Potencjał kogeneracji we wspieraniu Krajowego Systemu Elektroenergetycznego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Potencjał kogeneracji we wspieraniu Krajowego Systemu Elektroenergetycznego"

Transkrypt

1 Potencjał kogeneracji we wspieraniu Krajowego Systemu Elektroenergetycznego Adam Klepacki Dział Analiz i Rozwoju Energoprojekt Katowice SA 1. Wstęp Krajowy System Elektroenergetyczny (KSE) jest złożonym organizmem, którego sposób funkcjonowania zależy od wielu różnych czynników. Jednym z podstawowych celów działania KSE jest zrównoważenie (zbilansowanie) podaży energii elektrycznej z popytem w każdej chwili w ciągu roku. Na podaż (produkcję) energii elektrycznej składają się jednostki wytwórcze różnego typu, w tym m.in. elektrociepłownie (jednostki kogeneracyjne wytwarzające energię elektryczną i ciepło w jednym procesie) zarówno przemysłowe jak i te produkujące ciepło dla odbiorców komunalnych. Jeśli zatem elektrociepłownie (EC) stanowią część podażową w bilansie energii elektrycznej, warto przyjrzeć się co obecnie determinuje ich profil obciążenia w ciągu roku, jakie są ograniczenia oraz w jaki sposób jednostki te mogłyby wspierać KSE w wypełnianiu jego podstawowego celu. 2. Krajowy System Elektroenergetyczny (KSE) Zanim w szczegółach omówione zostaną możliwości wsparcia operacyjnego KSE przez jednostki kogeneracyjne, niezbędne jest przybliżenie funkcjonowania tego systemu oraz opisanie pewnych zmian jakie mają w nim miejsce. Zmiany te będą w szczególności istotne z punktu widzenia sposobu funkcjonowania jednostek kogeneracyjnych, dlatego też nie sposób pominąć ich w tej analizie. Podstawowym elementem funkcjonowania KSE, jest wielkość zapotrzebowania na energię elektryczną, czyli strona popytowa krajowego bilansu energii. Zapotrzebowanie to zmienia się w ciągu roku i może być zaprezentowane w różnej formie np. w postaci średniomiesięcznych wartości zapotrzebowania na moc, tak jak to pokazano na poniższym rysunku (dane wg PSE, raport roczny z funkcjonowania KSE). Dane przedstawiono jako średniomiesięczne aby lepiej zobrazować różnice w zapotrzebowaniu pomiędzy poszczególnymi okresami roku.

2 Rysunek 1. Średniomiesięczne zapotrzebowanie na moc w latach Wyraźnie można zaobserwować, że średniomiesięczne zapotrzebowanie na moc w okresie zimy wzrasta znacznie wolniej niż w okresie letnim. W zimie wzrost zapotrzebowania w okresie siedmiu lat ( ) osiągnął około 1500 MWe, natomiast w lecie w tym samym okresie wzrost ten wyniósł około 4500 MWe, czyli trzykrotnie więcej. Taka tendencja wynika przede wszystkim z coraz większej ilości urządzeń i instalacji klimatyzacyjnych instalowanych na budynkach, których pobór energii elektrycznej ma miejsce w okresach wysokiej temperatury powietrza zewnętrznego. Należy się spodziewać, że taki trend będzie utrzymany również w najbliższej przyszłości. Istotną cechą, na którą należy również zwrócić uwagę, jest różnica zapotrzebowania w okresie zimy i lata w ramach jednego roku. Może ona być skalkulowana np. jako różnica pomiędzy najwyższą wartością średniomiesięczną w roku (która zwykle występuje w okresie zimy) a średnią wartością miesięcy letnich (czerwiec-sierpień). Dla 2015 roku różnica, o której mowa powyżej, wynosiła 3220 MWe, natomiast w roku 2009 około 5850 MWe. A zatem można stwierdzić, że sytuacja zmierza do wyrównywania się zapotrzebowania na moc w okresie zimy i lata. Ponadto, zupełnie realne wydaje się, że w przyszłości szczyt zapotrzebowania będzie miał miejsce w okresie lata a nie jak do tej pory w zimie. Potwierdzeniem powyższego są komunikaty PSE, np. z dnia , w którym informowano o rekordzie zapotrzebowania na moc w szczycie rannym ( MWe). Co ciekawe poprzedni rekord padł niespełna rok wcześniej. Zmiany w profilu zapotrzebowania na moc w ciągu roku wiążą się oczywiście z pewnymi konsekwencjami. Jedną z głównych są plany remontowe systemowych jednostek wytwórczych odpowiedzialnych za bilansowanie podaży z popytem. Na poniższym rysunku (Rysunek 2) zaprezentowano średniomiesięczne ilości mocy podlegających remontom kapitalnym i średnim (dane wg PSE, raport roczny z funkcjonowania KSE).

3 Rysunek 2. Średniomiesięczne ilości mocy w remontach kapitalnych i średnich (lata ) Kampania remontowa systemowych jednostek wytwórczych jest zwykle najintensywniejsza w okresie lata, gdyż wówczas zapotrzebowanie na moc jest najniższe potwierdza to również powyższy wykres głównie w zakresie lat W kolejnych latach, w szczególności w roku 2015, głównie z powodu coraz wyższego zapotrzebowania na moc w okresie lata, szczyt ilości mocy będącej w remoncie przesunął się na okres przed i po wakacyjny (widoczne dwa piki w maju oraz wrześniu). Warte podkreślenia jest również to, że poziom mocy w remoncie w okresie lata na przestrzeni lat pozostaje na zbliżonym poziomie, natomiast w okresie zimy uległ wyraźnemu zwiększeniu. Oznacza to, że potrzeby remontowe są coraz większe i w systemie pozostaje coraz mniej mocy w rezerwie co niejednokrotnie potwierdzały komunikaty prasowe. Dalszy wzrost zapotrzebowania na moc w okresie lata, co jest bardzo prawdopodobne, będzie powodował, coraz większe trudności w prowadzeniu kampanii remontowej, gdyż nie będzie odpowiedniego momentu w ciągu roku aby tego dokonać. Będzie to oznaczało konieczność zapewnienia w systemie dodatkowej ilości mocy, która umożliwi bilansowanie podaży z popytem oraz poprawne przeprowadzenie kampanii remontowej jednostek systemowych. Niestety większa ilość mocy zainstalowanej w jednostkach systemowych oznacza również dodatkowe potrzeby dla tej mocy po stronie remontowej. 3. Funkcjonowanie Elektrociepłowni (EC) w KSE Elektrociepłownie (EC), lub inaczej jednostki kogeneracyjne, można podzielić na dwie zasadnicze grupy. Pierwszą stanowią jednostki zasilające w ciepło odbiorców komunalnych (elektrociepłownie komunalne), drugą grupę stanowią jednostki wytwarzające ciepło przede wszystkim do procesu technologicznego (elektrociepłownie przemysłowe), w tym również na potrzeby grzewcze.

