LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW. PODSTAWOWYCH - I st. Kierunki studiów - uczelnie - studia inżynieria materiałowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW. PODSTAWOWYCH - I st. Kierunki studiów - uczelnie - studia inżynieria materiałowa"

Transkrypt

1 studia techniczne, kierunek: INŻYNIERIA MATERIAŁOWA ZOBACZ OPIS KIERUNKU ORAZ LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH Matematyka 120 h Podstawy geometrii analitycznej. Algebra macierzy. Rozwiązywanie układów algebraicznych równań liniowych. Liczby zespolone. Rachunek różniczkowy i całkowy funkcji jednej zmiennej. Szeregi liczbowe. Różniczkowanie i całkowanie funkcji wielu zmiennych. Równania różniczkowe zwyczajne. Elementy logiki matematycznej. Funkcje, relacje i zbiory. Kombinatoryka i rekurencja. Elementy rachunku wektorowego, tensorowego i operatorowego. Matematyczne podstawy planowania eksperymentu. Statystyka matematyczna. ścisłego formułowania problemów i posługiwania się metodami matematycznymi przy analizie problematyki technicznej. Fizyka 60 h Zasady dynamiki układów punktów materialnych. Elementy mechaniki relatywistycznej. Podstawowe prawa elektrodynamiki i magnetyzmu. Zasady optyki geometrycznej i falowej. Elementy optyki relatywistycznej. Dyfrakcja, interferencja i polaryzacja fal. Spójność światła. Fizyka laserów Podstawy akustyki. Mechanika kwantowa i budowa materii Promieniowanie rentgenowskie. Promieniotwórczość. Fizyka jądrowa. Elementy fizyki ciała stałego i fizyki metali. Metale i półprzewodniki. pomiaru wielkości fizycznych, analizy zjawisk fizycznych i rozwiązywania zagadnień technicznych w oparciu o prawa fizyki. Chemia 60 h Budowa pierwiastków i związków chemicznych. Elementy chemii nieorganicznej. Kwasy, zasady, sole. Typy reakcji reakcje utleniania i redukcji. Elementy chemii organicznej. Węglowodory, ropa naftowa. Polimery. Elementy chemii fizycznej. Stany skupienia materii. Elementy termodynamiki chemicznej. Termochemia. Równowaga chemiczna. Kinetyka chemiczna. Równowagi fazowe. Elektrochemia. Elementy spektroskopii. Elementy chemii procesowej i podstawy metalurgii. rozumienia przemian chemicznych i ich znaczenia w wytwarzaniu i kształtowaniu własności materiałów inżynierskich. Informatyka 60 h Architektura systemów komputerowych. Podstawy algorytmiki. Bazy danych i relacyjne bazy danych. Kompilatory i języki programowania. Programowanie proceduralne i obiektowe. Wybrany język programowania wysokiego poziomu. Techniki multimedialne. Oprogramowanie i narzędzia internetowe: tworzenie stron WWW, tekst, grafika, animacja, dźwięk na stronach internetowych. Systemy komputerowego wspomagania prac inżynierskich w inżynierii materiałowej i technice. strona 1 / 7

2 korzystania z komputerowego wspomagania do rozwiązywania zadań technicznych. KIERUNKOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW KIERUNKOWYCH 660 h Nauka o materiałach Materia i jej składniki. Oddziaływania międzyatomowe i międzycząsteczkowe. Struktura faz skondensowanych. Sieć krystaliczna, elementy krystalografii i krystalochemii. Defekty struktury krystalicznej. Optyczne, elektryczne i magnetyczne własności materiałów. Sprężystość i plastyczność. Monokryształy, polikryształy, materiały wielofazowe, granice rozdziału. Zjawiska powierzchniowe. Własności powierzchni fazowych, adsorpcja, adhezja. Fazy, równowaga fazowa, polimorfizm. Dyfuzja i prawa dyfuzji. Procesy strukturalne i przemiany fazowe. Procesy umocnienia materiałów. Odkształcenie plastyczne i procesy aktywowane cieplnie. Przemiany fazowe w stanie stałym, przemiany dyfuzyjne i bezdyfuzyjne. Pokrycia i warstwy powierzchniowe. Struktura i własności materiałów amorficznych i nanostrukturalnych. Zależność pomiędzy strukturą i własnościami materiałów inżynierskich. Kryteria doboru materiałów inżynierskich i kształtowania ich własności. Warunki pracy i mechanizmy zużycia i dekohezji materiałów (pękanie, zmęczenie, pełzanie, korozja, zużycie trybologiczne). Znaczenie nauki o materiałach i jej tendencje rozwojowe. doboru materiałów inżynierskich i metod kształtowania ich struktury i własności do zastosowań technicznych. Materiały inżynierskie Podstawowe grupy materiałów inżynierskich, ich struktura i własności oraz technologie ich kształtowania i zasady ich doboru do zastosowań na produkty techniczne: metale i ich stopy, materiały polimerowe, ceramiczne i kompozytowe. Stale i inne stopy żelaza, ich klasyfikacja i oznaczanie. Struktura i własności stali niestopowych. Rola domieszek, zanieczyszczeń i wtrąceń niemetalicznych w stalach niestopowych oraz pierwiastków stopowych w stalach stopowych. Struktura i własności stali stopowych. Nadstopy. Odlewnicze stopy żelaza staliwa i żeliwa: niestopowe i stopowe. Metale nieżelazne i ich stopy, ich klasyfikacja i oznaczanie oraz struktura i własności. Materiały ceramiczne. Ceramika: inżynierska i porowata. Cermetale inżynierskie. Materiały ceramiczne o specjalnych zastosowaniach. Szkła i ceramika szklana. Materiały węglowe. Fullereny i nanorurki węglowe. Materiały spiekane i wytwarzane metodami metalurgii proszków. Spiekane i supertwarde materiały narzędziowe. Materiały polimerowe, ich klasyfikacja i oznaczanie. Materiały kompozytowe o osnowie: polimerowej, metalowej, ceramicznej i węglowej oraz warstwowe. Materiały: funkcjonalne, półprzewodnikowe, nadprzewodzące, o szczególnych własnościach magnetycznych. Intermetaliki. Stopy metali o małej rozszerzalności cieplnej. Materiały: porowate, amorficzne i nanostrukturalne. Inżynierskie materiały inteligentne. Materiały: biomedyczne i biomimetyczne. Porównanie podstawowych własności mechanicznych, technologicznych, eksploatacyjnych i fizyko-chemicznych oraz uwarunkowań ekonomicznych i zastosowania różnych grup materiałów inżynierskich. Znaczenie materiałów inżynierskich w postępie cywilizacyjnym i perspektywy ich rozwoju. charakteryzowania własności fizykochemicznych, technologicznych i eksploatacyjnych materiałów inżynierskich, doboru materiałów inżynierskich do zastosowań technicznych w zależności od struktury, własności, warunków użytkowania oraz doboru procesów technologicznych ich wytwarzania i przetwórstwa, oceny uwarunkowań ekonomicznych stosowania materiałów inżynierskich. Projektowanie materiałowe i komputerowa nauka o materiałach Zasady doboru materiałów inżynierskich. Rola projektowania materiałowego w projektowaniu inżynierskim produktów i procesów ich wytwarzania. Czynniki funkcjonalne i zagadnienia jakości wytwarzania i produktów oraz czynniki socjologiczne, ekologiczne i ekonomiczne w projektowaniu inżynierskim. Metodyka projektowania strona 2 / 7

