LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW. PODSTAWOWYCH - I st. Kierunki studiów - uczelnie - studia inżynieria materiałowa
|
|
- Roman Krawczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 studia techniczne, kierunek: INŻYNIERIA MATERIAŁOWA ZOBACZ OPIS KIERUNKU ORAZ LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH Matematyka 120 h Podstawy geometrii analitycznej. Algebra macierzy. Rozwiązywanie układów algebraicznych równań liniowych. Liczby zespolone. Rachunek różniczkowy i całkowy funkcji jednej zmiennej. Szeregi liczbowe. Różniczkowanie i całkowanie funkcji wielu zmiennych. Równania różniczkowe zwyczajne. Elementy logiki matematycznej. Funkcje, relacje i zbiory. Kombinatoryka i rekurencja. Elementy rachunku wektorowego, tensorowego i operatorowego. Matematyczne podstawy planowania eksperymentu. Statystyka matematyczna. ścisłego formułowania problemów i posługiwania się metodami matematycznymi przy analizie problematyki technicznej. Fizyka 60 h Zasady dynamiki układów punktów materialnych. Elementy mechaniki relatywistycznej. Podstawowe prawa elektrodynamiki i magnetyzmu. Zasady optyki geometrycznej i falowej. Elementy optyki relatywistycznej. Dyfrakcja, interferencja i polaryzacja fal. Spójność światła. Fizyka laserów Podstawy akustyki. Mechanika kwantowa i budowa materii Promieniowanie rentgenowskie. Promieniotwórczość. Fizyka jądrowa. Elementy fizyki ciała stałego i fizyki metali. Metale i półprzewodniki. pomiaru wielkości fizycznych, analizy zjawisk fizycznych i rozwiązywania zagadnień technicznych w oparciu o prawa fizyki. Chemia 60 h Budowa pierwiastków i związków chemicznych. Elementy chemii nieorganicznej. Kwasy, zasady, sole. Typy reakcji reakcje utleniania i redukcji. Elementy chemii organicznej. Węglowodory, ropa naftowa. Polimery. Elementy chemii fizycznej. Stany skupienia materii. Elementy termodynamiki chemicznej. Termochemia. Równowaga chemiczna. Kinetyka chemiczna. Równowagi fazowe. Elektrochemia. Elementy spektroskopii. Elementy chemii procesowej i podstawy metalurgii. rozumienia przemian chemicznych i ich znaczenia w wytwarzaniu i kształtowaniu własności materiałów inżynierskich. Informatyka 60 h Architektura systemów komputerowych. Podstawy algorytmiki. Bazy danych i relacyjne bazy danych. Kompilatory i języki programowania. Programowanie proceduralne i obiektowe. Wybrany język programowania wysokiego poziomu. Techniki multimedialne. Oprogramowanie i narzędzia internetowe: tworzenie stron WWW, tekst, grafika, animacja, dźwięk na stronach internetowych. Systemy komputerowego wspomagania prac inżynierskich w inżynierii materiałowej i technice. strona 1 / 7
2 korzystania z komputerowego wspomagania do rozwiązywania zadań technicznych. KIERUNKOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW KIERUNKOWYCH 660 h Nauka o materiałach Materia i jej składniki. Oddziaływania międzyatomowe i międzycząsteczkowe. Struktura faz skondensowanych. Sieć krystaliczna, elementy krystalografii i krystalochemii. Defekty struktury krystalicznej. Optyczne, elektryczne i magnetyczne własności materiałów. Sprężystość i plastyczność. Monokryształy, polikryształy, materiały wielofazowe, granice rozdziału. Zjawiska powierzchniowe. Własności powierzchni fazowych, adsorpcja, adhezja. Fazy, równowaga fazowa, polimorfizm. Dyfuzja i prawa dyfuzji. Procesy strukturalne i przemiany fazowe. Procesy umocnienia materiałów. Odkształcenie plastyczne i procesy aktywowane cieplnie. Przemiany fazowe w stanie stałym, przemiany dyfuzyjne i bezdyfuzyjne. Pokrycia i warstwy powierzchniowe. Struktura i własności materiałów amorficznych i nanostrukturalnych. Zależność pomiędzy strukturą i własnościami materiałów inżynierskich. Kryteria doboru materiałów inżynierskich i kształtowania ich własności. Warunki pracy i mechanizmy zużycia i dekohezji materiałów (pękanie, zmęczenie, pełzanie, korozja, zużycie trybologiczne). Znaczenie nauki o materiałach i jej tendencje rozwojowe. doboru materiałów inżynierskich i metod kształtowania ich struktury i własności do zastosowań technicznych. Materiały inżynierskie Podstawowe grupy materiałów inżynierskich, ich struktura i własności oraz technologie ich kształtowania i zasady ich doboru do zastosowań na produkty techniczne: metale i ich stopy, materiały polimerowe, ceramiczne i kompozytowe. Stale i inne stopy żelaza, ich klasyfikacja i oznaczanie. Struktura i własności stali niestopowych. Rola domieszek, zanieczyszczeń i wtrąceń niemetalicznych w stalach niestopowych oraz pierwiastków stopowych w stalach stopowych. Struktura i własności stali stopowych. Nadstopy. Odlewnicze stopy żelaza staliwa i żeliwa: niestopowe i stopowe. Metale nieżelazne i ich stopy, ich klasyfikacja i oznaczanie oraz struktura i własności. Materiały ceramiczne. Ceramika: inżynierska i porowata. Cermetale inżynierskie. Materiały ceramiczne o specjalnych zastosowaniach. Szkła i ceramika szklana. Materiały węglowe. Fullereny i nanorurki węglowe. Materiały spiekane i wytwarzane metodami metalurgii proszków. Spiekane i supertwarde materiały narzędziowe. Materiały polimerowe, ich klasyfikacja i oznaczanie. Materiały kompozytowe o osnowie: polimerowej, metalowej, ceramicznej i węglowej oraz warstwowe. Materiały: funkcjonalne, półprzewodnikowe, nadprzewodzące, o szczególnych własnościach magnetycznych. Intermetaliki. Stopy metali o małej rozszerzalności cieplnej. Materiały: porowate, amorficzne i nanostrukturalne. Inżynierskie materiały inteligentne. Materiały: biomedyczne i biomimetyczne. Porównanie podstawowych własności mechanicznych, technologicznych, eksploatacyjnych i fizyko-chemicznych oraz uwarunkowań ekonomicznych i zastosowania różnych grup materiałów inżynierskich. Znaczenie materiałów inżynierskich w postępie cywilizacyjnym i perspektywy ich rozwoju. charakteryzowania własności fizykochemicznych, technologicznych i eksploatacyjnych materiałów inżynierskich, doboru materiałów inżynierskich do zastosowań technicznych w zależności od struktury, własności, warunków użytkowania oraz doboru procesów technologicznych ich wytwarzania i przetwórstwa, oceny uwarunkowań ekonomicznych stosowania materiałów inżynierskich. Projektowanie materiałowe i komputerowa nauka o materiałach Zasady doboru materiałów inżynierskich. Rola projektowania materiałowego w projektowaniu inżynierskim produktów i procesów ich wytwarzania. Czynniki funkcjonalne i zagadnienia jakości wytwarzania i produktów oraz czynniki socjologiczne, ekologiczne i ekonomiczne w projektowaniu inżynierskim. Metodyka projektowania strona 2 / 7