4 Elektrociepłownie komunalne Na potrzeby określenia sposobu funkcjonowania jednostek kogeneracyjnych komunalnych w KSE wykorzystano dane prezentowane na stronie internetowej PSE (plan koordynacyjny roczny). Ponadto, aby możliwe było porównanie profilu obciążenia EC z omówionymi we wcześniejszym punkcie aspektami dotyczącymi zapotrzebowania na moc oraz kampanii remontowej, przedstawione dane mają charakter średniomiesięczny dane przedstawiono na poniższym rysunku (Rysunek 3). Rysunek 3. Moc osiągalna oraz dyspozycyjna EC (njwcd cieplnych) w roku (2015) Zaprezentowane dane dotyczą mocy osiągalnej oraz dyspozycyjnej cieplnych jednostek njwcd, czyli jednostek które nie są centralnie dysponowane tą grupę stanowią w całości elektrociepłownie komunalne elektrociepłownie przemysłowe są objęte osobną kategorią dla której dane przedstawiono w dalszej części. Moc osiągalna EC kształtuje się na poziomie 6060 MWe, natomiast moc dyspozycyjna (rozumiana jako przewidywana moc oddawana do sieci) jest różna w zależności od miesiąca w ciągu roku. W miesiącach zimowych stanowi maksymalnie 76,5% mocy osiągalnej, natomiast w miesiącach letnich waha się na poziomie 39,3%. Różnica w mocy wprowadzanej do sieci pomiędzy okresem zimowym a letnim wynosi około 2320 MWe. Wynika to wprost z charakteru pracy EC, gdzie priorytetem jest produkcja ciepła na potrzeby odbiorców (sezon grzewczy), natomiast energia elektryczna jest niejako produktem ubocznym. Niezależnie od powyższego, potencjał kogeneracji mógłby zostać wykorzystany w szerszym zakresie, głównie z uwagi na fakt, że część z jednostek kogeneracyjnych jest wyposażona w turbiny parowe z możliwością pracy kondensacyjnej możliwość większego obciążenia turbiny parowej ponad obciążenie wynikające z produkcji ciepła. Analizując dane zawarte w katalogu elektrowni i elektrociepłowni zawodowych opracowanych przez Agencję Rynku Energii (ARE) około 3150 MWe w ramach elektrociepłowni komunalnych jest wyposażona w turbinę parową z członem kondensacyjnym stanowi to około 52% mocy osiągalnej wszystkich elektrociepłowni tej

5 kategorii. Pozostałe jednostki (48%) wyposażone są w różnego typu turbiny parowe przeciwprężne, w których moc elektryczna jest podyktowana obciążeniem ciepłowniczym. Obciążanie członu kondensacyjnego turbin parowych w elektrociepłowniach wiąże się jednak z pewnymi konsekwencjami i ograniczeniami: Obecnie funkcjonuje jeszcze (i będzie do roku 2018) wsparcie operacyjne jednostek kogeneracyjnych, polegające na przyznawaniu świadectw pochodzenia w postaci certyfikatów (czerwonych dla kogeneracji węglowej i żółtych dla kogeneracji gazowej), które później mogą być sprzedawane na towarowej giełdzie energii ilość przyznawanych certyfikatów jest zależna od średniorocznej sprawności ogólnej EC, która będzie się zmniejszała wraz ze zwiększającą się produkcją energii elektrycznej w członie kondensacyjnym, Obecnie funkcjonujący rynek energii elektrycznej bazuje na kosztach zmiennych wytwarzania, przez co oferta cenowa na energię elektryczną z EC nie może być tak atrakcyjna jak oferta elektrowni systemowej, której sprawność wytwarzania (przekładająca się na koszty wytwarzania) jest wyższa, Okres lata to również czas, w którym planowane remonty odbywają się w układach kogeneracyjnych, przez co potencjał możliwy do wykorzystania w tym okresie może być nieco ograniczony. Elektrociepłownie przemysłowe W celu przedstawienia rocznego profilu obciążenia elektrociepłowni przemysłowych skorzystano również z danych zawartych na stronie PSE (plan koordynacyjny roczny). Dane podobnie jak we wcześniejszych przypadkach zaprezentowano w ujęciu średniomiesięcznym. Rysunek 4. Moc dyspozycyjna elektrowni przemysłowych w ciągu roku (2015) Obciążenie elektrociepłowni przemysłowych nie jest tak zmienne jak komunalnych, głównie z powodu produkcji ciepła na cele przemysłowe. Zmienność w okresie zima/lato osiąga około

6 400 MWe, a zatem nie jest duża i ze względu na inny charakter pracy trudno poszukiwać tu dodatkowego potencjału do wykorzystania w okresie lata. Uwzględnienie tej grupy jednostek w niniejszej analizie ma przede wszystkim na celu uchwycenie rzeczywistych różnic w potencjale produkcji energii elektrycznej pomiędzy okresami lata i zimy. 4. Potencjał EC na tle zmian w KSE W punkcie drugim niniejszego artykułu przedstawiono zmiany jakie mają miejsce w KSE z punktu widzenia zapotrzebowania na energię elektryczną jak również pojawiające się trudności w przeprowadzaniu kampanii remontowej systemowych jednostek wytwórczych. Nakreślono, że głównym tego powodem jest dynamiczny wzrost zapotrzebowania w miesiącach letnich i zanikająca różnica w zapotrzebowaniu pomiędzy okresem zimy i lata. W punkcie trzecim artykułu przybliżono sposób funkcjonowania EC w KSE. Profil obciążenia EC wskazuje, że w okresie lata EC dysponują potencjałem wytwórczym, który obecnie z różnych powodów nie jest w pełni wykorzystywany. Powyższe podsumowanie można zobrazować jak pokazano na poniższym rysunku (Rysunek 5). Popyt Podaż load_w prod_w Popyt Podaż Jednostki systemowe Delta_W load_s prod_s Jednostki systemowe Delta_S prod_ec_w prod_ec_s 0,0 0,0 ZIMA LATO Rysunek 5. Podaż/popyt na energię elektryczną w okresie zima/lato Oznaczenia na rysunku przedstawiają się następująco: Load_W średnie zapotrzebowanie na moc w zimie, Load_S średnie zapotrzebowanie na moc w lecie, Prod_W średnia generacja w zimie (pokrywająca zapotrzebowanie), Prod_S średnia generacja w lecie (pokrywająca zapotrzebowanie), Prod_EC_W średnia generacja elektrociepłowni w zimie, Prod_EC_S średnia generacja elektrociepłowni w lecie, Delta_W różnica pomiędzy zapotrzebowaniem a generacją w EC w okresie zimy, Delta_S różnica pomiędzy zapotrzebowaniem a generacją w EC w okresie lata.