3 materiałowego. Komputerowe wspomaganie projektowania materiałowego CAMD (Computer Aided Materials Design). Zależności projektowania materiałowego i technologicznego produktów i ich elementów. Podstawowe czynniki uwzględniane podczas projektowania technologicznego. Źródła informacji o materiałach inżynierskich. Informatyczne bazy danych o materiałach inżynierskich. Podstawy komputerowej nauki o materiałach. Wybrane metody numeryczne symulacji zjawisk i procesów fizycznych oraz predykcji własności materiałów. Metody obliczania wykresów równowagi fazowej. Zastosowanie komputerowego wspomagania w badaniach struktury i własności materiałów. Numeryczna analiza danych pomiarowych. Wykorzystanie metod sztucznej inteligencji do modelowania, symulacji i predykcji struktury i własności materiałów inżynierskich. projektowania materiałowego produktów o założonej strukturze i własnościach użytkowych oraz stosowania metod komputerowej nauki o materiałach w projektowaniu inżynierskim oraz w badaniach struktury i własności materiałów inżynierskich. Badanie materiałów Mikroskopia świetlna w badaniach materiałów. Metalografia. Stereologia. Analiza obrazu. Promieniowanie rentgenowskie i jego własności. Dyfrakcja promieni rentgenowskich. Budowa dyfraktometrów. Rentgenowska analiza strukturalna. Spektrometria rentgenowska. Wiązka elektronów i jej własności. Dyfrakcja elektronów. Mikroskopia elektronowa transmisyjna. Budowa mikroskopu elektronowego transmisyjnego. Mikroskopia elektronowa odbiciowa, mikroskop skaningowy. Fraktografia. Spektroskopia elektronowa, Augera i fotoelektronów. Budowa spektrometrów. Analiza cieplna materiałów. Metody badania materiałów oparte o pomiary rezystywności elektrycznej, własności magnetycznych, akustyczne tarcia wewnętrznego i jądrowe. Spektroskopia efektu Moesbauera. Neutronografia. Zastosowanie promieniowania synchrotronowego do badania materiałów. Badania własności mechanicznych statycznych, dynamicznych, w próbach udarowych. Badania ciągliwości metodami mechaniki pękania. Pomiary twardości i mikrotwardości. Badania zmęczeniowe, w warunkach pełzania, korozji i zużycia trybologicznego. Metodyka badania cienkich pokryć i powłok. Badania defektoskopowe. Próby technologiczne i odbiorcze materiałów. Metody komputerowego wspomagania badań materiałoznawczych. Systemy zarządzania jakością w badaniach materiałów. organizacji badań i stosowania metodyki badania materiałów inżynierskich, obsługi specjalistycznej aparatury naukowo-badawczej, oceny błędów pomiarowych oraz interpretacji wyników badań z wykorzystaniem metod komputerowego wspomagania. Technologia procesów materiałowych Technologie wytwarzania metali i stopów. Metalurgia proszków. Technologie wytwarzania materiałów nanostrukturalnych, szkieł metalicznych, cienkich warstw, materiałów polimerowych, ceramicznych i kompozytowych. Technologie przetwórstwa metali i ich stopów odlewnictwo, obróbka plastyczna na zimno i na gorąco, obróbka cieplna, obróbka cieplno-plastyczna, technologie spawania, zgrzewania i lutowania, obróbka skrawaniem i zaawansowane technologie obróbki ubytkowej, metody inżynierii powierzchni i nanoszenia powłok. Technologie przetwórstwa materiałów polimerowych i modyfikacji ich powierzchni. Kontrola jakości produkowanych materiałów. Ochrona środowiska naturalnego przy różnych technologiach materiałowych. Metody recyklingu, pozyskiwania i przekształcania odpadów. Możliwości wykorzystywania przetworzonych odpadów. Podstawy komputerowego wspomagania wytwarzania CAM (Computer Aided Manufacturing). stosowania technologii procesów materiałowych w celu kształtowania produktów, ich struktury i własności oraz strona 3 / 7

4 wdrażania metod recyklingu materiałów. Mechanika techniczna i pękanie oraz wytrzymałość materiałów Redukcja dowolnego układu sił. Równowaga układów płaskich i przestrzennych wyznaczanie wielkości podporowych. Analiza statyczna belek, słupów, ram i kratownic. Elementy teorii stanu naprężenia i odkształcenia. Układy liniowo-sprężyste. Naprężenia dopuszczalne. Hipotezy wytężeniowe. Analiza wytężenia elementów maszyn. Elementy kinematyki i dynamiki punktu materialnego, układu punktów materialnych i bryły sztywnej. Podstawy teorii drgań układów mechanicznych. Elementy mechaniki pękania. Elementy mechaniki płynów. Przepływy laminarne i turbulentne, przez kanały zamknięte i otwarte. Podobieństwa zjawisk przepływowych. Elementy mechaniki komputerowej. Kryteria doboru materiałów na podstawie modeli mechaniki technicznej, mechaniki pękania i wytrzymałości materiałów. rozwiązywania problemów technicznych w oparciu o prawa mechaniki oraz wykonywania analiz wytrzymałościowych elementów maszyn i układów mechanicznych Projektowanie inżynierskie i grafika inżynierska Projektowanie obiektów i procesów. Holistyczne ujęcie procesu projektowania. Układy techniczne (maszyny, urządzenia, infrastruktura i procesy) w ujęciu systemowym. Podstawy maszynoznawstwa. Elementy maszyn. Formułowanie i analiza problemu, koncepcje rozwiązania, metody i techniki wspomagające. Kształtowanie wybranych charakterystyk obiektów technicznych obliczenia inżynierskie. Spełnianie wymagań i ograniczeń. Metody oceny i wyboru wariantów rozwiązania. Modelowanie i optymalizacja oraz bazy danych i wiedzy w projektowaniu inżynierskim. Podstawy komputerowego wspomagania projektowania CAD (Computer Aided Design). Znaczenie doboru materiałów i projektowania materiałowego w projektowaniu inżynierskim. Geometryczne podstawy i główne formy zapisu graficznego: rzutowanie, przekroje, wymiarowanie. Schematy złożonych układów technicznych. Zapis konstrukcji maszyn, urządzeń i układów technicznych oraz opis ich budowy i działania. Procesy i systemy eksploatacji, niezawodność i bezpieczeństwo, elementy diagnostyki technicznej maszyn i urządzeń oraz znaczenie własności eksploatacyjnych materiałów inżynierskich. projektowania inżynierskiego obiektów technicznych z uwzględnieniem grafiki inżynierskiej oraz z zastosowaniem komputerowego wspomagania. Termodynamika techniczna Zasady termodynamiki. Równania termiczne i kaloryczne. Przemiany termodynamiczne odwracalne i nieodwracalne. Gazy doskonałe, półdoskonałe i rzeczywiste Mieszanie dławienie i skraplanie gazów. Obiegi termodynamiczne i ich sprawność. Egzergia, bilanse egzergetyczne. Podstawowe mechanizmy wymiany ciepła: przewodzenie, konwekcja i promieniowanie ciał stałych i gazów. Podstawowe zagadnienia energetyczne rodzaje energii, bilanse energetyczne, nośniki energetyczne. Spalanie, rodzaje paliw i ich własności, ciepło spalania i wartość opałowa. Kinetyka spalania paliw stałych, ciekłych i gazowych. Wymienniki ciepła. Niekonwencjonalne źródła energii. Elementy termodynamiki materiałów inżynierskich. Urządzenia energetyczne w inżynierii materiałowej i obróbce materiałów. stosowania termodynamiki do opisu zjawisk fizycznych i modelowania matematycznego wymiany ciepła w procesach technologicznych. Elektrotechnika i elektronika Podstawy elektrostatyki i elektromagnetyzmu. Obwody elektryczne prądu stałego i przemiennego. Moc i energia w obwodach jednofazowych i trójfazowych. Transformator. Maszyny prądu stałego oraz przemiennego. Silniki i napęd elektryczny. Przyrządy półprzewodnikowe. Diody, tranzystory, wzmacniacze mocy i operacyjne w układach liniowych strona 4 / 7