3 materiałowego. Komputerowe wspomaganie projektowania materiałowego CAMD (Computer Aided Materials Design). Zależności projektowania materiałowego i technologicznego produktów i ich elementów. Podstawowe czynniki uwzględniane podczas projektowania technologicznego. Źródła informacji o materiałach inżynierskich. Informatyczne bazy danych o materiałach inżynierskich. Podstawy komputerowej nauki o materiałach. Wybrane metody numeryczne symulacji zjawisk i procesów fizycznych oraz predykcji własności materiałów. Metody obliczania wykresów równowagi fazowej. Zastosowanie komputerowego wspomagania w badaniach struktury i własności materiałów. Numeryczna analiza danych pomiarowych. Wykorzystanie metod sztucznej inteligencji do modelowania, symulacji i predykcji struktury i własności materiałów inżynierskich. projektowania materiałowego produktów o założonej strukturze i własnościach użytkowych oraz stosowania metod komputerowej nauki o materiałach w projektowaniu inżynierskim oraz w badaniach struktury i własności materiałów inżynierskich. Badanie materiałów Mikroskopia świetlna w badaniach materiałów. Metalografia. Stereologia. Analiza obrazu. Promieniowanie rentgenowskie i jego własności. Dyfrakcja promieni rentgenowskich. Budowa dyfraktometrów. Rentgenowska analiza strukturalna. Spektrometria rentgenowska. Wiązka elektronów i jej własności. Dyfrakcja elektronów. Mikroskopia elektronowa transmisyjna. Budowa mikroskopu elektronowego transmisyjnego. Mikroskopia elektronowa odbiciowa, mikroskop skaningowy. Fraktografia. Spektroskopia elektronowa, Augera i fotoelektronów. Budowa spektrometrów. Analiza cieplna materiałów. Metody badania materiałów oparte o pomiary rezystywności elektrycznej, własności magnetycznych, akustyczne tarcia wewnętrznego i jądrowe. Spektroskopia efektu Moesbauera. Neutronografia. Zastosowanie promieniowania synchrotronowego do badania materiałów. Badania własności mechanicznych statycznych, dynamicznych, w próbach udarowych. Badania ciągliwości metodami mechaniki pękania. Pomiary twardości i mikrotwardości. Badania zmęczeniowe, w warunkach pełzania, korozji i zużycia trybologicznego. Metodyka badania cienkich pokryć i powłok. Badania defektoskopowe. Próby technologiczne i odbiorcze materiałów. Metody komputerowego wspomagania badań materiałoznawczych. Systemy zarządzania jakością w badaniach materiałów. organizacji badań i stosowania metodyki badania materiałów inżynierskich, obsługi specjalistycznej aparatury naukowo-badawczej, oceny błędów pomiarowych oraz interpretacji wyników badań z wykorzystaniem metod komputerowego wspomagania. Technologia procesów materiałowych Technologie wytwarzania metali i stopów. Metalurgia proszków. Technologie wytwarzania materiałów nanostrukturalnych, szkieł metalicznych, cienkich warstw, materiałów polimerowych, ceramicznych i kompozytowych. Technologie przetwórstwa metali i ich stopów odlewnictwo, obróbka plastyczna na zimno i na gorąco, obróbka cieplna, obróbka cieplno-plastyczna, technologie spawania, zgrzewania i lutowania, obróbka skrawaniem i zaawansowane technologie obróbki ubytkowej, metody inżynierii powierzchni i nanoszenia powłok. Technologie przetwórstwa materiałów polimerowych i modyfikacji ich powierzchni. Kontrola jakości produkowanych materiałów. Ochrona środowiska naturalnego przy różnych technologiach materiałowych. Metody recyklingu, pozyskiwania i przekształcania odpadów. Możliwości wykorzystywania przetworzonych odpadów. Podstawy komputerowego wspomagania wytwarzania CAM (Computer Aided Manufacturing). stosowania technologii procesów materiałowych w celu kształtowania produktów, ich struktury i własności oraz strona 3 / 7
4 wdrażania metod recyklingu materiałów. Mechanika techniczna i pękanie oraz wytrzymałość materiałów Redukcja dowolnego układu sił. Równowaga układów płaskich i przestrzennych wyznaczanie wielkości podporowych. Analiza statyczna belek, słupów, ram i kratownic. Elementy teorii stanu naprężenia i odkształcenia. Układy liniowo-sprężyste. Naprężenia dopuszczalne. Hipotezy wytężeniowe. Analiza wytężenia elementów maszyn. Elementy kinematyki i dynamiki punktu materialnego, układu punktów materialnych i bryły sztywnej. Podstawy teorii drgań układów mechanicznych. Elementy mechaniki pękania. Elementy mechaniki płynów. Przepływy laminarne i turbulentne, przez kanały zamknięte i otwarte. Podobieństwa zjawisk przepływowych. Elementy mechaniki komputerowej. Kryteria doboru materiałów na podstawie modeli mechaniki technicznej, mechaniki pękania i wytrzymałości materiałów. rozwiązywania problemów technicznych w oparciu o prawa mechaniki oraz wykonywania analiz wytrzymałościowych elementów maszyn i układów mechanicznych Projektowanie inżynierskie i grafika inżynierska Projektowanie obiektów i procesów. Holistyczne ujęcie procesu projektowania. Układy techniczne (maszyny, urządzenia, infrastruktura i procesy) w ujęciu systemowym. Podstawy maszynoznawstwa. Elementy maszyn. Formułowanie i analiza problemu, koncepcje rozwiązania, metody i techniki wspomagające. Kształtowanie wybranych