA do obsługi interfejsu RS-232C Data wykonania: 03.04.08 Data oddania: 17.04.08 Celem ćwiczenia

Bardziej szczegółowo

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 8 Wykorzystanie modułów FieldPoint w komputerowych systemach pomiarowych 1. Wprowadzenie

Bardziej szczegółowo

Licznik rewersyjny MD100 rev. 2.48

Licznik rewersyjny MD100 rev. 2.48 Licznik rewersyjny MD100 rev. 2.48 Instrukcja obsługi programu PPH WObit mgr inż. Witold Ober 61-474 Poznań, ul. Gruszkowa 4 tel.061/8350-620, -800 fax. 061/8350704 e-mail: wobit@wobit.com.pl Instrukcja

Bardziej szczegółowo

EV6 223. Termostat cyfrowy do urządzeń chłodniczych

EV6 223. Termostat cyfrowy do urządzeń chłodniczych Termostat cyfrowy do urządzeń chłodniczych Włączanie / wyłączanie Aby uruchomić urządzenie należy podłączyć zasilanie. (wyłączenie poprzez odpięcie zasilania) Wyświetlacz Po włączeniu i podczas normalnej

Bardziej szczegółowo

Laboratorium Komputerowe Systemy Pomiarowe

Laboratorium Komputerowe Systemy Pomiarowe Jarosław Gliwiński, Łukasz Rogacz Laboratorium Komputerowe Systemy Pomiarowe ćw. Programowanie wielofunkcyjnej karty pomiarowej w VEE Data wykonania: 15.05.08 Data oddania: 29.05.08 Celem ćwiczenia była

Bardziej szczegółowo

LABORATORIUM - ELEKTRONIKI Układy mikroprocesorowe cz.2

LABORATORIUM - ELEKTRONIKI Układy mikroprocesorowe cz.2 LABORATORIUM - ELEKTRONIKI Układy mikroprocesorowe cz.2 PRZEBIEG ĆWICZENIA 1. Wybrać z dostarczonych przez prowadzącego następujące elementy Układ Arduino Mega Płytka prototypowa Wyświetlacz 2X16 Potencjometr

Bardziej szczegółowo

Instrukcja obsługi czytnika MM-R32

Instrukcja obsługi czytnika MM-R32 Instrukcja obsługi czytnika MM-R32 MM-R32 Copyright 2011 by MicroMade All rights reserved Wszelkie prawa zastrzeżone MicroMade Gałka i Drożdż sp. j. 64-920 PIŁA, ul. Wieniawskiego 16 Tel./fax: (67) 213.24.14

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA II

TECHNIKA MIKROPROCESOROWA II Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II LAB 6 Moduł UART - współpraca z komputerem poprzez BlueTooth Mariusz Sokołowski

Bardziej szczegółowo

Komunikacja w mikrokontrolerach Laboratorium

Komunikacja w mikrokontrolerach Laboratorium Laboratorium Ćwiczenie 4 Magistrala SPI Program ćwiczenia: konfiguracja transmisji danych między mikrokontrolerem a cyfrowym czujnikiem oraz sterownikiem wyświetlaczy 7-segmentowych przy użyciu magistrali

Bardziej szczegółowo

Programator procesorów rodziny AVR AVR-T910

Programator procesorów rodziny AVR AVR-T910 Programator procesorów rodziny AVR AVR-T910 Instrukcja obsługi Opis urządzenia AVR-T910 jest urządzeniem przeznaczonym do programowania mikrokontrolerów rodziny AVR firmy ATMEL. Programator podłączany

Bardziej szczegółowo

RPTC CONTROLLER (v1.11) STEROWNIK PRZEMIENNIKA RADIOWEGO OBSŁUGA KOMUNIKATÓW GŁOSOWYCH OBSŁUGA KOMUNIKATÓW IDCW OPCJONALNY MODUŁ GSM

RPTC CONTROLLER (v1.11) STEROWNIK PRZEMIENNIKA RADIOWEGO OBSŁUGA KOMUNIKATÓW GŁOSOWYCH OBSŁUGA KOMUNIKATÓW IDCW OPCJONALNY MODUŁ GSM RPTC CONTROLLER (v1.11) STEROWNIK PRZEMIENNIKA RADIOWEGO OBSŁUGA KOMUNIKATÓW GŁOSOWYCH OBSŁUGA KOMUNIKATÓW IDCW OPCJONALNY MODUŁ GSM Instrukcja użytkownika Instrukcja oprogramowania konfiguracyjnego Designer:

Bardziej szczegółowo

OPIS STEROWNIKA 821B USB

OPIS STEROWNIKA 821B USB OPIS STEROWNIKA 821B USB Sterownik sklada sie z nastepujacych bloków: procesora sterujacego, przetwornika Analogowo/Cyfrowego 12 bitów 8 kanalów przetwornika Cyfrowo/Analogowego 12 bitów 1 kanal driverów

Bardziej szczegółowo

Pomiar natężenia światła (005; 15.07.2009; arduino, processing)

Pomiar natężenia światła (005; 15.07.2009; arduino, processing) Pomiar natężenia światła (005; 15.07.2009; arduino, processing) Artykuł ten będzie praktycznym wykorzystaniem opisu pomiaru napięcia przy użyciu Arduino. Fotorezystor z dzielnikiem napięcia będzie czujnikiem

Bardziej szczegółowo

SCL > Pin 21 SDA > Pin 20 VCC > 5V GND > GND

SCL > Pin 21 SDA > Pin 20 VCC > 5V GND > GND Nazwa implementacji: Budowa RTC w oparciu o DS1307 Autor: Krzysztof Bytow Opis implementacji: Układ DS1307 jest to zegar czasu rzeczywistego (Real Time Clock) służy do odliczania czasu niezależnie od stanu

Bardziej szczegółowo