7 Pole wykropkowane oznacza ilość mocy (poza źródłami kogeneracyjnymi) niezbędnej do zbilansowania podaży z popytem na potrzeby niniejszego opracowania ta moc będzie nazywana mocą bilansującą. Inaczej mówiąc moc bilansująca stanowi pozostałą dostępną moc w KSE nie wliczając w to jednostek kogeneracyjnych. Niestety moc bilansująca zgodnie z powyższą definicją nie jest jednorodna w zakresie polskiego miksu energetycznego to nie tylko zawodowe jednostki systemowe a zatem nie można z tej perspektywy jednoznacznie określić tego pola (pole wykropkowane) jako jednostki systemowe. Z drugiej jednak strony, jeżeli zwrócimy uwagę na charakter pozostałych dostępnych technologii (poza jednostkami systemowymi) to można podzielić ja na dwie zasadnicze kategorie: Jednostki, których obciążenie w ciągu roku nie wykazuje tak dużych, powtarzalnych i regularnych różnic pomiędzy okresem lata i zimy, który to okres jest najbardziej interesujący z punktu widzenia możliwości wykorzystania potencjału jednostek kogeneracji. Jednostki te mogą dopasować obciążenie do bieżącej sytuacji w KSE. Jednostki, których obciążenie w ciągu roku jest absolutnie nieprzewidywalne (turbiny wiatrowe, panele fotowoltaiczne) ten typ jednostek w przypadku wysokiego obciążenia będzie mógł zastąpić potencjał jednostek kogeneracyjnych, niemniej nie można ich traktować w charakterze jednostek dyspozycyjnych, czyli takich które można obciążyć w każdej chwili. Biorąc pod uwagę obydwie wyżej opisane kategorie można stwierdzić, że wymagana ilość mocy bilansującej będzie musiała bazować na jednostkach dyspozycyjnych niezależnie od charakteru tej jednostki (systemowa czy nie systemowa). Analiza ostatnich lat wskazuje, że ilość niezbędnej mocy bilansującej w okresie lata jest wciąż niższa niż wielkość tego pola w okresie zimy (Rysunek 6), niemniej zmiany zachodzące w KSE mogą tą sytuację odwrócić. Kampania remontowa Moc bilansująca (poza EC) 0,0 Zima Lato Potencjał możliwy do prowadzenia remontu Rysunek 6. Niezbędna moc bilansująca w okresie zima/lato Mniejszy słupek niezbędnej mocy bilansującej w okresie lata umożliwia prowadzenie kampanii remontowej, niestety jednak, jak to już wcześniej przedstawiono, wielkość tego słupka zaczyna się wyraźnie zwiększać i nie wykluczone, że w przyszłości zrówna się a być może nawet przewyższy wielkość słupka niezbędnej mocy bilansującej w okresie zimy. Biorąc pod uwagą wszystkie powyższe aspekty, postanowiono przeanalizować jakie mogą być konsekwencje dla KSE zanikania różnicy w średnim zapotrzebowaniu na moc pomiędzy okresem lata i zimy.

8 4.1 Analiza potencjału kogeneracji Przed przystąpieniem do analizy zdefiniowano trzy rzeczywistości KSE : Pierwsza rzeczywistość będzie odpowiadała stanowi faktycznemu jak w roku 2009, Druga rzeczywistość będzie odpowiadała stanowi faktycznemu jak w roku 2015, Trzecia rzeczywistość będzie pewnym przewidywaniem przyszłości, w której nie będzie występowała żadna różnica pomiędzy średniomiesięcznym zapotrzebowaniem na moc w okresie zimy i lata. Wszystkie trzy rzeczywistości KSE przedstawiono poniżej w formie rysunkowej (Rysunek 7). Kampania remontowa Kampania remontowa? Kampania remontowa Obciążenie mocy bilansowej (poza EC) Potencjał możliwy do prowadzenia remontu 0,0 0,0 Zima Lato I "rzeczywistość" 0,0 Zima Lato II "rzeczywistość" Zima Lato III "rzeczywistość" Rysunek 7. Trzy zdefiniowane "rzeczywistości KSE stanowiące podstawę analizy Zgodnie z powyższym rysunkiem, coraz wyższe zapotrzebowanie na moc w okresie lata oznacza coraz mniejsze możliwości przeprowadzania procesu remontów w tym okresie co będzie prowadziło do obniżania się poziomu rezerwy w systemie w okresie zimowym (część remontów zostanie przeniesiona na okres zimowy lub potrzebna będzie większa ilość mocy). Sytuacja taka nie może być akceptowalna w dłuższym horyzoncie czasowym, w szczególności, z powodu bardzo prawdopodobnego pogłębiania się problemu. W dalszej części przedstawiono bardziej szczegółową analizę opartą o konkretne liczby i wielkości odnoszące się do zjawisk w KSE. W pierwszej kolejności konieczne jest ponowne spojrzenie na krzywą zapotrzebowania na moc w ujęciu średniomiesięcznym, przy czym tym razem pokazano tą krzywą w trzech różnych wersjach odpowiadających przyjętym rzeczywistościom KSE. W celu lepszego i łatwiejszego porównania wyników analizy, średniomiesięczne maksymalne zapotrzebowanie na moc sprowadzono do poziomu MWe co zgrubnie odpowiada obecnemu poziomowi. Takie podejście umożliwi bezpośrednie porównanie charakteru profilów każdej z trzech analizowanych rzeczywistości.

9 Rysunek 8. Zmiany profilu zapotrzebowania na moc w ujęciu średniomiesięcznym w trzech analizowanych rzeczywistościach KSE Zielona krzywa reprezentuje profil zapotrzebowania analogiczny jak w roku Niebieska krzywa prezentuje profil zapotrzebowania jak w roku 2015, natomiast czerwona krzywa pokazuje hipotetyczną krzywą zapotrzebowania, która może się urzeczywistnić w przeciągu kliku/kilkunastu najbliższych lat. Krzywe zapotrzebowania zestawiono następnie z rzeczywistym (jak obecnie) profilem obciążenia jednostek kogeneracyjnych (komunalnych i przemysłowych). Na tej podstawie wyznaczono ilość mocy bilansującej jaka musi być dostępna w innych technologiach aby możliwe było pokrycie zapotrzebowania odpowiedni rysunek (Rysunek 9) zamieszczono poniżej.

10 Rysunek 9. Niezbędna ilość mocy bilansującej w innych technologiach (poza EC) Na powyższym rysunku wyraźnie można zaobserwować, że zachowanie obecnego charakteru pracy (obciążenia) źródeł kogeneracyjnych spowoduje, że wymagana ilość mocy bilansującej w pozostałych technologiach będzie wzrastała i będzie najwyższa w okresie letnim. Utrudni to przeprowadzenie kampanii remontowej oraz będzie oznaczało konieczność zwiększenia mocy dostępnej w KSE. Maksymalna wartość niezbędnej mocy bilansującej dla wszystkich trzech przypadków została przedstawiona w poniższej tabeli (Tabela 1). Parametr Jedn. Wartość Rzeczywistość roku 2009 MW 18625,7 Rzeczywistość roku 2015 MW 18756,0 +0,7% Hipotetyczna przyszłość MW 21484,2 +15,3% Tabela 1. Maksymalna wymagana ilość mocy bilansującej w KSE Wzrost niezbędnej mocy bilansującej oznacza, że w systemie będzie musiała się znaleźć dodatkowa ilość mocy a zatem w uproszczeniu można tą maksymalną wymaganą ilość mocy bilansującej potraktować jak niezbędną moc zainstalowaną w rzeczywistości oczywiście konieczna będzie odpowiednia nadwyżka (w celu zapewnienia rezerwy), niemniej w celu zbadania różnic pomiędzy przyjętymi rzeczywistościami tą nadwyżkę można pominąć. W celu poprawnego porównania wszystkich trzech rzeczywistości konieczne jest również porównanie potencjału remontowego. W każdej rzeczywistości należy przewidzieć możliwość przeprowadzenia remontów i na potrzeby porównania przyjmuje się, że ten potencjał musi być jednakowy, a zatem w przypadku większej ilości mocy zainstalowanej potencjał ten musi być odpowiednio większy. Jako punkt wyjścia przyjęto potencjał istniejący w ramach rzeczywistości roku 2009 i do tego poziomu zrównano potencjały kolejnych rzeczywistości. W wyniku zrównania potencjałów remontowych wymagana maksymalna ilość mocy bilansującej (moc zainstalowana) uległa zwiększeniu i przedstawia się zgodnie z poniższą tabelą (Tabela 2). Parametr Jedn. Wartość