charakterystyk obiektów technicznych obliczenia inżynierskie. Spełnianie wymagań i ograniczeń. Metody oceny i wyboru wariantów rozwiązania. Modelowanie i optymalizacja oraz bazy danych i wiedzy w projektowaniu inżynierskim. Podstawy komputerowego wspomagania projektowania CAD (Computer Aided Design). Znaczenie doboru materiałów i projektowania materiałowego w projektowaniu inżynierskim. Geometryczne podstawy i główne formy zapisu graficznego: rzutowanie, przekroje, wymiarowanie. Schematy złożonych układów technicznych. Zapis konstrukcji maszyn, urządzeń i układów technicznych oraz opis ich budowy i działania. Procesy i systemy eksploatacji, niezawodność i bezpieczeństwo, elementy diagnostyki technicznej maszyn i urządzeń oraz znaczenie własności eksploatacyjnych materiałów inżynierskich. projektowania inżynierskiego obiektów technicznych z uwzględnieniem grafiki inżynierskiej oraz z zastosowaniem komputerowego wspomagania. Termodynamika techniczna Zasady termodynamiki. Równania termiczne i kaloryczne. Przemiany termodynamiczne odwracalne i nieodwracalne. Gazy doskonałe, półdoskonałe i rzeczywiste Mieszanie dławienie i skraplanie gazów. Obiegi termodynamiczne i ich sprawność. Egzergia, bilanse egzergetyczne. Podstawowe mechanizmy wymiany ciepła: przewodzenie, konwekcja i promieniowanie ciał stałych i gazów. Podstawowe zagadnienia energetyczne rodzaje energii, bilanse energetyczne, nośniki energetyczne. Spalanie, rodzaje paliw i ich własności, ciepło spalania i wartość opałowa. Kinetyka spalania paliw stałych, ciekłych i gazowych. Wymienniki ciepła. Niekonwencjonalne źródła energii. Elementy termodynamiki materiałów inżynierskich. Urządzenia energetyczne w inżynierii materiałowej i obróbce materiałów. stosowania termodynamiki do opisu zjawisk fizycznych i modelowania matematycznego wymiany ciepła w procesach technologicznych. Elektrotechnika i elektronika Podstawy elektrostatyki i elektromagnetyzmu. Obwody elektryczne prądu stałego i przemiennego. Moc i energia w obwodach jednofazowych i trójfazowych. Transformator. Maszyny prądu stałego oraz przemiennego. Silniki i napęd elektryczny. Przyrządy półprzewodnikowe. Diody, tranzystory, wzmacniacze mocy i operacyjne w układach liniowych strona 4 / 7
5 i nieliniowych. Sposoby wytwarzania i generatory drgań elektrycznych. Układy prostownikowe i zasilające. Układy dwustanowe i cyfrowe. Arytmetyka cyfrowa i funkcje logiczne. Wybrane półprzewodnikowe układy cyfrowe. Architektura mikrokomputerów i elementy techniki mikroprocesorowej. Zastosowania materiałów w elektrotechnice i elektronice. wykorzystywania znajomości zjawisk elektrycznych i ich zastosowań w technice oraz doboru materiałów na urządzenia elektrotechniczne i elektroniczne. Systemy zarządzania Podstawy teorii zarządzania. Cykl produkcyjny i zasady organizacji pracy. Jakość pracy i produktu. Metody i techniki zarządzania jakością. Standardy systemów zarządzania jakością: ISO z serii 9000, bezpieczeństwa produktu, dobrej praktyki, zarządzania bezpieczeństwem pracy. Systemy oceny zgodności. Procesy decyzyjne. Motywacyjne techniki zarządzania. Bezpieczeństwo i higiena pracy. Prawne podstawy ochrony pracy. Koncepcja zrównoważonego rozwoju. Ochrona środowiska. Ekologia przemysłowa. Systemy zarządzania środowiskowego według ISO serii i innych norm krajowych i międzynarodowych. Czystsza produkcja jako niesformalizowany system zarządzania środowiskowego. Ekonomiczne i prawne aspekty funkcjonowania systemów zarządzania. Najlepsze dostępne praktyki, techniki i technologie. Projektowanie strategii przedsiębiorstwa i zintegrowane systemy zarządzania jakością, środowiskiem i bezpieczeństwem pracy. uwzględniania zasad organizacji pracy i zintegrowanego zarządzania w działaniach technicznych oraz w innej aktywności. KIERUNKOWYCH - II st. TREŚCI PROGRAMOWE PRZEDMIOTÓW KIERUNKOWYCH 150 h Kształtowanie struktury i własność materiałów inżynierskich Systematyka, definicje i ogólna charakterystyka podstawowych własności użytkowych materiałów. Krystaliczna struktura materiałów. Teoria elektronowa i pasmowa ciał stałych. Struktura materiałów i jej wpływ na podstawowe własności materiałów. Zjawiska transportu masy w ciałach stałych. Przemiany fazowe. Własności elektryczne, cieplne, magnetyczne, optyczne. Teorie nadprzewodnictwa. Tarcie wewnętrzne. Własności mechaniczne i technologiczne materiałów. Teoria sprężystości i plastyczności. Teoria dyslokacji i umocnienia. Odkształcanie i pękanie materiałów. Nadplastyczność. Zjawiska powierzchniowe, obróbka cieplno-chemiczna, nanoszenie powłok. Zintegrowane procesy technologiczne. Aplikacje technik komputerowych w procesach kształtowania struktury i własności materiałów. Mechanizmy niszczenia materiałów. Czynniki determinujące własności materiałów: skład chemiczny i fazowy, struktura, proces wytwarzania, środowisko pracy. kształtowania struktury i własności materiałów inżynierskich przez dobór właściwego procesu technologicznego. Projektowanie materiałów inżynierskich i technologia procesów materiałowych Kryteria doboru materiałów inżynierskich do zastosowań technicznych. Projektowanie struktury materiałów inżynierskich w celu zapewnienia wymaganych własności fizyko-chemicznych i eksploatacyjnych wytworzonych z nich produktów. Termodynamiczne, kinetyczne i strukturalne aspekty technologii procesów materiałowych. Kontrola jakości materiałów i metod ich wytwarzania. Aspekty ekonomiczne i ekologiczne projektowania technologii materiałowych. projektowania materiałów inżynierskich i technologii procesów materiałowych w celu zapewnienia wymaganych strona 5 / 7