5 i nieliniowych. Sposoby wytwarzania i generatory drgań elektrycznych. Układy prostownikowe i zasilające. Układy dwustanowe i cyfrowe. Arytmetyka cyfrowa i funkcje logiczne. Wybrane półprzewodnikowe układy cyfrowe. Architektura mikrokomputerów i elementy techniki mikroprocesorowej. Zastosowania materiałów w elektrotechnice i elektronice. wykorzystywania znajomości zjawisk elektrycznych i ich zastosowań w technice oraz doboru materiałów na urządzenia elektrotechniczne i elektroniczne. Systemy zarządzania Podstawy teorii zarządzania. Cykl produkcyjny i zasady organizacji pracy. Jakość pracy i produktu. Metody i techniki zarządzania jakością. Standardy systemów zarządzania jakością: ISO z serii 9000, bezpieczeństwa produktu, dobrej praktyki, zarządzania bezpieczeństwem pracy. Systemy oceny zgodności. Procesy decyzyjne. Motywacyjne techniki zarządzania. Bezpieczeństwo i higiena pracy. Prawne podstawy ochrony pracy. Koncepcja zrównoważonego rozwoju. Ochrona środowiska. Ekologia przemysłowa. Systemy zarządzania środowiskowego według ISO serii i innych norm krajowych i międzynarodowych. Czystsza produkcja jako niesformalizowany system zarządzania środowiskowego. Ekonomiczne i prawne aspekty funkcjonowania systemów zarządzania. Najlepsze dostępne praktyki, techniki i technologie. Projektowanie strategii przedsiębiorstwa i zintegrowane systemy zarządzania jakością, środowiskiem i bezpieczeństwem pracy. uwzględniania zasad organizacji pracy i zintegrowanego zarządzania w działaniach technicznych oraz w innej aktywności. KIERUNKOWYCH - II st. TREŚCI PROGRAMOWE PRZEDMIOTÓW KIERUNKOWYCH 150 h Kształtowanie struktury i własność materiałów inżynierskich Systematyka, definicje i ogólna charakterystyka podstawowych własności użytkowych materiałów. Krystaliczna struktura materiałów. Teoria elektronowa i pasmowa ciał stałych. Struktura materiałów i jej wpływ na podstawowe własności materiałów. Zjawiska transportu masy w ciałach stałych. Przemiany fazowe. Własności elektryczne, cieplne, magnetyczne, optyczne. Teorie nadprzewodnictwa. Tarcie wewnętrzne. Własności mechaniczne i technologiczne materiałów. Teoria sprężystości i plastyczności. Teoria dyslokacji i umocnienia. Odkształcanie i pękanie materiałów. Nadplastyczność. Zjawiska powierzchniowe, obróbka cieplno-chemiczna, nanoszenie powłok. Zintegrowane procesy technologiczne. Aplikacje technik komputerowych w procesach kształtowania struktury i własności materiałów. Mechanizmy niszczenia materiałów. Czynniki determinujące własności materiałów: skład chemiczny i fazowy, struktura, proces wytwarzania, środowisko pracy. kształtowania struktury i własności materiałów inżynierskich przez dobór właściwego procesu technologicznego. Projektowanie materiałów inżynierskich i technologia procesów materiałowych Kryteria doboru materiałów inżynierskich do zastosowań technicznych. Projektowanie struktury materiałów inżynierskich w celu zapewnienia wymaganych własności fizyko-chemicznych i eksploatacyjnych wytworzonych z nich produktów. Termodynamiczne, kinetyczne i strukturalne aspekty technologii procesów materiałowych. Kontrola jakości materiałów i metod ich wytwarzania. Aspekty ekonomiczne i ekologiczne projektowania technologii materiałowych. projektowania materiałów inżynierskich i technologii procesów materiałowych w celu zapewnienia wymaganych strona 5 / 7

6 własności fizyko-chemicznych i użytkowych wytworzonych z nich produktów. Zaawansowane metody badania materiałów Badanie własności materiałów w skali nano-, mikro- i makrometrycznej. Zawansowane metody dyfrakcyjne i mikroskopii elektronowej. Metody spektroskopowe, cieplne, badań powierzchni. Zawansowane metody badań własności mechanicznych. Metody badań własności cieplnych, optycznych, elektrycznych i magnetycznych. Kontrola jakości. Aplikacje technik komputerowych w badaniach struktury i własności materiałów. stosowania zaawansowanych metod badania struktury i własności materiałów inżynierskich oraz wykorzystywania specjalistycznej aparatury naukowo-badawczej do oceny skuteczności procesów technologicznych oraz wpływu warunków pracy. Komputerowe wspomaganie w inżynierii materiałowej Elementy komputerowej nauki o materiałach. Systemy komputerowego wspomagania badań w technice. Bazy danych materiałowych i zasady ich wykorzystywania. Zaawansowane systemy komputerowego wspomaganie doboru materiałów CAMS (Computer Aided Materials Selection) oraz komputerowego wspomagania projektowania materiałowego CAMD (Computer Aided Materials Design). Metody sztucznej inteligencji: systemy ekspertowe i hybrydowe, sztuczne sieci neuronowe oraz algorytmy ewolucyjne, w zastosowaniu do projektowania materiałowego. Sieci komputerowe, sprzęt sieciowy i wersje sieciowe oprogramowania użytkowego. Ochrona zasobów w sieciach komputerowych. Zastosowanie narzędzi sztucznej inteligencji oraz oprogramowania sieciowego do komputerowego wspomagania w inżynierii materiałowej i w badaniach materiałów inżynierskich. korzystania z narzędzi sztucznej inteligencji i aplikacji sieciowych dla praktycznego rozwiązywania zagadnień projektowych; technologicznych i badawczych w inżynierii materiałowej Zarządzanie produkcją, usługami i personelem Logistyczne parametry produkcji i usług. Organizacja przestrzeni produkcyjnej i usługowej. Zasady i metody prowadzenia i zarządzania działalnością produkcyjną i usługową. Podstawy planowania i sterowania produkcją oraz usługami. Systemy zlecania produkcji i usług. Produktywność pracy i przedsiębiorstwa. Polityka i strategia personalna przedsiębiorstwa. Procedury, metody i narzędzia zarządzania personelem. Innowacje, zmiany, konflikt i komunikacja społeczna w organizacji. Kultura organizacyjna. Organizacja służby personalnej. Komputerowe wspomaganie zarządzania produkcją, usługami oraz personelem. zarządzania personelem oraz procesem produkcyjnym i usługami z wykorzystaniem narzędzi komputerowego wspomagania. PRAKTYKI Praktyki powinny trwać nie krócej niż 4 tygodnie. Zasady i formę odbywania praktyk ustala jednostka uczelni prowadząca kształcenie. INNE WYMAGANIA Programy nauczania powinny: - przewidywać zajęcia z zakresu wychowania fizycznego - 60 h, strona 6 / 7

7 języków obcych 120 h, technologii informacyjnej 30 h, - zawierać treści humanistyczne w wymiarze nie mniejszym niż 60 h, - przewidywać zajęcia z ochrony własności intelektualnej, - zawierać nie mniej niż 50% treści technicznych (zgodnie z rozporządzeniem ministra właściwego do spraw szkolnictwa wyższego w sprawie rodzajów dyplomów i tytułów zawodowych oraz wzorów dyplomów wydawanych przez uczelnie). Część zajęć z tego zakresu powinna być realizowana w ramach pracy indywidualnej lub projektów dyplomowych, a jeżeli przewiduje to program studiów - także projektów przejściowych. strona 7 / 7

Efekty kształcenia umiejętności i kompetencje: zastosowania aparatu matematycznego do opisu zagadnień mechanicznych i procesów technologicznych.