11 Rzeczywistość roku 2009 MW 18625,7 Rzeczywistość roku 2015 MW 19718,9 +5,9% Hipotetyczna przyszłość MW 21970,1 +18,0% Tabela 2. Skorygowane wielkości maksymalnej wymaganej ilości mocy bilansującej w KSE (moc zainstalowana) Na podstawie powyższych wyliczeń wyraźnie widać, że zachodzące zmiany w zakresie zapotrzebowania na moc przy nie zmienionym profilu obciążenia jednostek kogeneracyjnych będą się wiązały z koniecznością zwiększenia mocy zainstalowanej w systemie, tak aby możliwe było pokrycie zapotrzebowania oraz zapewnienie odpowiedniej ilości czasu na przeprowadzenie kampanii remontowej. Przewidywana ilość dodatkowej mocy zainstalowanej niezbędnej w KSE może osiągnąć nawet 18% co przekłada się na około 3340 MWe. Jeśli zatem zmiany obserwowane w KSE przy zachowanym profilu obciążania źródeł kogeneracyjnych oznaczają konieczność budowy nowych źródeł mocy bilansującej niezbędnej w systemie w ilości około 3,3 GW, wydaje się że warto sprawdzić jak sytuacja mogłaby wyglądać, gdyby potencjał kogeneracji w okresie lata był wykorzystany znacznie szerzej niż do tej pory. Absolutnie nieuzasadnione jest bowiem ponoszenie kosztów utrzymania jednostek kogeneracyjnych z członem kondensacyjnym oraz dodatkowych jednostek bilansujących KSE, w sytuacji, w której obciążenie tych pierwszych nie jest wykorzystywane w pełni. To samo dotyczy jednostek kogeneracyjnych zupełnie nowych jak i obecnie wyposażonych w turbiny przeciwprężne, w których koszt zabudowy członu kondensacyjnego lub pseudo kondensacji będzie istotnie niższy niż budowa nowych mocy niezbędnych do bilansowania KSE. W dalszej części artykułu przedstawiono w szczegółach charakter i profil pracy typowej jednostki kogeneracyjnej z członem kondensacyjnym aby lepiej zobrazować potencjał wsparcia KSE przez te jednostki. 4.2 Przykładowa EC z członem kondensacyjnym W celu oszacowania potencjału produkcji energii elektrycznej tkwiącego w źródłach kogeneracyjnych z członem kondensacyjnym konieczne jest przeprowadzenie analizy bilansowej przykładowego układu technologicznego. Przykładowy układ technologiczny elektrociepłowni zainstalowanej w polskim systemie elektroenergetycznym wyposażonej w turbinę parową z członem kondensacyjnym zaprezentowano na poniższym rysunku (Rysunek 10).

12 WC Q Kocioł K Turbina G KO PK ZWZ RW Definicja oznaczeń: K - człon kondensacyjny turbiny parowej, Q - odbiorca ciepła, WC - wymiennik ciepłowniczy, G - generator, KO - skraplacz, PK - pompa kondensatu, RN - regeneracja niskoprężna ZWZ - zbiornik wody zasilającej, PWZ - pompa wody zasilającej, RW - regeneracja wysokoprężna. RN PWZ Rysunek 10. Typowy układ technologiczny EC z członem kondensacyjnym Przedstawiona konfiguracja technologiczna elektrociepłowni składa się z kotła parowego, pyłowego opalanego węglem kamiennym, turbiny upustowo-kondensacyjnej oraz szeregu urządzeń i instalacji pomocniczych (pompy, wymienniki regeneracyjne, stacja odgazowania wody zasilającej ze zbiornikiem), w tym układ ciepłowniczy z wymiennikiem ciepłowniczym. Podstawowe parametry techniczne układu zaprezentowano w poniższej tabeli. Parametr Maksymalna moc elektryczna Maksymalna moc ciepłownicza w wymienniku ciepłowniczym Jedn. MWe MWt Wartość 55,0 81,0 Tabela 3. Podstawowe parametry techniczne analizowanej EC Zwyczajowo, elektrociepłownia jak wyżej pracuje na potrzeby konkretnego systemu ciepłowniczego, który charakteryzuje się określonym maksymalnym zapotrzebowaniem na ciepło. W tym aspekcie, sytuacja na przestrzeni całego kraju może jednak wyglądać naprawdę różnie, gdyż elektrociepłownie były budowane stosunkowo dawno, a rynek ciepła nieustannie się zmienia czasem są podłączani nowi klienci, czasem dotychczasowi klienci są odłączani lub kończą działalność, w jeszcze innych przypadkach na pobór energii cieplnej wpływa postępujący proces termomodernizacji budynków. Biorąc to pod uwagę, analizę na potrzeby niniejszego artykułu przeprowadzono przy założeniu, że zdefiniowany układ EC współpracuje z systemem ciepłowniczym o zapotrzebowaniu jak na poniższym rysunku (Rysunek 11).

13 Moc ciepłownicza, MWt Q_Sys_Max Q_EC_Max Godziny w ciągu roku, h Rysunek 11. Moc ciepłownicza EC (Q_EC_Max) na tle mocy ciepłowniczej systemu (Q_Sys_Max) Wykres uporządkowany zapotrzebowania na ciepło zaprezentowany na powyższym rysunku (Rysunek 11), stworzono przy wykorzystaniu równania Raissa, przy czym niektóre ze współczynników zawarte w równaniu skorygowano wg doświadczeń własnych zdobytych podczas pracy w projektach dotyczących systemów ciepłowniczych. Podstawowym celem analizy było określenie średniorocznej sprawności ogólnej EC w zależności od sposobu pracy EC, jak również potencjału mocy elektrycznej tkwiącego w EC w okresie lata. Dla tak określonego zadania, przeprowadzono szczegółowe roczne obliczenia bilansowe, w wyniku których wyznaczono wielkość produkcji energii elektrycznej. Obliczenia prowadzono dwutorowo: W pierwszej kolejności obciążenie EC było podyktowane zapotrzebowaniem na ciepło, natomiast człon kondensacyjny był obciążony na niezbędnym minimum (przyjęto zakres 10-15% nominalnego strumienia pary przepływającego do skraplacza). W drugiej kolejności obciążenie EC było maksymalne w każdej chwili, oczywiście przy zachowaniu produkcji ciepła na wymaganym poziomie. Wyniki obliczeń bilansowych przedstawiono poniżej (Rysunek 12).