6 własności fizyko-chemicznych i użytkowych wytworzonych z nich produktów. Zaawansowane metody badania materiałów Badanie własności materiałów w skali nano-, mikro- i makrometrycznej. Zawansowane metody dyfrakcyjne i mikroskopii elektronowej. Metody spektroskopowe, cieplne, badań powierzchni. Zawansowane metody badań własności mechanicznych. Metody badań własności cieplnych, optycznych, elektrycznych i magnetycznych. Kontrola jakości. Aplikacje technik komputerowych w badaniach struktury i własności materiałów. stosowania zaawansowanych metod badania struktury i własności materiałów inżynierskich oraz wykorzystywania specjalistycznej aparatury naukowo-badawczej do oceny skuteczności procesów technologicznych oraz wpływu warunków pracy. Komputerowe wspomaganie w inżynierii materiałowej Elementy komputerowej nauki o materiałach. Systemy komputerowego wspomagania badań w technice. Bazy danych materiałowych i zasady ich wykorzystywania. Zaawansowane systemy komputerowego wspomaganie doboru materiałów CAMS (Computer Aided Materials Selection) oraz komputerowego wspomagania projektowania materiałowego CAMD (Computer Aided Materials Design). Metody sztucznej inteligencji: systemy ekspertowe i hybrydowe, sztuczne sieci neuronowe oraz algorytmy ewolucyjne, w zastosowaniu do projektowania materiałowego. Sieci komputerowe, sprzęt sieciowy i wersje sieciowe oprogramowania użytkowego. Ochrona zasobów w sieciach komputerowych. Zastosowanie narzędzi sztucznej inteligencji oraz oprogramowania sieciowego do komputerowego wspomagania w inżynierii materiałowej i w badaniach materiałów inżynierskich. korzystania z narzędzi sztucznej inteligencji i aplikacji sieciowych dla praktycznego rozwiązywania zagadnień projektowych; technologicznych i badawczych w inżynierii materiałowej Zarządzanie produkcją, usługami i personelem Logistyczne parametry produkcji i usług. Organizacja przestrzeni produkcyjnej i usługowej. Zasady i metody prowadzenia i zarządzania działalnością produkcyjną i usługową. Podstawy planowania i sterowania produkcją oraz usługami. Systemy zlecania produkcji i usług. Produktywność pracy i przedsiębiorstwa. Polityka i strategia personalna przedsiębiorstwa. Procedury, metody i narzędzia zarządzania personelem. Innowacje, zmiany, konflikt i komunikacja społeczna w organizacji. Kultura organizacyjna. Organizacja służby personalnej. Komputerowe wspomaganie zarządzania produkcją, usługami oraz personelem. zarządzania personelem oraz procesem produkcyjnym i usługami z wykorzystaniem narzędzi komputerowego wspomagania. PRAKTYKI Praktyki powinny trwać nie krócej niż 4 tygodnie. Zasady i formę odbywania praktyk ustala jednostka uczelni prowadząca kształcenie. INNE WYMAGANIA Programy nauczania powinny: - przewidywać zajęcia z zakresu wychowania fizycznego - 60 h, strona 6 / 7
7 języków obcych 120 h, technologii informacyjnej 30 h, - zawierać treści humanistyczne w wymiarze nie mniejszym niż 60 h, - przewidywać zajęcia z ochrony własności intelektualnej, - zawierać nie mniej niż 50% treści technicznych (zgodnie z rozporządzeniem ministra właściwego do spraw szkolnictwa wyższego w sprawie rodzajów dyplomów i tytułów zawodowych oraz wzorów dyplomów wydawanych przez uczelnie). Część zajęć z tego zakresu powinna być realizowana w ramach pracy indywidualnej lub projektów dyplomowych, a jeżeli przewiduje to program studiów - także projektów przejściowych. strona 7 / 7
Efekty kształcenia umiejętności i kompetencje: zastosowania aparatu matematycznego do opisu zagadnień mechanicznych i procesów technologicznych.
studia techniczne, kierunek: MECHANIKA I BUDOWA MASZYN ZOBACZ OPIS KIERUNKU ORAZ LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH Matematyka 120
AKTUALNE OPŁATY ZA WARUNKI Tylko dla studentów I roku 2018/2019 OPŁATY ZA WARUNKI Z POSZCZEGÓLNYCH PRZEDMIOTÓW
AKTUALNE OPŁATY ZA WARUNKI Tylko dla studentów I roku 2018/2019 Studia niestacjonarne: METALURGIA OPŁATY ZA WARUNKI Z POSZCZEGÓLNYCH PRZEDMIOTÓW SEMESTR I Matematyka I 448 Podstawy technologii wytwarzania
Standardy kształcenia dla kierunku studiów: Inżynieria materiałowa A. STUDIA PIERWSZEGO STOPNIA
Dziennik Ustaw Nr 164 458 Poz. 1166 Załącznik nr 51 Standardy kształcenia dla kierunku studiów: Inżynieria materiałowa A. STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia pierwszego stopnia trwają
Efekty kształcenia umiejętności i kompetencje: matematycznego opisu zjawisk, formułowania modeli matematycznych i ich rozwiązywania.
studia pedagogiczne, kierunek: EDUKACJA TECHNICZNO-INFORMATYCZNA ZOBACZ OPIS KIERUNKU ORAZ LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH Matematyka
Plan organizacyjny studiów - Inżynieria Materiałowa
Plan organizacyjny studiów - Inżynieria Materiałowa Politechnika Koszalińska Nanotechnologii i techniki Próżniowej Plany i programy studiów Kierunek studiów: Inżynieria materiałowa w zakresie specjalności:
Efekty kształcenia dla kierunku studiów: MECHATRONIKA STUDIA PIERWSZEGO STOPNIA
Efekty kształcenia dla kierunku studiów: MECHATRONIKA STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia pierwszego stopnia trwają nie krócej niż 7 semestrów, a liczba godzin zajęć nie powinna być mniejsza
HARMONOGRAM EGZAMINÓW
Kierunek: MECHANIKA I BUDOWA MASZYN - studia I stopnia Materiałoznawstwo Analiza matematyczna Termodynamika techniczna 2 Cały rok Mechanika II Wytrzymałość materiałów Spawalnictwo Technologia spawania
Inżynierii Metali i Informatyki Przemysłowej Inżynieria Materiałowa
Studia dzienne Wydział Kierunek Propozycja punktów ECS z dnia 15.11.2007r. Inżynierii Metali i Informatyki Przemysłowej Inżynieria Materiałowa ECS dla lat I-V obowiązujące w roku akad. 2007/2008 I i II
UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW. PODSTAWOWYCH - I st. Kierunki studiów - uczelnie - studia mechatronika
studia techniczne, kierunek: MECHATRONIKA ZOBACZ OPIS KIERUNKU ORAZ LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH Matematyka 120 h Ciągi i