Efekty kształcenia umiejętności i kompetencje: zastosowania aparatu matematycznego do opisu zagadnień mechanicznych i procesów technologicznych. studia techniczne, kierunek: MECHANIKA I BUDOWA MASZYN ZOBACZ OPIS KIERUNKU ORAZ LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH Matematyka 120

Bardziej szczegółowo

AKTUALNE OPŁATY ZA WARUNKI Tylko dla studentów I roku 2018/2019 OPŁATY ZA WARUNKI Z POSZCZEGÓLNYCH PRZEDMIOTÓW

AKTUALNE OPŁATY ZA WARUNKI Tylko dla studentów I roku 2018/2019 OPŁATY ZA WARUNKI Z POSZCZEGÓLNYCH PRZEDMIOTÓW AKTUALNE OPŁATY ZA WARUNKI Tylko dla studentów I roku 2018/2019 Studia niestacjonarne: METALURGIA OPŁATY ZA WARUNKI Z POSZCZEGÓLNYCH PRZEDMIOTÓW SEMESTR I Matematyka I 448 Podstawy technologii wytwarzania

Bardziej szczegółowo

Standardy kształcenia dla kierunku studiów: Inżynieria materiałowa A. STUDIA PIERWSZEGO STOPNIA

Standardy kształcenia dla kierunku studiów: Inżynieria materiałowa A. STUDIA PIERWSZEGO STOPNIA Dziennik Ustaw Nr 164 458 Poz. 1166 Załącznik nr 51 Standardy kształcenia dla kierunku studiów: Inżynieria materiałowa A. STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia pierwszego stopnia trwają

Bardziej szczegółowo

Efekty kształcenia umiejętności i kompetencje: matematycznego opisu zjawisk, formułowania modeli matematycznych i ich rozwiązywania.

Efekty kształcenia umiejętności i kompetencje: matematycznego opisu zjawisk, formułowania modeli matematycznych i ich rozwiązywania. studia pedagogiczne, kierunek: EDUKACJA TECHNICZNO-INFORMATYCZNA ZOBACZ OPIS KIERUNKU ORAZ LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH Matematyka

Bardziej szczegółowo

Plan organizacyjny studiów - Inżynieria Materiałowa

Plan organizacyjny studiów - Inżynieria Materiałowa Plan organizacyjny studiów - Inżynieria Materiałowa Politechnika Koszalińska Nanotechnologii i techniki Próżniowej Plany i programy studiów Kierunek studiów: Inżynieria materiałowa w zakresie specjalności:

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów: MECHATRONIKA STUDIA PIERWSZEGO STOPNIA

Efekty kształcenia dla kierunku studiów: MECHATRONIKA STUDIA PIERWSZEGO STOPNIA Efekty kształcenia dla kierunku studiów: MECHATRONIKA STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia pierwszego stopnia trwają nie krócej niż 7 semestrów, a liczba godzin zajęć nie powinna być mniejsza

Bardziej szczegółowo

HARMONOGRAM EGZAMINÓW

HARMONOGRAM EGZAMINÓW Kierunek: MECHANIKA I BUDOWA MASZYN - studia I stopnia Materiałoznawstwo Analiza matematyczna Termodynamika techniczna 2 Cały rok Mechanika II Wytrzymałość materiałów Spawalnictwo Technologia spawania

Bardziej szczegółowo

Inżynierii Metali i Informatyki Przemysłowej Inżynieria Materiałowa

Inżynierii Metali i Informatyki Przemysłowej Inżynieria Materiałowa Studia dzienne Wydział Kierunek Propozycja punktów ECS z dnia 15.11.2007r. Inżynierii Metali i Informatyki Przemysłowej Inżynieria Materiałowa ECS dla lat I-V obowiązujące w roku akad. 2007/2008 I i II

Bardziej szczegółowo

UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW. PODSTAWOWYCH - I st. Kierunki studiów - uczelnie - studia mechatronika

UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW. PODSTAWOWYCH - I st. Kierunki studiów - uczelnie - studia mechatronika studia techniczne, kierunek: MECHATRONIKA ZOBACZ OPIS KIERUNKU ORAZ LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH Matematyka 120 h Ciągi i

Bardziej szczegółowo

Efekty kształcenia dla makrokierunku: NANOTECHNOLOGIA I TECHNOLOGIE PROCESÓW MATERIAŁOWYCH Wydział: MECHANICZNY TECHNOLOGICZNY

Efekty kształcenia dla makrokierunku: NANOTECHNOLOGIA I TECHNOLOGIE PROCESÓW MATERIAŁOWYCH Wydział: MECHANICZNY TECHNOLOGICZNY Efekty kształcenia dla makrokierunku: NANOTECHNOLOGIA I TECHNOLOGIE PROCESÓW MATERIAŁOWYCH Wydział: MECHANICZNY TECHNOLOGICZNY nazwa kierunku studiów: Makrokierunek: Nanotechnologia i technologie procesów

Bardziej szczegółowo

Zestawienie treści kształcenia na kierunku mechatronika

Zestawienie treści kształcenia na kierunku mechatronika Zestawienie treści kształcenia na kierunku mechatronika Zestawienie zawiera wyłącznie zagadnienia wymienione w standardach Dz. U. nr 164, Poz. 1166, Załącznik 66 Standardy kształcenia dla kierunku studiów:

Bardziej szczegółowo

pierwszy termin egzamin poprawkowy

pierwszy termin egzamin poprawkowy Kierunek: MECHATRONIKA - studia I stopnia 4.06. 5.09 Analiza matematyczna i równania różniczkowe Mechanika Podstawy konstrukcji maszyn Robotyka Język obcy SYSTEMY STEROWANIA Układy sterowania 3 Systemy

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA

INŻYNIERIA MATERIAŁOWA Wydział Chemiczny Politechniki Gdańskiej.0.004 PLAN STUDIÓW Rodzaj studiów: studia dzienne inżynierskie/ magisterskie - czas trwania: inż. 3, 5 lat/ 7 semestrów; mgr 5 lat/0 semestrów Kierunek studiów:

Bardziej szczegółowo

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia Tabela odniesień efektów kierunkowych do efektów obszarowych Odniesienie do Symbol Kierunkowe efekty kształcenia efektów kształcenia

Bardziej szczegółowo

pierwszy termin egzamin poprawkowy

pierwszy termin egzamin poprawkowy Kierunek: MECHATRONIKA - studia I stopnia Analiza matematyczna i równania różniczkowe Mechanika. 2 Podstawy konstrukcji maszyn Robotyka 3 SYSTEMY STEROWANIA Kinematyka i dynamika manipulatorów i robotów

Bardziej szczegółowo

PLAN STUDIÓW - STUDIA NIESTACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn

PLAN STUDIÓW - STUDIA NIESTACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn semestralny wymiar godzin PLAN STUDIÓW - STUDIA NIESTACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn Semestr 1 /sem. 1 Algebra liniowa 12 12 24 4 egz. 2 Analiza matematyczna 24 24 48 8 egz. 3 Ergonomia

Bardziej szczegółowo

Kierunek: Wirtotechnologia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Wirtotechnologia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Odlewnictwa Kierunek: Wirtotechnologia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2014/2015 Język wykładowy: Polski Semestr 1 Matematyka OWT-1-101-s Analiza matematyczna

Bardziej szczegółowo

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia Wydział: Metali Nieżelaznych Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2017/2018 Język wykładowy: Polski Semestr 1 NIM-1-105-s Grafika

Bardziej szczegółowo

semestr III Lp Przedmiot w ć l p s e ECTS Godziny

semestr III Lp Przedmiot w ć l p s e ECTS Godziny Specjalność: IMMiS - Inżynieria Materiałów Metalowych i Spawalnictwo 1 Analytical mechanics 15 15 3 30 4 Termodynamika II 15 15 30 5 Technologia spawalnictwa 5 15 15 1 5 55 6 Przem. fazowe i podstawy obr.

Bardziej szczegółowo

Kierunek: Inżynieria Ciepła Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Inżynieria Ciepła Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 21/217 Język wykładowy: Polski Semestr 1 Chemia

Bardziej szczegółowo

Standardy kształcenia dla makrokierunku studiów pn.: WIRTOTECHNOLOGIA A. STUDIA PIERWSZEGO STOPNIA

Standardy kształcenia dla makrokierunku studiów pn.: WIRTOTECHNOLOGIA A. STUDIA PIERWSZEGO STOPNIA Standardy kształcenia dla makrokierunku studiów pn.: WIRTOTECHNOLOGIA A. STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia pierwszego stopnia trwają 7 semestrów. Liczba godzin zajęć wynosi nie mniej

Bardziej szczegółowo

Kierunek: Edukacja Techniczno Informatyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne.