14 Moc elektryczna, kwe Max. Produkcja energii elektrycznej Produkcja energii elektrycznej wynikająca z ciepła Liczba godzin w roku, h Rysunek 12. Moc elektryczna EC w zależności od sposobu eksploatacji Moc elektryczna EC w przypadku pracy pod dyktando produkcji ciepła w okresie poza sezonem grzewczym spada do poziomu 21,0 MWe, co stanowi około 38,2% mocy zainstalowanej EC. W przypadku pracy z maksymalnym możliwym obciążeniem, w okresie poza sezonem grzewczym moc elektryczna kształtuje się na poziomie 51,0 MWe, co stanowi około 92,7% mocy zainstalowanej. Różnica w generowanej mocy elektrycznej stanowi 30,0 MWe co stanowi około 54,5% mocy zainstalowanej. A zatem można zdecydowanie stwierdzić, że potencjał kogeneracji w okresie letnim (poza sezonem grzewczym) jest znaczny. Obciążanie przykładowej EC według zapotrzebowania na ciepło przekłada się na uzyskanie średniorocznej sprawności ogólnej na poziomie 77,61% co jest wartością bardzo bliską wartości granicznej dla tego typu układów (80%), niezbędnej do uzyskania pełnej ilości świadectw pochodzenia (wskaźnik PES osiągnięto na poziomie powyżej 10%). Warto zwrócić uwagę, że sprawność ta zależy nie tylko od sposobu eksploatacji jednostki ale również wielkości systemu ciepłowniczego w jakim ta jednostka pracuje. W przypadku pracy z maksymalnym możliwym obciążeniem, przy zachowaniu produkcji ciepła na wymaganym poziomie, średnioroczna sprawność ogólna EC spada do poziomu około 66,44% 5. Wnioski i podsumowanie Wykonane przeliczenia umożliwiają określenie całkowitego potencjału jednostek kogeneracyjnych wyposażonych w człon kondensacyjny w okresie letnim. Przytaczając wielkość 3150 MWe mocy zainstalowanej w tego typu układach (wspomnianą już we wcześniej części artykułu), oszacowano, że ten potencjał wynosi około 1717 MWe. Taka ilość dodatkowej mocy tkwi w istniejących układach EC z członem kondensacyjnym moc ta mogłaby być wykorzystana do wsparcia KSE w okresie letnim (poza sezonem grzewczym).

15 Należy zwrócić jednak uwagę, że stosunkowo niewielkim kosztem, w wielu przypadkach również istniejące EC z turbinami przeciwprężnymi mogłyby zostać zmodernizowane do układów z członem kondensacyjnym. Wówczas potencjał okresu letniego w ramach jednostek kogeneracyjnych wzrósłby do poziomu 3303 MWe (przy zgrubnym założeniu, że moc EC po zmianie z turbiny przeciwprężnej na kondensacyjną nie ulegnie zmianie i że wszystkie jednostki można zmodernizować). Warto tu zwrócić uwagę, że taka ilość potencjału w okresie lata praktycznie pokrywa niezbędną ilość mocy bilansującej wynikającą z pogłębiającego się zanikania różnicy w średniomiesięcznym zapotrzebowaniu na moc w okresie lato/zima. Oznacza to, że wykorzystując potencjał EC w okresie lata, można uniknąć kosztu budowy i utrzymania około 3,3 GW nowych mocy, które będą niezbędne w KSE w celu zbilansowania podaży z popytem jak również umożliwienia prowadzenia kampanii remontowej jednostek systemowych. Przekładając powyższe na konkretne liczby, koszt budowy nowych mocy w ilości 3,3 GW (założono technologię węglową) to około 21 mld PLN, ponadto roczne koszty utrzymania takiej mocy w KSE wyniosą około 380 mln PLN. Z drugiej strony, wykorzystując potencjał jednostek kogeneracyjnych, brak jest dodatkowych kosztów związanych z utrzymaniem mocy, gdyż te koszty zostaną poniesione niezależnie od tego czy potencjał ten zostanie wykorzystany czy nie. Jeśli chodzi natomiast o nakład inwestycyjny, to w zakresie jednostek wyposażonych już w człon kondensacyjny, żadnych nakładów również nie będzie (warto przypomnieć że jednostki z członem kondensacyjnym stanowią około 52% całej mocy zainstalowanej w EC komunalnych). Nakład inwestycyjny będzie powiązany jedynie z modernizacją EC wyposażonych w turbiny przeciwprężne oraz ewentualną budową nowych mocy kogeneracyjnych, zastępujących istniejące ciepłownie. W przypadku tych pierwszych nakład inwestycyjny wyniósłby około 1,5 mld PLN (zakładając modernizację wszystkich jednostek przeciwprężnych), natomiast w przypadku drugich byłby zależny od oszacowanego potencjału transformacji ciepłowni w elektrociepłownie nie podejmowano próby szacowania tej wielkości w niniejszym artykule. Biorąc pod uwagę powyższe wyliczenia, różnica w kosztach jest bardzo duża. Oczywiście patrząc na koszty zmienne oraz obciążenie środowiska na MWh wyprodukowanej energii elektrycznej, w przypadku wykorzystania EC będą one wyższe, niemniej w przypadku rachunku bazującym na metodologii pełnego cyklu życia projektu (Life Cycle Assessment), sytuacja mogłaby wyglądać inaczej. Potencjał mocy do wykorzystania z EC będzie co prawda nieco obniżony poprzez konieczność przeprowadzenia kampanii remontowej w ramach EC, która również odbywa się w okresie letnim, niemniej wydaje się, że mimo wszystko sprawa wymaga uwagi. Należy pamiętać, że w systemie funkcjonuje również sporo mocy OZE o nieprzewidywalnym charakterze (w szczególności fotowoltaika), które tak naprawdę mogą być świetnie uzupełniane poprzez EC pracujące w rezerwie. Jeśli weźmiemy również pod uwagę, fakt, że każda wizja polskiej energetyki przewiduje rozwój kogeneracji to przewidywany potencjał może być jeszcze wyższy. Niestety aby oszacowany potencjał wykorzystać, konieczne jest rozwiązanie pewnych kwestii, które w dzisiejszych realiach istotnie to uniemożliwiają. Przede wszystkim chodzi o kwestie ekonomiczne wykorzystanie pełnego potencjału EC w okresie lata musiałoby być wynagradzane w określony sposób, tak aby taka działalność była rozsądna z punktu widzenia właścicielskiego. Niestety taki system wynagradzania nie mógłby być oparty na zasadzie podobnej do obecnych certyfikatów, gdyż one wspierają jednostki o wysokiej średniorocznej sprawności ogólnej. Konieczne w tym przypadku jest spojrzenie szersze na