Efekty kształcenia dla makrokierunku: NANOTECHNOLOGIA I TECHNOLOGIE PROCESÓW MATERIAŁOWYCH Wydział: MECHANICZNY TECHNOLOGICZNY
Efekty kształcenia dla makrokierunku: NANOTECHNOLOGIA I TECHNOLOGIE PROCESÓW MATERIAŁOWYCH Wydział: MECHANICZNY TECHNOLOGICZNY nazwa kierunku studiów: Makrokierunek: Nanotechnologia i technologie procesów
Zestawienie treści kształcenia na kierunku mechatronika
Zestawienie treści kształcenia na kierunku mechatronika Zestawienie zawiera wyłącznie zagadnienia wymienione w standardach Dz. U. nr 164, Poz. 1166, Załącznik 66 Standardy kształcenia dla kierunku studiów:
pierwszy termin egzamin poprawkowy
Kierunek: MECHATRONIKA - studia I stopnia 4.06. 5.09 Analiza matematyczna i równania różniczkowe Mechanika Podstawy konstrukcji maszyn Robotyka Język obcy SYSTEMY STEROWANIA Układy sterowania 3 Systemy
INŻYNIERIA MATERIAŁOWA
Wydział Chemiczny Politechniki Gdańskiej.0.004 PLAN STUDIÓW Rodzaj studiów: studia dzienne inżynierskie/ magisterskie - czas trwania: inż. 3, 5 lat/ 7 semestrów; mgr 5 lat/0 semestrów Kierunek studiów:
ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia
ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia Tabela odniesień efektów kierunkowych do efektów obszarowych Odniesienie do Symbol Kierunkowe efekty kształcenia efektów kształcenia
pierwszy termin egzamin poprawkowy
Kierunek: MECHATRONIKA - studia I stopnia Analiza matematyczna i równania różniczkowe Mechanika. 2 Podstawy konstrukcji maszyn Robotyka 3 SYSTEMY STEROWANIA Kinematyka i dynamika manipulatorów i robotów
PLAN STUDIÓW - STUDIA NIESTACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn
semestralny wymiar godzin PLAN STUDIÓW - STUDIA NIESTACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn Semestr 1 /sem. 1 Algebra liniowa 12 12 24 4 egz. 2 Analiza matematyczna 24 24 48 8 egz. 3 Ergonomia
Kierunek: Wirtotechnologia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Odlewnictwa Kierunek: Wirtotechnologia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2014/2015 Język wykładowy: Polski Semestr 1 Matematyka OWT-1-101-s Analiza matematyczna
Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia
Wydział: Metali Nieżelaznych Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2017/2018 Język wykładowy: Polski Semestr 1 NIM-1-105-s Grafika
semestr III Lp Przedmiot w ć l p s e ECTS Godziny
Specjalność: IMMiS - Inżynieria Materiałów Metalowych i Spawalnictwo 1 Analytical mechanics 15 15 3 30 4 Termodynamika II 15 15 30 5 Technologia spawalnictwa 5 15 15 1 5 55 6 Przem. fazowe i podstawy obr.
Kierunek: Inżynieria Ciepła Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 21/217 Język wykładowy: Polski Semestr 1 Chemia
Standardy kształcenia dla makrokierunku studiów pn.: WIRTOTECHNOLOGIA A. STUDIA PIERWSZEGO STOPNIA
Standardy kształcenia dla makrokierunku studiów pn.: WIRTOTECHNOLOGIA A. STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia pierwszego stopnia trwają 7 semestrów. Liczba godzin zajęć wynosi nie mniej
Kierunek: Edukacja Techniczno Informatyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne.
Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Edukacja Techniczno Informatyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2018/2019 Język wykładowy:
WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY
WYDZIAŁ TRANSPORTU I INFORMATYKI Nazwa kierunku Poziom Profil Symbole efektów na kierunku K_W01 K _W 02 K _W03 K _W04 K _W05 K _W06 MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY Efekty - opis słowny Po
Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY
Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY nazwa kierunku studiów: Makrokierunek: Informatyka stosowana z komputerową
KIERUNEK: MECHANIKA I BUDOWA MASZYN
Państwowa Wyższa Szkoła Zawodowa Lp. KIERUNEK: MECHANIKA I BUDOWA MASZYN im. J. A. Komeńskiego w Lesznie PLANU STUDIÓW /STACJONARNE - 7 SEMESTRÓW/ Rok akademicki 200/20 A E ZO Ogółem W Ć L P W Ć L P K
Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia
Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2018/2019 Język wykładowy: Polski Semestr
Informator dla kandydatów na studia
Kształtowanie struktury i własności materiałów nanostrukturalnych Komputerowe wspomaganie doboru i projektowania materiałów Zasady projektowania i modelowania materiałów nanostrukturalnych Metody sztucznej
PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn
semestralny wymiar godzin PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn Semestr 1 /sem. 1 Algebra liniowa 20 20 40 4 egz. 2 Analiza matematyczna 40 40 80 8 egz. 3 Ergonomia
Analiza ryzyka - EGZAMIN 10wE - Analiza ryzyka - 20ćw. Bezpieczeństwo informacji - EGZAMIN 10wE - Bezpieczeństwo informacji
Niniejszym podaje się do wiadomości studentów studiów niestacjonarnych inżynierskich i magisterskich uzupełniających, że w semestrze letnim roku akademickiego 011/01 obowiązuje uzyskanie zaliczeń i egzaminów
Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr
Uchwała Senatu Uniwersytetu Kazimierza Wielkiego. Nr 147/2012/2013. z dnia 8 lipca 2013 r.
Uchwała Senatu Uniwersytetu Kazimierza Wielkiego Nr 147/2012/2013 z dnia 8 lipca 2013 r. w sprawie utworzenia kierunku studiów na Wydziale Matematyki, Fizyki i Techniki i określenia efektów dla kierunku
HARMONOGRAM EGZAMINÓW - rok akademicki 2015/ semestr zimowy. Kierunek ENERGETYKA - studia inżynierskie środa
Kierunek ENERGETYKA - studia inżynierskie 1 Analiza matematyczna Materiałoznawstwo 2 Termodynamika Wytrzymałość materiałów Gospodarka energetyczna Technologie energetyczne III Spalanie paliw stałych, ciekłych
Edukacja techniczno-informatyczna I stopień studiów. I. Pytania kierunkowe
I stopień studiów I. Pytania kierunkowe Pytania kierunkowe KMiETI 7 KTMiM 7 KIS 6 KMiPKM 6 KEEEiA 5 KIB 4 KPB 3 KMRiMB 2 1. Omów sposób obliczeń pracy i mocy w ruchu obrotowym. 2. Co to jest schemat kinematyczny?