Kierunek: Edukacja Techniczno Informatyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne. Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Edukacja Techniczno Informatyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2018/2019 Język wykładowy:

Bardziej szczegółowo

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY WYDZIAŁ TRANSPORTU I INFORMATYKI Nazwa kierunku Poziom Profil Symbole efektów na kierunku K_W01 K _W 02 K _W03 K _W04 K _W05 K _W06 MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY Efekty - opis słowny Po

Bardziej szczegółowo

Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY

Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY nazwa kierunku studiów: Makrokierunek: Informatyka stosowana z komputerową

Bardziej szczegółowo

KIERUNEK: MECHANIKA I BUDOWA MASZYN

KIERUNEK: MECHANIKA I BUDOWA MASZYN Państwowa Wyższa Szkoła Zawodowa Lp. KIERUNEK: MECHANIKA I BUDOWA MASZYN im. J. A. Komeńskiego w Lesznie PLANU STUDIÓW /STACJONARNE - 7 SEMESTRÓW/ Rok akademicki 200/20 A E ZO Ogółem W Ć L P W Ć L P K

Bardziej szczegółowo

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2018/2019 Język wykładowy: Polski Semestr

Bardziej szczegółowo

Informator dla kandydatów na studia

Informator dla kandydatów na studia Kształtowanie struktury i własności materiałów nanostrukturalnych Komputerowe wspomaganie doboru i projektowania materiałów Zasady projektowania i modelowania materiałów nanostrukturalnych Metody sztucznej

Bardziej szczegółowo

PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn

PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn semestralny wymiar godzin PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn Semestr 1 /sem. 1 Algebra liniowa 20 20 40 4 egz. 2 Analiza matematyczna 40 40 80 8 egz. 3 Ergonomia

Bardziej szczegółowo

Analiza ryzyka - EGZAMIN 10wE - Analiza ryzyka - 20ćw. Bezpieczeństwo informacji - EGZAMIN 10wE - Bezpieczeństwo informacji

Analiza ryzyka - EGZAMIN 10wE - Analiza ryzyka - 20ćw. Bezpieczeństwo informacji - EGZAMIN 10wE - Bezpieczeństwo informacji Niniejszym podaje się do wiadomości studentów studiów niestacjonarnych inżynierskich i magisterskich uzupełniających, że w semestrze letnim roku akademickiego 011/01 obowiązuje uzyskanie zaliczeń i egzaminów

Bardziej szczegółowo

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr

Bardziej szczegółowo

Uchwała Senatu Uniwersytetu Kazimierza Wielkiego. Nr 147/2012/2013. z dnia 8 lipca 2013 r.

Uchwała Senatu Uniwersytetu Kazimierza Wielkiego. Nr 147/2012/2013. z dnia 8 lipca 2013 r. Uchwała Senatu Uniwersytetu Kazimierza Wielkiego Nr 147/2012/2013 z dnia 8 lipca 2013 r. w sprawie utworzenia kierunku studiów na Wydziale Matematyki, Fizyki i Techniki i określenia efektów dla kierunku

Bardziej szczegółowo

HARMONOGRAM EGZAMINÓW - rok akademicki 2015/ semestr zimowy. Kierunek ENERGETYKA - studia inżynierskie środa

HARMONOGRAM EGZAMINÓW - rok akademicki 2015/ semestr zimowy. Kierunek ENERGETYKA - studia inżynierskie środa Kierunek ENERGETYKA - studia inżynierskie 1 Analiza matematyczna Materiałoznawstwo 2 Termodynamika Wytrzymałość materiałów Gospodarka energetyczna Technologie energetyczne III Spalanie paliw stałych, ciekłych

Bardziej szczegółowo

Edukacja techniczno-informatyczna I stopień studiów. I. Pytania kierunkowe

Edukacja techniczno-informatyczna I stopień studiów. I. Pytania kierunkowe I stopień studiów I. Pytania kierunkowe Pytania kierunkowe KMiETI 7 KTMiM 7 KIS 6 KMiPKM 6 KEEEiA 5 KIB 4 KPB 3 KMRiMB 2 1. Omów sposób obliczeń pracy i mocy w ruchu obrotowym. 2. Co to jest schemat kinematyczny?

Bardziej szczegółowo

WYKAZ PRZEDMIOTÓW- STUDIA STACJONARNE II stopnia semestralny wymiar godzin kierunek: Mechanika i Budowa Maszyn

WYKAZ PRZEDMIOTÓW- STUDIA STACJONARNE II stopnia semestralny wymiar godzin kierunek: Mechanika i Budowa Maszyn WYKAZ PRZEDMIOTÓW- STUDIA STACJONARNE II stopnia semestralny wymiar godzin kierunek: Mechanika i Budowa Maszyn w-wykład; ć-ćwiczenia; l-laboratorium; p-projektowanie; s-seminarium; e-egzamin Specjalność:

Bardziej szczegółowo

Poziom Nazwa przedmiotu Wymiar ECTS

Poziom Nazwa przedmiotu Wymiar ECTS Plan zajęć dla kierunku Mechanika i Budowa Maszyn studia niestacjonarne, obowiązuje od 1 października 2019r. Objaśnienia skrótów na końcu tekstu 1 1 przedmioty wspólne dla wszystkich specjalności Mechanika

Bardziej szczegółowo

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Metali Nieżelaznych Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2013/2014 Język wykładowy: Polski Semestr 1 NIM-1-109-s Wstęp do

Bardziej szczegółowo

Kierunek: Edukacja Techniczno Informatyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Edukacja Techniczno Informatyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Edukacja Techniczno Informatyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy:

Bardziej szczegółowo

Teoria sprężystości i plastyczności 1W E (6 ECTS) Modelowanie i symulacja ruchu maszyn i mechanizmów 1L (3 ECTS)

Teoria sprężystości i plastyczności 1W E (6 ECTS) Modelowanie i symulacja ruchu maszyn i mechanizmów 1L (3 ECTS) Kierunek : MECHANIKA I BUDOWA MASZYN. Studia niestacjonarne II-go stopnia, specjalność KOMPUTEROWE PROJEKTOWANIE MASZYN I URZĄDZEŃ godzin Analiza wytrzymałościowa elementów konstrukcji W E, C ( ECTS) Symulacje

Bardziej szczegółowo

PLAN STUDIÓW Wydział Chemiczny, Wydział Mechaniczny, Wydział Fizyki Technicznej i Matematyki Stosowanej Inżynieria materiałowa. efekty kształcenia

PLAN STUDIÓW Wydział Chemiczny, Wydział Mechaniczny, Wydział Fizyki Technicznej i Matematyki Stosowanej Inżynieria materiałowa. efekty kształcenia WYDZIAŁ: KIERUNEK: poziom kształcenia: profil: forma studiów: Lp. O/F Semestr 1 kod modułu/ przedmiotu* 1 O PG_00039772 Matematyka I 2 O PG_00039777 Materiały a postęp cywilizacji 3 O PG_00039773 Matematyka

Bardziej szczegółowo

PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH

PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH WIT GRZESIK PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH Wydanie 3, zmienione i uaktualnione Wydawnictwo Naukowe PWN SA Warszawa 2018 Od Autora Wykaz ważniejszych oznaczeń i skrótów SPIS TREŚCI 1. OGÓLNA

Bardziej szczegółowo

Standardy kształcenia dla kierunku studiów: Edukacja techniczno-informatyczna A. STUDIA PIERWSZEGO STOPNIA

Standardy kształcenia dla kierunku studiów: Edukacja techniczno-informatyczna A. STUDIA PIERWSZEGO STOPNIA Załącznik nr 21 Standardy kształcenia dla kierunku studiów: Edukacja techniczno-informatyczna A. STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia licencjackie trwają nie krócej niŝ 6 semestrów. Liczba

Bardziej szczegółowo

Zagadnienia kierunkowe Kierunek mechanika i budowa maszyn, studia pierwszego stopnia

Zagadnienia kierunkowe Kierunek mechanika i budowa maszyn, studia pierwszego stopnia Zagadnienia kierunkowe Kierunek mechanika i budowa maszyn, studia pierwszego stopnia 1. Wymiń warunki równowagi dowolnego płaskiego układu sił. 2. Co można wyznaczyć w statycznej próbie rozciągani. 3.