16 pełne koszty wytwarzania energii elektrycznej z różnych źródeł dostępnych w KSE, a także pogodzenie ewentualnych różnych form wsparcia operacyjnego. Na koniec warto wspomnieć również o usługach typu DSR, które również stosunkowo niewielkim kosztem mogą być wykorzystane do pokrycia zapotrzebowania. Usługi te wiążą się jednak z planowym ograniczeniem poboru energii elektrycznej dla pewnych odbiorców co przy niewykorzystanym istniejącym potencjale kogeneracji dostępnym jednak po niższych cenach wydaje się nieuzasadnione. Omówione w artykule zagadnienia z pewnością wymagają pogłębionej, bardziej szczegółowej analizy dotyczącej określenia potencjału jednostek kogeneracyjnych w okresie lata. Ponadto, niezbędne jest dalsze monitorowanie zmian zachodzących w KSE, które powinny potwierdzić zmniejszanie się różnicy w średnim zapotrzebowaniu na moc w okresie zima/lato. Niezależnie jednak od powyższego dyskusja na temat umożliwienia wykorzystania letniego potencjału jednostek kogeneracyjnych w okresie lata (odpowiednie regulacje) powinna się rozpocząć odpowiednio wcześniej. Niewątpliwie naturalnym rozwiązaniem może być fakt, że pogłębianie się problemu zmian w KSE zaskoczy wszystkich co jednocześnie uniemożliwi zwiększenie mocy zainstalowanej w systemie i wymusi zaprojektowanie rozwiązania, w którym to kogeneracja również będzie odgrywała rolę podmiotu bilansującego KSE w okresie letnim.

Udział kogeneracji w Rynku Mocy

Udział kogeneracji w Rynku Mocy Udział kogeneracji w Rynku Mocy VI Forum Ciepłownicze, Ustroń, 30.11.2017 Kierunek kogeneracja Ro Przewidywania Projektu Polityki Energetycznej Państwa do roku 2050 w zakresie kogeneracji 8000 7000 6000

Bardziej szczegółowo

Generacja źródeł wiatrowych cz.2

Generacja źródeł wiatrowych cz.2 Generacja źródeł wiatrowych cz.2 Autor: Adam Klepacki, ENERGOPROJEKT -KATOWICE S.A. Średnioroczne prawdopodobieństwa wystąpienia poszczególnych obciążeń źródeł wiatrowych w Niemczech dla siedmiu lat kształtują

Bardziej szczegółowo

KOSZTY WSPARCIA KOGENERACJI W POLSCE

KOSZTY WSPARCIA KOGENERACJI W POLSCE Adam Klepacki, Łukasz Klepek Energoprojekt Katowice SA KOSZTY WSPARCIA KOGENERACJI W POLSCE 1. Wstęp Jednoczesne wytwarzanie energii elektrycznej i ciepła, czyli kogeneracja, niejednokrotnie była i jest

Bardziej szczegółowo

Dr inż. Andrzej Tatarek. Siłownie cieplne

Dr inż. Andrzej Tatarek. Siłownie cieplne Dr inż. Andrzej Tatarek Siłownie cieplne 1 Wykład 9 Układy cieplne elektrociepłowni ogrzewczych i przemysłowych 2 Gospodarka skojarzona Idea skojarzonego wytwarzania energii elektrycznej i cieplnej-jednoczesna

Bardziej szczegółowo

Techniczno-ekonomiczne aspekty modernizacji źródła ciepła z zastosowaniem kogeneracji węglowej i gazowej w ECO SA Opole.

Techniczno-ekonomiczne aspekty modernizacji źródła ciepła z zastosowaniem kogeneracji węglowej i gazowej w ECO SA Opole. Techniczno-ekonomiczne aspekty modernizacji źródła ciepła z zastosowaniem kogeneracji węglowej i gazowej w ECO SA Opole. Rytro, 25 27 08.2015 System ciepłowniczy w Opolu moc zainstalowana w źródle 282

Bardziej szczegółowo

JWCD czy njwcd - miejsce kogeneracji w Krajowym Systemie Elektroenergetycznym

JWCD czy njwcd - miejsce kogeneracji w Krajowym Systemie Elektroenergetycznym JWCD czy njwcd - miejsce kogeneracji w Krajowym Systemie Elektroenergetycznym Witold Smolik 22 października 2015 Wymagania IRiESP - ogólne (1) 2.2.3.3.1. Podstawowe wymagania i zalecenia techniczne dla

Bardziej szczegółowo

WPŁYW PRODUKCJI ENERGII ELEKTRYCZNEJ W ŹRÓDŁACH OPALANYCH WĘGLEM BRUNATNYM NA STABILIZACJĘ CENY ENERGII DLA ODBIORCÓW KOŃCOWYCH

WPŁYW PRODUKCJI ENERGII ELEKTRYCZNEJ W ŹRÓDŁACH OPALANYCH WĘGLEM BRUNATNYM NA STABILIZACJĘ CENY ENERGII DLA ODBIORCÓW KOŃCOWYCH Górnictwo i Geoinżynieria Rok 35 Zeszyt 3 2011 Andrzej Patrycy* WPŁYW PRODUKCJI ENERGII ELEKTRYCZNEJ W ŹRÓDŁACH OPALANYCH WĘGLEM BRUNATNYM NA STABILIZACJĘ CENY ENERGII DLA ODBIORCÓW KOŃCOWYCH 1. Węgiel

Bardziej szczegółowo

Elektroenergetyka polska wybrane zagadnienia

Elektroenergetyka polska wybrane zagadnienia Polskie Towarzystwo Fizyczne Oddział Katowicki Konwersatorium Elektroenergetyka polska wybrane zagadnienia Maksymilian Przygrodzki Katowice, 18.03.2015 r Zakres tematyczny System elektroenergetyczny Zapotrzebowanie

Bardziej szczegółowo

Trendy i uwarunkowania rynku energii. tauron.pl

Trendy i uwarunkowania rynku energii. tauron.pl Trendy i uwarunkowania rynku energii Plan sieci elektroenergetycznej najwyższych napięć źródło: PSE Porównanie wycofań JWCD [MW] dla scenariuszy optymistycznego i pesymistycznego w przedziałach pięcioletnich

Bardziej szczegółowo

Bilans potrzeb grzewczych

Bilans potrzeb grzewczych AKTUALIZACJA PROJEKTU ZAŁOŻEŃ DO PLANU ZAOPATRZENIA W CIEPŁO, ENERGIĘ ELEKTRYCZNĄ I PALIWA GAZOWE DLA GMINY OPALENICA Część 04 Bilans potrzeb grzewczych W 854.04 2/9 SPIS TREŚCI 4.1 Bilans potrzeb grzewczych

Bardziej szczegółowo

Wykorzystanie potencjału źródeł kogeneracyjnych w bilansie energetycznym i w podniesieniu bezpieczeństwa energetycznego Polski

Wykorzystanie potencjału źródeł kogeneracyjnych w bilansie energetycznym i w podniesieniu bezpieczeństwa energetycznego Polski Wykorzystanie potencjału źródeł kogeneracyjnych w bilansie energetycznym i w podniesieniu bezpieczeństwa energetycznego Polski dr inż. Janusz Ryk Podkomisja stała do spraw energetyki Sejm RP Warszawa,

Bardziej szczegółowo

4. SPRZĘGŁA HYDRAULICZNE

4. SPRZĘGŁA HYDRAULICZNE 4. SPRZĘGŁA HYDRAULICZNE WYTYCZNE PROJEKTOWE www.immergas.com.pl 26 SPRZĘGŁA HYDRAULICZNE 4. SPRZĘGŁO HYDRAULICZNE - ZASADA DZIAŁANIA, METODA DOBORU NOWOCZESNE SYSTEMY GRZEWCZE Przekazywana moc Czynnik

Bardziej szczegółowo

Prognoza pokrycia zapotrzebowania szczytowego na moc w latach Materiał informacyjny opracowany w Departamencie Rozwoju Systemu PSE S.A.