WYKAZ PRZEDMIOTÓW- STUDIA STACJONARNE II stopnia semestralny wymiar godzin kierunek: Mechanika i Budowa Maszyn
WYKAZ PRZEDMIOTÓW- STUDIA STACJONARNE II stopnia semestralny wymiar godzin kierunek: Mechanika i Budowa Maszyn w-wykład; ć-ćwiczenia; l-laboratorium; p-projektowanie; s-seminarium; e-egzamin Specjalność:
Poziom Nazwa przedmiotu Wymiar ECTS
Plan zajęć dla kierunku Mechanika i Budowa Maszyn studia niestacjonarne, obowiązuje od 1 października 2019r. Objaśnienia skrótów na końcu tekstu 1 1 przedmioty wspólne dla wszystkich specjalności Mechanika
Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Metali Nieżelaznych Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2013/2014 Język wykładowy: Polski Semestr 1 NIM-1-109-s Wstęp do
Kierunek: Edukacja Techniczno Informatyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Edukacja Techniczno Informatyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy:
Teoria sprężystości i plastyczności 1W E (6 ECTS) Modelowanie i symulacja ruchu maszyn i mechanizmów 1L (3 ECTS)
Kierunek : MECHANIKA I BUDOWA MASZYN. Studia niestacjonarne II-go stopnia, specjalność KOMPUTEROWE PROJEKTOWANIE MASZYN I URZĄDZEŃ godzin Analiza wytrzymałościowa elementów konstrukcji W E, C ( ECTS) Symulacje
PLAN STUDIÓW Wydział Chemiczny, Wydział Mechaniczny, Wydział Fizyki Technicznej i Matematyki Stosowanej Inżynieria materiałowa. efekty kształcenia
WYDZIAŁ: KIERUNEK: poziom kształcenia: profil: forma studiów: Lp. O/F Semestr 1 kod modułu/ przedmiotu* 1 O PG_00039772 Matematyka I 2 O PG_00039777 Materiały a postęp cywilizacji 3 O PG_00039773 Matematyka
PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH
WIT GRZESIK PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH Wydanie 3, zmienione i uaktualnione Wydawnictwo Naukowe PWN SA Warszawa 2018 Od Autora Wykaz ważniejszych oznaczeń i skrótów SPIS TREŚCI 1. OGÓLNA
Standardy kształcenia dla kierunku studiów: Edukacja techniczno-informatyczna A. STUDIA PIERWSZEGO STOPNIA
Załącznik nr 21 Standardy kształcenia dla kierunku studiów: Edukacja techniczno-informatyczna A. STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia licencjackie trwają nie krócej niŝ 6 semestrów. Liczba
Zagadnienia kierunkowe Kierunek mechanika i budowa maszyn, studia pierwszego stopnia
Zagadnienia kierunkowe Kierunek mechanika i budowa maszyn, studia pierwszego stopnia 1. Wymiń warunki równowagi dowolnego płaskiego układu sił. 2. Co można wyznaczyć w statycznej próbie rozciągani. 3.
Kierunek: Metalurgia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Metalurgia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 Matematyka
Godziny w semestrze Kod Nazwa przedmiotu suma w ćw lab p sem ECTS e. MME-1PC-13 Chemia ogólna A e
RAMOWY PLAN STUDIÓW Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Metalurgia Studia: I stopnia stacjonarne (inżynierskie) z-zaliczenie e-egzamin SEMESTR 1 15 Ochrona środowiska i gospodarka
EFEKTY KSZTAŁCENIA NA STUDIACH I STOPNIA DLA KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI PROFIL PRAKTYCZNY
Państwowa Wyższa Szkoła Zawodowa im. H. Cegielskiego w Gnieźnie Instytut Zarządzania i Inżynierii Produkcji Kierunkowe Efekty Kształcenia EFEKTY KSZTAŁCENIA NA STUDIACH I STOPNIA DLA KIERUNKU ZARZĄDZANIE
Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Metali Nieżelaznych Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 NIM-1-109-s Wstęp do
WYDZIAŁ INŻYNIERII MATERIAŁOWEJ I METALURGII
Katowice, ul. Krasińskiego 8, tel. 32 603 41 023, e-mail: rmbos@polsl.pl (S I i II, NW II) kierunek studiów: INŻYNIERIA MATERIAŁOWA kryteria przyjęć matematyka z egzaminu maturalnego I stopnia z tytułem
Specjalność: IMMiS - Inżynieria Materiałów Metalowych i Spawalnictwo semestr I Lp Przedmiot w ć l p s e ECTS Godziny 1 Analytical mechanics
Specjalność: IMMiS - Inżynieria Materiałów Metalowych i Spawalnictwo semestr I 1 Analytical mechanics 9 9 3 18 Mechanika ośrodków ciągłych i mechanika ciała stałego 18 9 3 7 3 Metoda elementów skończonych
zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym
Wykaz kierunkowych efektów kształcenia PROGRAM KSZTAŁCENIA: Kierunek Edukacja techniczno-informatyczna POZIOM KSZTAŁCENIA: studia pierwszego stopnia PROFIL KSZTAŁCENIA: praktyczny Przyporządkowanie kierunku
Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Energetyka studia I stopnia
Załącznik 3 do uchwały nr /d/05/2012 Wydział Mechaniczny PK Kierunkowe efekty kształcenia wraz z odniesieniem do efektów Kierunek: Energetyka studia I stopnia Lista efektów z odniesieniem do efektów Kierunek:
POLITECHNIKA RZESZOWSKA PLAN STUDIÓW
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa PLAN STUDIÓW dla kierunku: Inżynieria materiałowa studia I stopnia stacjonarne Rzeszów, 12 Listopada 2014 Plan studiów
Zestawienie treści kształcenia na kierunku inżynieria materiałowa
Zestawienie treści kształcenia na kierunku inżynieria materiałowa Zestawienie zawiera wyłącznie zagadnienia wymienione w standardach Dz. U. nr 164, Poz. 1166, Załącznik 51 Standardy kształcenia dla kierunku
Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Niestacjonarne. laboratoryjne projektowe.
Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Niestacjonarne Rocznik: 017/018 Język wykładowy: Polski Semestr 1 Fizyka
Mechanika i budowa maszyn Studia niestacjonarne I-go stopnia RW. Rzeszów r.