Bardziej szczegółowo

Kierunek: Metalurgia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Metalurgia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Metalurgia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 Matematyka

Bardziej szczegółowo

Godziny w semestrze Kod Nazwa przedmiotu suma w ćw lab p sem ECTS e. MME-1PC-13 Chemia ogólna A e

Godziny w semestrze Kod Nazwa przedmiotu suma w ćw lab p sem ECTS e. MME-1PC-13 Chemia ogólna A e RAMOWY PLAN STUDIÓW Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Metalurgia Studia: I stopnia stacjonarne (inżynierskie) z-zaliczenie e-egzamin SEMESTR 1 15 Ochrona środowiska i gospodarka

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA NA STUDIACH I STOPNIA DLA KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI PROFIL PRAKTYCZNY

EFEKTY KSZTAŁCENIA NA STUDIACH I STOPNIA DLA KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI PROFIL PRAKTYCZNY Państwowa Wyższa Szkoła Zawodowa im. H. Cegielskiego w Gnieźnie Instytut Zarządzania i Inżynierii Produkcji Kierunkowe Efekty Kształcenia EFEKTY KSZTAŁCENIA NA STUDIACH I STOPNIA DLA KIERUNKU ZARZĄDZANIE

Bardziej szczegółowo

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Metali Nieżelaznych Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 NIM-1-109-s Wstęp do

Bardziej szczegółowo

WYDZIAŁ INŻYNIERII MATERIAŁOWEJ I METALURGII

WYDZIAŁ INŻYNIERII MATERIAŁOWEJ I METALURGII Katowice, ul. Krasińskiego 8, tel. 32 603 41 023, e-mail: rmbos@polsl.pl (S I i II, NW II) kierunek studiów: INŻYNIERIA MATERIAŁOWA kryteria przyjęć matematyka z egzaminu maturalnego I stopnia z tytułem

Bardziej szczegółowo

Specjalność: IMMiS - Inżynieria Materiałów Metalowych i Spawalnictwo semestr I Lp Przedmiot w ć l p s e ECTS Godziny 1 Analytical mechanics

Specjalność: IMMiS - Inżynieria Materiałów Metalowych i Spawalnictwo semestr I Lp Przedmiot w ć l p s e ECTS Godziny 1 Analytical mechanics Specjalność: IMMiS - Inżynieria Materiałów Metalowych i Spawalnictwo semestr I 1 Analytical mechanics 9 9 3 18 Mechanika ośrodków ciągłych i mechanika ciała stałego 18 9 3 7 3 Metoda elementów skończonych

Bardziej szczegółowo

zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym

zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym Wykaz kierunkowych efektów kształcenia PROGRAM KSZTAŁCENIA: Kierunek Edukacja techniczno-informatyczna POZIOM KSZTAŁCENIA: studia pierwszego stopnia PROFIL KSZTAŁCENIA: praktyczny Przyporządkowanie kierunku

Bardziej szczegółowo

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Energetyka studia I stopnia

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Energetyka studia I stopnia Załącznik 3 do uchwały nr /d/05/2012 Wydział Mechaniczny PK Kierunkowe efekty kształcenia wraz z odniesieniem do efektów Kierunek: Energetyka studia I stopnia Lista efektów z odniesieniem do efektów Kierunek:

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA PLAN STUDIÓW

POLITECHNIKA RZESZOWSKA PLAN STUDIÓW POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa PLAN STUDIÓW dla kierunku: Inżynieria materiałowa studia I stopnia stacjonarne Rzeszów, 12 Listopada 2014 Plan studiów

Bardziej szczegółowo

Zestawienie treści kształcenia na kierunku inżynieria materiałowa

Zestawienie treści kształcenia na kierunku inżynieria materiałowa Zestawienie treści kształcenia na kierunku inżynieria materiałowa Zestawienie zawiera wyłącznie zagadnienia wymienione w standardach Dz. U. nr 164, Poz. 1166, Załącznik 51 Standardy kształcenia dla kierunku

Bardziej szczegółowo

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Niestacjonarne. laboratoryjne projektowe.

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Niestacjonarne. laboratoryjne projektowe. Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Niestacjonarne Rocznik: 017/018 Język wykładowy: Polski Semestr 1 Fizyka

Bardziej szczegółowo

Mechanika i budowa maszyn Studia niestacjonarne I-go stopnia RW. Rzeszów r.

Mechanika i budowa maszyn Studia niestacjonarne I-go stopnia RW. Rzeszów r. Rzeszów, 19.12.2012 r. Mechanika i budowa maszyn Studia niestacjonarne I-go stopnia RW. Rzeszów 11.04.2012 r. MC Przedmiot humanistyczny historia techniki Wprowadzenie do procesów produkcyjnych Semestr

Bardziej szczegółowo

Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-1082 Podstawy nauki o materiałach Fundamentals of Material Science

Bardziej szczegółowo

Kierunek : MECHANIKA I BUDOWA MASZYN. Studia niestacjonarne pierwszego stopnia przedmioty wspólne kierunku 2014/2015

Kierunek : MECHANIKA I BUDOWA MASZYN. Studia niestacjonarne pierwszego stopnia przedmioty wspólne kierunku 2014/2015 Kierunek : MECHANIKA I BUDOWA MASZYN. Studia niestacjonarne pierwszego stopnia przedmioty wspólne kierunku 0/0 G/ty dz.. 0 Podstawy ekonomii,w (h) [ ECTS] Ochrona własności intelektualnej 0,W (h) [ ECTS]

Bardziej szczegółowo

WYKAZ PRZEDMIOTÓW- STUDIA NIESTACJONARNE II stopnia semestralny wymiar godzin kierunek: Mechanika i Budowa Maszyn

WYKAZ PRZEDMIOTÓW- STUDIA NIESTACJONARNE II stopnia semestralny wymiar godzin kierunek: Mechanika i Budowa Maszyn WYKAZ PRZEDMIOTÓW- STUDIA NIESTACJONARNE II stopnia semestralny wymiar godzin kierunek: Mechanika i Budowa Maszyn w-wykład; ć-ćwiczenia; l-laboratorium; p-projektowanie; s-seminarium; e-egzamin Specjalność:

Bardziej szczegółowo

2012/2013. PLANY STUDIÓW stacjonarnych i niestacjonarnych I-go stopnia prowadzonych na Wydziale Elektrotechniki, Automatyki i Informatyki

2012/2013. PLANY STUDIÓW stacjonarnych i niestacjonarnych I-go stopnia prowadzonych na Wydziale Elektrotechniki, Automatyki i Informatyki PLANY STUDIÓW stacjonarnych i niestacjonarnych I-go stopnia prowadzonych na Wydziale Elektrotechniki, Automatyki i Informatyki rok akademicki 2012/2013 Opole, styczeń 2013 r. Tekst jednolity po zmianach

Bardziej szczegółowo

E - student uzyskuje punkty kredytowe w oparciu o zaliczenie i egzamin końcowy

E - student uzyskuje punkty kredytowe w oparciu o zaliczenie i egzamin końcowy kierunek: Inżynieria Materiałowa Studia niestacjonarne pierwszego stopnia Semestr 1 ECTS Forma zaliczenia Wydział Jednostka realiująkod przedmiotu 1 MK_1 Matematyka I 18 18 36 4 E WM ITSI - ZM IM 1 N 0