Prognoza pokrycia zapotrzebowania szczytowego na moc w latach Materiał informacyjny opracowany w Departamencie Rozwoju Systemu PSE S.A. Prognoza pokrycia zapotrzebowania szczytowego na moc w latach 216 235 Materiał informacyjny opracowany w Departamencie Rozwoju Systemu PSE S.A. Konstancin-Jeziorna, 2 maja 216 r. Polskie Sieci Elektroenergetyczne

Bardziej szczegółowo

Opracowanie optymalnego wariantu zaopatrzenia w ciepło miasta Włoszczowa. 7 stycznia 2015 roku

Opracowanie optymalnego wariantu zaopatrzenia w ciepło miasta Włoszczowa. 7 stycznia 2015 roku Opracowanie optymalnego wariantu zaopatrzenia w ciepło miasta Włoszczowa 7 stycznia 2015 roku Celsium Sp. z o.o. Działamy na rynku ciepłowniczym od 40 lat. Pierwotnie jako Energetyka Cieplna miasta Skarżysko

Bardziej szczegółowo

Podsumowanie i wnioski

Podsumowanie i wnioski AKTUALIZACJA PROJEKTU ZAŁOŻEŃ DO PLANU ZAOPATRZENIA W CIEPŁO, ENERGIĘ ELEKTRYCZNĄ I PALIWA GAZOWE DLA MIASTA KATOWICE Część 16 Podsumowanie i wnioski W 880.16 2/6 I. Podstawowym zadaniem aktualizacji Założeń

Bardziej szczegółowo

Ustawa o promocji kogeneracji

Ustawa o promocji kogeneracji Ustawa o promocji kogeneracji dr inż. Janusz Ryk New Energy User Friendly Warszawa, 16 czerwca 2011 Ustawa o promocji kogeneracji Cel Ustawy: Stworzenie narzędzi realizacji Polityki Energetycznej Polski

Bardziej szczegółowo

Uwarunkowania rozwoju gminy

Uwarunkowania rozwoju gminy AKTUALIZACJA PROJEKTU ZAŁOŻEŃ DO PLANU ZAOPATRZENIA W CIEPŁO, ENERGIĘ ELEKTRYCZNĄ I PALIWA GAZOWE W GMINIE PRUDNIK Część 05 Uwarunkowania rozwoju gminy W 835.05 2/8 SPIS TREŚCI 5.1 Główne czynniki decydujące

Bardziej szczegółowo

Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań

Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań 24-25.04. 2012r EC oddział Opole Podstawowe dane Produkcja roczna energii cieplnej

Bardziej szczegółowo

WSPÓŁCZYNNIK WYKORZYSTANIA MOCY I PRODUKTYWNOŚĆ RÓŻNYCH MODELI TURBIN WIATROWYCH DOSTĘPNYCH NA POLSKIM RYNKU

WSPÓŁCZYNNIK WYKORZYSTANIA MOCY I PRODUKTYWNOŚĆ RÓŻNYCH MODELI TURBIN WIATROWYCH DOSTĘPNYCH NA POLSKIM RYNKU WSPÓŁCZYNNIK WYKORZYSTANIA MOCY I PRODUKTYWNOŚĆ RÓŻNYCH MODELI TURBIN WIATROWYCH DOSTĘPNYCH NA POLSKIM RYNKU Warszawa, 8 listopada 2017 r. Autorzy: Paweł Stąporek Marceli Tauzowski Strona 1 Cel analizy

Bardziej szczegółowo

Podsumowanie i wnioski

Podsumowanie i wnioski AKTUALIZACJA ZAŁOŻEŃ DO PLANU ZAOPATRZENIA W CIEPŁO, ENERGIĘ ELEKTRYCZNĄ I PALIWA GAZOWE DLA OBSZARU MIASTA POZNANIA Część 13 Podsumowanie i wnioski W 755.13 2/7 I. Podstawowe zadania Aktualizacji założeń

Bardziej szczegółowo

Kierunki działań zwiększające elastyczność KSE

Kierunki działań zwiększające elastyczność KSE Kierunki działań zwiększające elastyczność KSE Krzysztof Madajewski Instytut Energetyki Oddział Gdańsk Elastyczność KSE. Zmiany na rynku energii. Konferencja 6.06.2018 r. Plan prezentacji Elastyczność

Bardziej szczegółowo

13.1. Definicje Wsparcie kogeneracji Realizacja wsparcia kogeneracji Oszczędność energii pierwotnej Obowiązek zakupu energii

13.1. Definicje Wsparcie kogeneracji Realizacja wsparcia kogeneracji Oszczędność energii pierwotnej Obowiązek zakupu energii 13.1. Definicje 13.2. Wsparcie kogeneracji 13.3. Realizacja wsparcia kogeneracji 13.4. Oszczędność energii pierwotnej 13.5. Obowiązek zakupu energii elektrycznej wytwarzanej w skojarzeniu. 13.6. Straty

Bardziej szczegółowo

Podsumowanie i wnioski

Podsumowanie i wnioski AKTUALIZACJA PROJEKTU ZAŁOŻEŃ DO PLANU ZAOPATRZENIAW CIEPŁO, ENERGIĘ ELEKTRYCZNĄ I PALIWA GAZOWE DLA GMINY MIEJSKIEJ PRZEMYŚL Część 11 Podsumowanie i wnioski STR./STRON 2/6 I. Podstawowym zadaniem aktualizacji

Bardziej szczegółowo

Zużycie Biomasy w Energetyce. Stan obecny i perspektywy

Zużycie Biomasy w Energetyce. Stan obecny i perspektywy Zużycie Biomasy w Energetyce Stan obecny i perspektywy Plan prezentacji Produkcja odnawialnej energii elektrycznej w Polsce. Produkcja odnawialnej energii elektrycznej w energetyce zawodowej i przemysłowej.