Rzeszów, 19.12.2012 r. Mechanika i budowa maszyn Studia niestacjonarne I-go stopnia RW. Rzeszów 11.04.2012 r. MC Przedmiot humanistyczny historia techniki Wprowadzenie do procesów produkcyjnych Semestr
Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-1082 Podstawy nauki o materiałach Fundamentals of Material Science
Kierunek : MECHANIKA I BUDOWA MASZYN. Studia niestacjonarne pierwszego stopnia przedmioty wspólne kierunku 2014/2015
Kierunek : MECHANIKA I BUDOWA MASZYN. Studia niestacjonarne pierwszego stopnia przedmioty wspólne kierunku 0/0 G/ty dz.. 0 Podstawy ekonomii,w (h) [ ECTS] Ochrona własności intelektualnej 0,W (h) [ ECTS]
WYKAZ PRZEDMIOTÓW- STUDIA NIESTACJONARNE II stopnia semestralny wymiar godzin kierunek: Mechanika i Budowa Maszyn
WYKAZ PRZEDMIOTÓW- STUDIA NIESTACJONARNE II stopnia semestralny wymiar godzin kierunek: Mechanika i Budowa Maszyn w-wykład; ć-ćwiczenia; l-laboratorium; p-projektowanie; s-seminarium; e-egzamin Specjalność:
2012/2013. PLANY STUDIÓW stacjonarnych i niestacjonarnych I-go stopnia prowadzonych na Wydziale Elektrotechniki, Automatyki i Informatyki
PLANY STUDIÓW stacjonarnych i niestacjonarnych I-go stopnia prowadzonych na Wydziale Elektrotechniki, Automatyki i Informatyki rok akademicki 2012/2013 Opole, styczeń 2013 r. Tekst jednolity po zmianach
E - student uzyskuje punkty kredytowe w oparciu o zaliczenie i egzamin końcowy
kierunek: Inżynieria Materiałowa Studia niestacjonarne pierwszego stopnia Semestr 1 ECTS Forma zaliczenia Wydział Jednostka realiująkod przedmiotu 1 MK_1 Matematyka I 18 18 36 4 E WM ITSI - ZM IM 1 N 0
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ENERGETYKA
Załącznik do uchwały Nr 000-8/4/2012 Senatu PRad. z dnia 28.06.2012r. EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ENERGETYKA Nazwa wydziału: Mechaniczny Obszar kształcenia w zakresie: Nauk technicznych Dziedzina
E - student uzyskuje punkty kredytowe w oparciu o zaliczenie i egzamin końcowy
kierunek: Inżynieria Materiałowa Studia stacjonarne pierwszego stopnia Semestr 1 1 MK_1 Matematyka I 30 30 60 4 E WM ITSI - ZM IM 1 S 0 1 01-0_0 2 MK_17 Podstawy informatyki 15 30 45 3 Z WM ITSI IM 1 S
Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2015/2016 Język wykładowy:
PROGRAM STUDIÓW TECHNIKA DLA NAUCZYCIELI PRZEDMIOT GODZ. ZAGADNIENIA
PROGRAM STUDIÓW TECHNIKA DLA NAUCZYCIELI PRZEDMIOT GODZ. ZAGADNIENIA Historia techniki i kultura pracy Inżynieria materiałowa 20 8 Kultura a cywilizacja. Kultura pracy kultura techniczna- kultura organizacyjna
Załącznik do Uchwały Nr XXXVIII/326/11/12 z późn. zm. Efekty kształcenia dla kierunku: INŻYNIERIA MATERIAŁOWA Wydział: MECHANICZNY TECHNOLOGICZNY
Efekty kształcenia dla kierunku: INŻYNIERIA MATERIAŁOWA Wydział: MECHANICZNY TECHNOLOGICZNY nazwa kierunku studiów: Inżynieria Materiałowa poziom kształcenia: studia I stopnia profil kształcenia: ogólnoakademicki
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Inżynieria materiałowa. 2. KIERUNEK: Mechanika i budowa maszyn. 3. POZIOM STUDIÓW: I stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Inżynieria teriałowa 2. KIERUNEK: Mechanika i budowa szyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: 1/1 i 2 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN:
Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 Fizyka
Efekty kształcenia dla: nazwa kierunku
Uniwersytet Śląski w Katowicach str. 1 Efekty kształcenia dla: nazwa kierunku Inżynieria materiałowa poziom kształcenia pierwszy profil kształcenia ogólnoakademicki Załącznik nr 50 do uchwały nr. Senatu
w tym Razem wykłady konwer. labolat. ćwicz. w tym labolat. Razem wykłady konwer.
Wydział Informatyki i Nauki o Materiałach Kierunek - Inżynieria materiałowa Specjalność - Nauka o Materiałach Specjalizacje - Materiały dla medycyny, Materiały funkcjonalne, Nanomateriały, 'Komputerowe
Standardy kształcenia dla kierunku studiów: Automatyka i robotyka A. STUDIA PIERWSZEGO STOPNIA
Załącznik nr 9 Standardy kształcenia dla kierunku studiów: Automatyka i robotyka A. STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia pierwszego stopnia trwają nie krócej niŝ 7 semestrów. Liczba godzin
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Własności materiałów inżynierskich Rok akademicki: 2013/2014 Kod: MIM-2-302-IS-n Punkty ECTS: 4 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Specjalność:
Załącznik 2 Tabela odniesień efektów kierunkowych do efektów obszarowych
Załącznik 2 Tabela odniesień efektów kierunkowych do efektów obszarowych Tabela odniesień efektów kierunkowych do efektów obszarowych (tabele odniesień efektów kształcenia) Nazwa kierunku studiów: Automatyka
PROGRAM STUDIÓW A. GRUPA ZAJĘĆ Z ZAKRESU NAUK PODSTAWOWYCH I OGÓLNOUCZELNIANYCH LICZBA GODZIN (P/K/PW)** PUNKTY ECTS EFEKTY KSZTAŁCENIA
II. PROGRAM STUDIÓW. FORMA STUDIÓW: stacjonarne. SEMESTRÓW: 7. PUNKTÓW :. MODUŁY KSZTAŁCENIA (zajęcia lub grupy zajęć) wraz z przypisaniem zakładanych efektów kształcenia i liczby punktów : A. GRUPA ZAJĘĆ
Kierunek: Metalurgia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Metali Nieżelaznych Kierunek: Metalurgia Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 NME-1-106-s Informatyka I 28 0
I. OGÓLNA CHARAKTERYSTYKA PROWADZONYCH STUDIÓW. Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Forma studiów:
I. OGÓLNA CHARAKTERYSTYKA PROWADZONYCH STUDIÓW Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Forma studiów: Tytuł zawodowy uzyskiwany przez absolwenta: Metalurgia I stopień Ogólnoakademicki Stacjonarne
Efekty kształcenia dla kierunku Mechanika i budowa maszyn
Załącznik nr 17 do Uchwały Nr 673 Senatu UWM w Olsztynie z dnia 6 marca 2015 roku w sprawie zmiany Uchwały Nr 187 Senatu UWM w Olsztynie z dnia 26 marca 2013 roku zmieniającej Uchwałę Nr 916 Senatu UWM
Kierunek: Elektrotechnika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2014/2015 Język wykładowy:
POLITECHNIKA RZESZOWSKA PLAN STUDIÓW
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa PLAN STUDIÓW dla kierunku: Mechanika i budowa maszyn studia I stopnia stacjonarne Rzeszów, 12.11.2014 Plan studiów z
PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: inżynieria bezpieczeństwa
semestralny wymiar godzin PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: inżynieria bezpieczeństwa Semestr 1 1 Algebra liniowa 20 20 40 4 egz. 2 Analiza matematyczna 40 40 80 8 egz. 3 Ergonomia
WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY
WYDZIAŁ TRANSPORTU I INFORMATYKI Nazwa kierunku Poziom kształcenia Profil kształcenia Symbole efektów kształcenia na kierunku K_W01 K _W 02 K _W03 MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY Efekty
Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)
EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia
Kierunek: Informatyka Stosowana Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia
Wydział: Geologii, Geofizyki i Ochrony Środowiska Kierunek: Informatyka Stosowana Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2018/2019 Język wykładowy: Polski Semestr 1
Wstęp do inżynierii chemicznej i procesowej (1W) Grafika inżynierska (2P) Technologie informacyjne (1W) 15 1
WYDZIAŁ TECHNOLOGII CHEMICZNEJ Dziekanat ul. Berdychowo 4, 60-965 Poznań, tel. +48 61 665 2351, fax +48 61 665 2852 e-mail: office_dctf@put.poznan.pl, www.put.poznan.pl Plan studiów i punkty dla kierunku
Rok akademicki: 2016/2017 Kod: RBM ET-s Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Współczesne materiały inżynierskie Rok akademicki: 2016/2017 Kod: RBM-2-205-ET-s Punkty ECTS: 3 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechanika i Budowa Maszyn Specjalność:
ZARZĄDZANIE I INŻYNIERIA PRODUKCJI studia stacjonarne pierwszego stopnia obowiązuje od roku akademickiego 2013/2014
ZARZĄDZANIE I INŻYNIERIA PRODUKCJI studia stacjonarne pierwszego stopnia obowiązuje od roku akademickiego 03/0 Semestr I Język angielski Repetytorium z matematyki 0 0 3 Algebra liniowa 3 Analiza matematyczna
Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. laboratoryjne projektowe.
Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 17/18 Język wykładowy: Polski Semestr 1 Fizyka RAR-1-1-s
Plan studiów na kierunku Mechanika i Budowa Maszyn (stacjonarne)
Semestr 1 1 MK_1 Matematyka I 30 30 60 4 E WM ITSI MBM 1 S 0 1 01-0 _0 2 MK_4 BHP O 5 5 1 Z WM WM MBM 1 S 0 1 04-0 _0 3 MK_19 Grafika inżynierska I 15 30 45 4 Z WM KPKM MBM 1 S 0 1 19-0 _0 4 MK_20 Podstawy
PLAN STUDIÓW NR IV. GODZINY w tym W Ć L ,5 6. Wychowanie fizyczne 6
A. PRZEDMIOTY OGÓLNE 1. Przedmiot humanistyczno-ekonomiczno-społeczno-prawny 3 0 1 2 30 30 2 2. Przedmiot humanistyczno-ekonomiczno-społeczno-prawny 4 0 1 3 30 15 15 1 1 3. Język obcy 5 0 4 12 120 120
PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: wzornictwo przemysłowe
semestralny wymiar PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: wzornictwo przemysłowe Semestr 1 1 Algebra liniowa - 20 h wykładu + 20 h ćwiczeń 20 20 40 4 egz. 2 Analiza matematyczna - 40 h wykładu
PLAN STUDIÓW. efekty kształcenia K6_W08 K6_U04 K6_W03 K6_U01 K6_W01 K6_W02 K6_U01 K6_K71 K6_U71 K6_W71 K6_K71 K6_U71 K6_W71
WYDZIAŁ: KIERUNEK: poziom kształcenia: profil: forma studiów: Lp. O/F Semestr 1 kod modułu/ przedmiotu* I stopnia - inżynierskie ogólnoakademicki 1 O PG_00020714 Planowanie i analiza eksperymentu 2 O PG_00037339
Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Elektrotechnika studia I stopnia
Załącznik 1 do uchwały nr 32/d/05/2012 Wydział Inżynierii Elektrycznej i Komputerowej PK Kierunkowe efekty kształcenia wraz z odniesieniem do efektów Kierunek: Elektrotechnika studia I stopnia Lista efektów
SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów Inżynieria materiałowa studia pierwszego studia stacjonarne
SYLABUS Nazwa Procesy specjalne Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy przedmiot Centrum Mikroelektroniki i Nanotechnologii Kod Studia Kierunek studiów Poziom kształcenia Forma studiów
SEMESTRALNY WYKAZ ZALICZEŃ - IDZ Rok. akad. 2012/2013
Wydział Zarządzania - Dziekanat ds. Studiów Warszawa,... SEMESTRALNY WYKAZ ZALICZEŃ - IDZ Rok. akad. 2012/2013 Nazwisko i imię:... adres.. Rodzaj studiów: INŻYNIERSKIE Tryb studiowania: STACJONARNE kierunek:
Efekty kształcenia umiejętności i kompetencje: matematycznego opisu zjawisk fizycznych i zagadnień technicznych oraz rolniczych.
studia rolnicze i leśne, kierunek: TECHNIKA ROLNICZA I LEŚNA ZOBACZ OPIS KIERUNKU ORAZ LISTĘ UCZELNI TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH - I st. TREŚCI PROGRAMOWE PRZEDMIOTÓW PODSTAWOWYCH Matematyka
ZARZĄDZANIE I INŻYNIERIA PRODUKCJI
ZARZĄDZANIE I INŻYNIERIA PRODUKCJI studia niestacjonarne pierwszego stopnia obowiązuje od roku akademickiego 2013/201 Semestr I 1 Język angielski 1 20 1 2 Repetytorium z matematyki 8 8 2 3 Algebra liniowa
Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 2015 r.
PLAN STUDIÓW DLA KIERUNKU INFORMATYKA STUDIA: INŻYNIERSKIE TRYB STUDIÓW: STACJONARNE Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 201 r. Egzamin po semestrze Obowiązuje od naboru na rok akademicki
Nazwa przedmiotu Wymiar ECTS blok I II III
ólne dla wszyst. Zjawiska fizyczne w procesach wytwarzania W:30 L:15 3 fizyka 45 C:30 2 nietechniczne 30 W:15 P:15 2 HES 30 Podstawy matematyczne MES W:15 L:15 2 matematyka 30 Planowanie eksperymentu W:15
Kierunek zarządzanie i inżynieria produkcji
Kierunek zarządzanie i inżynieria produkcji - studia niestacjonarne pierwszego stopnia Semestralny plan studiów obowiązujący od roku akademickiego 017/01 Semestr 1 1 Język angielski I 0 1 Repetytorium
POLITECHNIKA RZESZOWSKA PLAN STUDIÓW
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa PLAN STUDIÓW dla kierunku: Zarządzanie i inżynieria produkcji studia I stopnia niestacjonarne Rzeszów, 12. Listopada.