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ENERGETYKA

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ENERGETYKA Załącznik do uchwały Nr 000-8/4/2012 Senatu PRad. z dnia 28.06.2012r. EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ENERGETYKA Nazwa wydziału: Mechaniczny Obszar kształcenia w zakresie: Nauk technicznych Dziedzina

Bardziej szczegółowo

E - student uzyskuje punkty kredytowe w oparciu o zaliczenie i egzamin końcowy

E - student uzyskuje punkty kredytowe w oparciu o zaliczenie i egzamin końcowy kierunek: Inżynieria Materiałowa Studia stacjonarne pierwszego stopnia Semestr 1 1 MK_1 Matematyka I 30 30 60 4 E WM ITSI - ZM IM 1 S 0 1 01-0_0 2 MK_17 Podstawy informatyki 15 30 45 3 Z WM ITSI IM 1 S

Bardziej szczegółowo

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2015/2016 Język wykładowy:

Bardziej szczegółowo

PROGRAM STUDIÓW TECHNIKA DLA NAUCZYCIELI PRZEDMIOT GODZ. ZAGADNIENIA

PROGRAM STUDIÓW TECHNIKA DLA NAUCZYCIELI PRZEDMIOT GODZ. ZAGADNIENIA PROGRAM STUDIÓW TECHNIKA DLA NAUCZYCIELI PRZEDMIOT GODZ. ZAGADNIENIA Historia techniki i kultura pracy Inżynieria materiałowa 20 8 Kultura a cywilizacja. Kultura pracy kultura techniczna- kultura organizacyjna

Bardziej szczegółowo

Załącznik do Uchwały Nr XXXVIII/326/11/12 z późn. zm. Efekty kształcenia dla kierunku: INŻYNIERIA MATERIAŁOWA Wydział: MECHANICZNY TECHNOLOGICZNY

Załącznik do Uchwały Nr XXXVIII/326/11/12 z późn. zm. Efekty kształcenia dla kierunku: INŻYNIERIA MATERIAŁOWA Wydział: MECHANICZNY TECHNOLOGICZNY Efekty kształcenia dla kierunku: INŻYNIERIA MATERIAŁOWA Wydział: MECHANICZNY TECHNOLOGICZNY nazwa kierunku studiów: Inżynieria Materiałowa poziom kształcenia: studia I stopnia profil kształcenia: ogólnoakademicki

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Inżynieria materiałowa. 2. KIERUNEK: Mechanika i budowa maszyn. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Inżynieria materiałowa. 2. KIERUNEK: Mechanika i budowa maszyn. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Inżynieria teriałowa 2. KIERUNEK: Mechanika i budowa szyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: 1/1 i 2 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN:

Bardziej szczegółowo

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 Fizyka

Bardziej szczegółowo

Efekty kształcenia dla: nazwa kierunku

Efekty kształcenia dla: nazwa kierunku Uniwersytet Śląski w Katowicach str. 1 Efekty kształcenia dla: nazwa kierunku Inżynieria materiałowa poziom kształcenia pierwszy profil kształcenia ogólnoakademicki Załącznik nr 50 do uchwały nr. Senatu

Bardziej szczegółowo

w tym Razem wykłady konwer. labolat. ćwicz. w tym labolat. Razem wykłady konwer.

w tym Razem wykłady konwer. labolat. ćwicz. w tym labolat. Razem wykłady konwer. Wydział Informatyki i Nauki o Materiałach Kierunek - Inżynieria materiałowa Specjalność - Nauka o Materiałach Specjalizacje - Materiały dla medycyny, Materiały funkcjonalne, Nanomateriały, 'Komputerowe

Bardziej szczegółowo

Standardy kształcenia dla kierunku studiów: Automatyka i robotyka A. STUDIA PIERWSZEGO STOPNIA

Standardy kształcenia dla kierunku studiów: Automatyka i robotyka A. STUDIA PIERWSZEGO STOPNIA Załącznik nr 9 Standardy kształcenia dla kierunku studiów: Automatyka i robotyka A. STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia pierwszego stopnia trwają nie krócej niŝ 7 semestrów. Liczba godzin

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Własności materiałów inżynierskich Rok akademicki: 2013/2014 Kod: MIM-2-302-IS-n Punkty ECTS: 4 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Specjalność:

Bardziej szczegółowo

Załącznik 2 Tabela odniesień efektów kierunkowych do efektów obszarowych

Załącznik 2 Tabela odniesień efektów kierunkowych do efektów obszarowych Załącznik 2 Tabela odniesień efektów kierunkowych do efektów obszarowych Tabela odniesień efektów kierunkowych do efektów obszarowych (tabele odniesień efektów kształcenia) Nazwa kierunku studiów: Automatyka

Bardziej szczegółowo

PROGRAM STUDIÓW A. GRUPA ZAJĘĆ Z ZAKRESU NAUK PODSTAWOWYCH I OGÓLNOUCZELNIANYCH LICZBA GODZIN (P/K/PW)** PUNKTY ECTS EFEKTY KSZTAŁCENIA

PROGRAM STUDIÓW A. GRUPA ZAJĘĆ Z ZAKRESU NAUK PODSTAWOWYCH I OGÓLNOUCZELNIANYCH LICZBA GODZIN (P/K/PW)** PUNKTY ECTS EFEKTY KSZTAŁCENIA II. PROGRAM STUDIÓW. FORMA STUDIÓW: stacjonarne. SEMESTRÓW: 7. PUNKTÓW :. MODUŁY KSZTAŁCENIA (zajęcia lub grupy zajęć) wraz z przypisaniem zakładanych efektów kształcenia i liczby punktów : A. GRUPA ZAJĘĆ

Bardziej szczegółowo

Kierunek: Metalurgia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Metalurgia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Metali Nieżelaznych Kierunek: Metalurgia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 NME-1-106-s Informatyka I 28 0

Bardziej szczegółowo

I. OGÓLNA CHARAKTERYSTYKA PROWADZONYCH STUDIÓW. Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Forma studiów:

I. OGÓLNA CHARAKTERYSTYKA PROWADZONYCH STUDIÓW. Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Forma studiów: I. OGÓLNA CHARAKTERYSTYKA PROWADZONYCH STUDIÓW Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Forma studiów: Tytuł zawodowy uzyskiwany przez absolwenta: Metalurgia I stopień Ogólnoakademicki Stacjonarne

Bardziej szczegółowo

Efekty kształcenia dla kierunku Mechanika i budowa maszyn

Efekty kształcenia dla kierunku Mechanika i budowa maszyn Załącznik nr 17 do Uchwały Nr 673 Senatu UWM w Olsztynie z dnia 6 marca 2015 roku w sprawie zmiany Uchwały Nr 187 Senatu UWM w Olsztynie z dnia 26 marca 2013 roku zmieniającej Uchwałę Nr 916 Senatu UWM

Bardziej szczegółowo

Kierunek: Elektrotechnika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Elektrotechnika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2014/2015 Język wykładowy:

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA PLAN STUDIÓW

POLITECHNIKA RZESZOWSKA PLAN STUDIÓW POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa PLAN STUDIÓW dla kierunku: Mechanika i budowa maszyn studia I stopnia stacjonarne Rzeszów, 12.11.2014 Plan studiów z

Bardziej szczegółowo

PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: inżynieria bezpieczeństwa

PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: inżynieria bezpieczeństwa semestralny wymiar godzin PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: inżynieria bezpieczeństwa Semestr 1 1 Algebra liniowa 20 20 40 4 egz. 2 Analiza matematyczna 40 40 80 8 egz. 3 Ergonomia

Bardziej szczegółowo

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY WYDZIAŁ TRANSPORTU I INFORMATYKI Nazwa kierunku Poziom kształcenia Profil kształcenia Symbole efektów kształcenia na kierunku K_W01 K _W 02 K _W03 MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY Efekty

Bardziej szczegółowo

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W) EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia

Bardziej szczegółowo

Kierunek: Informatyka Stosowana Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia

Kierunek: Informatyka Stosowana Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia Wydział: Geologii, Geofizyki i Ochrony Środowiska Kierunek: Informatyka Stosowana Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2018/2019 Język wykładowy: Polski Semestr 1

Bardziej szczegółowo

Wstęp do inżynierii chemicznej i procesowej (1W) Grafika inżynierska (2P) Technologie informacyjne (1W) 15 1

Wstęp do inżynierii chemicznej i procesowej (1W) Grafika inżynierska (2P) Technologie informacyjne (1W) 15 1 WYDZIAŁ TECHNOLOGII CHEMICZNEJ Dziekanat ul. Berdychowo 4, 60-965 Poznań, tel. +48 61 665 2351, fax +48 61 665 2852 e-mail: office_dctf@put.poznan.pl, www.put.poznan.pl Plan studiów i punkty dla kierunku

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: RBM ET-s Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2016/2017 Kod: RBM ET-s Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Współczesne materiały inżynierskie Rok akademicki: 2016/2017 Kod: RBM-2-205-ET-s Punkty ECTS: 3 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechanika i Budowa Maszyn Specjalność:

Bardziej szczegółowo

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI studia stacjonarne pierwszego stopnia obowiązuje od roku akademickiego 2013/2014

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI studia stacjonarne pierwszego stopnia obowiązuje od roku akademickiego 2013/2014 ZARZĄDZANIE I INŻYNIERIA PRODUKCJI studia stacjonarne pierwszego stopnia obowiązuje od roku akademickiego 03/0 Semestr I Język angielski Repetytorium z matematyki 0 0 3 Algebra liniowa 3 Analiza matematyczna

Bardziej szczegółowo

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. laboratoryjne projektowe.

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. laboratoryjne projektowe. Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 17/18 Język wykładowy: Polski Semestr 1 Fizyka RAR-1-1-s

Bardziej szczegółowo

Plan studiów na kierunku Mechanika i Budowa Maszyn (stacjonarne)

Plan studiów na kierunku Mechanika i Budowa Maszyn (stacjonarne) Semestr 1 1 MK_1 Matematyka I 30 30 60 4 E WM ITSI MBM 1 S 0 1 01-0 _0 2 MK_4 BHP O 5 5 1 Z WM WM MBM 1 S 0 1 04-0 _0 3 MK_19 Grafika inżynierska I 15 30 45 4 Z WM KPKM MBM 1 S 0 1 19-0 _0 4 MK_20 Podstawy

Bardziej szczegółowo

PLAN STUDIÓW NR IV. GODZINY w tym W Ć L ,5 6. Wychowanie fizyczne 6

PLAN STUDIÓW NR IV. GODZINY w tym W Ć L ,5 6. Wychowanie fizyczne 6 A. PRZEDMIOTY OGÓLNE 1. Przedmiot humanistyczno-ekonomiczno-społeczno-prawny 3 0 1 2 30 30 2 2. Przedmiot humanistyczno-ekonomiczno-społeczno-prawny 4 0 1 3 30 15 15 1 1 3. Język obcy 5 0 4 12 120 120

Bardziej szczegółowo

PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: wzornictwo przemysłowe

PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: wzornictwo przemysłowe semestralny wymiar PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: wzornictwo przemysłowe Semestr 1 1 Algebra liniowa - 20 h wykładu + 20 h ćwiczeń 20 20 40 4 egz. 2 Analiza matematyczna - 40 h wykładu

Bardziej szczegółowo

PLAN STUDIÓW. efekty kształcenia K6_W08 K6_U04 K6_W03 K6_U01 K6_W01 K6_W02 K6_U01 K6_K71 K6_U71 K6_W71 K6_K71 K6_U71 K6_W71

PLAN STUDIÓW. efekty kształcenia K6_W08 K6_U04 K6_W03 K6_U01 K6_W01 K6_W02 K6_U01 K6_K71 K6_U71 K6_W71 K6_K71 K6_U71 K6_W71 WYDZIAŁ: KIERUNEK: poziom kształcenia: profil: forma studiów: Lp. O/F Semestr 1 kod modułu/ przedmiotu* I stopnia - inżynierskie ogólnoakademicki 1 O PG_00020714 Planowanie i analiza eksperymentu 2 O PG_00037339

Bardziej szczegółowo

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Elektrotechnika studia I stopnia

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Elektrotechnika studia I stopnia Załącznik 1 do uchwały nr 32/d/05/2012 Wydział Inżynierii Elektrycznej i Komputerowej PK Kierunkowe efekty kształcenia wraz z odniesieniem do efektów Kierunek: Elektrotechnika studia I stopnia Lista efektów

Bardziej szczegółowo

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów Inżynieria materiałowa studia pierwszego studia stacjonarne

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów Inżynieria materiałowa studia pierwszego studia stacjonarne SYLABUS Nazwa Procesy specjalne Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy przedmiot Centrum Mikroelektroniki i Nanotechnologii Kod Studia Kierunek studiów Poziom kształcenia Forma studiów

Bardziej szczegółowo

SEMESTRALNY WYKAZ ZALICZEŃ - IDZ Rok. akad. 2012/2013

SEMESTRALNY WYKAZ ZALICZEŃ - IDZ Rok. akad. 2012/2013 Wydział Zarządzania - Dziekanat ds. Studiów Warszawa,... SEMESTRALNY WYKAZ ZALICZEŃ - IDZ Rok. akad. 2012/2013 Nazwisko i imię:... adres.. Rodzaj studiów: INŻYNIERSKIE Tryb studiowania: STACJONARNE kierunek:

Bardziej szczegółowo

Efekty kształcenia umiejętności i kompetencje: matematycznego opisu zjawisk fizycznych i zagadnień technicznych oraz rolniczych.

Efekty kształcenia umiejętności i kompetencje: matematycznego opisu zjawisk fizycznych i zagadnień technicznych oraz rolniczych. studia rolnicze i leśne, kierunek: TECHNIKA ROLNICZA I LEŚNA ZOBACZ OPIS KIERUNKU ORAZ LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH Matematyka

Bardziej szczegółowo

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZARZĄDZANIE I INŻYNIERIA PRODUKCJI studia niestacjonarne pierwszego stopnia obowiązuje od roku akademickiego 2013/201 Semestr I 1 Język angielski 1 20 1 2 Repetytorium z matematyki 8 8 2 3 Algebra liniowa

Bardziej szczegółowo

Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 2015 r.

Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 2015 r. PLAN STUDIÓW DLA KIERUNKU INFORMATYKA STUDIA: INŻYNIERSKIE TRYB STUDIÓW: STACJONARNE Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 201 r. Egzamin po semestrze Obowiązuje od naboru na rok akademicki

Bardziej szczegółowo

Nazwa przedmiotu Wymiar ECTS blok I II III

Nazwa przedmiotu Wymiar ECTS blok I II III ólne dla wszyst. Zjawiska fizyczne w procesach wytwarzania W:30 L:15 3 fizyka 45 C:30 2 nietechniczne 30 W:15 P:15 2 HES 30 Podstawy matematyczne MES W:15 L:15 2 matematyka 30 Planowanie eksperymentu W:15

Bardziej szczegółowo

Kierunek zarządzanie i inżynieria produkcji

Kierunek zarządzanie i inżynieria produkcji Kierunek zarządzanie i inżynieria produkcji - studia niestacjonarne pierwszego stopnia Semestralny plan studiów obowiązujący od roku akademickiego 017/01 Semestr 1 1 Język angielski I 0 1 Repetytorium

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA PLAN STUDIÓW

POLITECHNIKA RZESZOWSKA PLAN STUDIÓW POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa PLAN STUDIÓW dla kierunku: Zarządzanie i inżynieria produkcji studia I stopnia niestacjonarne Rzeszów, 12. Listopada.

Bardziej szczegółowo