Bardziej szczegółowo

Doświadczenie PGE GiEK S.A. Elektrociepłownia Kielce ze spalania biomasy w kotle OS-20

Doświadczenie PGE GiEK S.A. Elektrociepłownia Kielce ze spalania biomasy w kotle OS-20 Doświadczenie PGE GiEK S.A. Elektrociepłownia Kielce ze spalania biomasy w kotle OS-20 Forum Technologii w Energetyce Spalanie Biomasy BEŁCHATÓW 2016-10-20 1 Charakterystyka PGE GiEK S.A. Oddział Elektrociepłownia

Bardziej szczegółowo

Wnioski i zalecenia z przeprowadzonych studiów wykonalności modernizacji źródeł ciepła w wybranych PEC. Michał Pawluczyk Sebastian Gurgacz

Wnioski i zalecenia z przeprowadzonych studiów wykonalności modernizacji źródeł ciepła w wybranych PEC. Michał Pawluczyk Sebastian Gurgacz Wnioski i zalecenia z przeprowadzonych studiów wykonalności modernizacji źródeł ciepła w wybranych PEC Michał Pawluczyk Sebastian Gurgacz 1 Krajowa Agencja Poszanowania Energii S.A. PRZEMYSŁ BUDOWNICTWO

Bardziej szczegółowo

Uwarunkowania rozwoju gminy

Uwarunkowania rozwoju gminy AKTUALIZACJA PROJEKTU ZAŁOŻEŃ DO PLANU ZAOPATRZENIA W CIEPŁO, ENERGIĘ ELEKTRYCZNĄ I PALIWA GAZOWE DLA GMINY OPALENICA Część 05 Uwarunkowania rozwoju gminy W 854.05 2/8 SPIS TREŚCI 5.1 Główne czynniki decydujące

Bardziej szczegółowo

Dlaczego Projekt Integracji?

Dlaczego Projekt Integracji? Integracja obszaru wytwarzania w Grupie Kapitałowej ENEA pozwoli na stworzenie silnego podmiotu wytwórczego na krajowym rynku energii, a tym samym korzystnie wpłynie na ekonomiczną sytuację Grupy. Wzrost

Bardziej szczegółowo

Strategia rozwoju systemów wytwórczych PKE S.A. w ramach Grupy TAURON w perspektywie roku 2020

Strategia rozwoju systemów wytwórczych PKE S.A. w ramach Grupy TAURON w perspektywie roku 2020 Strategia rozwoju systemów wytwórczych PKE S.A. w ramach Grupy TAURON w perspektywie roku 2020 Henryk TYMOWSKI Wiceprezes Zarządu PKE S.A. Dyrektor ds. Rozwoju Eugeniusz BIAŁOŃ Dyrektor Projektów Budowy

Bardziej szczegółowo

Kogeneracja w Polsce: obecny stan i perspektywy rozwoju

Kogeneracja w Polsce: obecny stan i perspektywy rozwoju Kogeneracja w Polsce: obecny stan i perspektywy rozwoju Wytwarzanie energii w elektrowni systemowej strata 0.3 tony K kocioł. T turbina. G - generator Węgiel 2 tony K rzeczywiste wykorzystanie T G 0.8

Bardziej szczegółowo

Stan zanieczyszczeń powietrza atmosferycznego

Stan zanieczyszczeń powietrza atmosferycznego AKTUALIZACJA ZAŁOŻEŃ DO PLANU ZAOPATRZENIA W CIEPŁO, ENERGIĘ ELEKTRYCZNĄ I PALIWA GAZOWE DLA OBSZARU MIASTA POZNANIA Część 05 Stan zanieczyszczeń powietrza atmosferycznego W 755.05 2/12 SPIS TREŚCI 5.1

Bardziej szczegółowo

NOWOCZESNE ROZWIĄZANIA TECHNOLOGICZNE WSPIERAJĄCE MODERNIZACJĘ ELEKTROENERGETYKI FORUM ENERGII - POLSKA ENERGETYKA 2050

NOWOCZESNE ROZWIĄZANIA TECHNOLOGICZNE WSPIERAJĄCE MODERNIZACJĘ ELEKTROENERGETYKI FORUM ENERGII - POLSKA ENERGETYKA 2050 NOWOCZESNE ROZWIĄZANIA TECHNOLOGICZNE WSPIERAJĄCE MODERNIZACJĘ ELEKTROENERGETYKI RAMBOLL NA ŚWIECIE Usługi doradcze w zakresie energetyki, budownictwa, przemysłu naftowo-gazowego, transportu oraz zarządzania

Bardziej szczegółowo

Redukcja zapotrzebowania mocy na polecenie OSP Mechanizmy funkcjonowania procesu DSR r.

Redukcja zapotrzebowania mocy na polecenie OSP Mechanizmy funkcjonowania procesu DSR r. Redukcja zapotrzebowania mocy na polecenie OSP Mechanizmy funkcjonowania procesu DSR 20.04.2017 r. Rynek redukcji mocy - DSR Agenda: 1. Operatorskie środki zaradcze zapewnienie bezpieczeństwa systemu elektroenergetycznego

Bardziej szczegółowo

Zapotrzebowanie na moc i potrzeby regulacyjne KSE. Maciej Przybylski 6 grudnia 2016 r.

Zapotrzebowanie na moc i potrzeby regulacyjne KSE. Maciej Przybylski 6 grudnia 2016 r. Zapotrzebowanie na moc i potrzeby regulacyjne KSE Maciej Przybylski 6 grudnia 2016 r. Agenda Historyczne zapotrzebowanie na energię i moc Historyczne zapotrzebowanie pokrywane przez jednostki JWCD oraz

Bardziej szczegółowo

Ciepło z OZE źródła rozproszone: stan i tendencje rozwojowe w Polsce

Ciepło z OZE źródła rozproszone: stan i tendencje rozwojowe w Polsce Ciepło z OZE źródła rozproszone: stan i tendencje rozwojowe w Polsce Janusz Starościk PREZES ZARZĄDU SPIUG Konferencja: Ciepło ze źródeł odnawialnych - stan obecny i perspektywy rozwoju, Warszawa, Ministerstwo

Bardziej szczegółowo

Zagadnienia bezpieczeństwa dostaw energii elektrycznej

Zagadnienia bezpieczeństwa dostaw energii elektrycznej Zagadnienia bezpieczeństwa dostaw energii elektrycznej Stabilizacja sieci - bezpieczeństwo energetyczne metropolii - debata Redakcja Polityki, ul. Słupecka 6, Warszawa 29.09.2011r. 2 Zagadnienia bezpieczeństwa

Bardziej szczegółowo

Mielczarski: Czy rynek mocy spełni swoje zadanie?

Mielczarski: Czy rynek mocy spełni swoje zadanie? Mielczarski: Czy rynek mocy spełni swoje zadanie? Malejące czasy wykorzystanie elektrowni systemowych oraz brak sygnałów ekonomicznych do budowy nowych mocy wytwórczych wskazuje na konieczność subsydiów,

Bardziej szczegółowo

Rozwój kogeneracji gazowej

Rozwój kogeneracji gazowej Rozwój kogeneracji gazowej Strategia Grupy Kapitałowej PGNiG PGNiG TERMIKA jest największym w Polsce wytwórcą ciepła i energii elektrycznej w skojarzeniu. Zakłady PGNiG TERMIKA wytwarzają 11 procent produkowanego

Bardziej szczegółowo

Jednostki Wytwórcze opalane gazem Alternatywa dla węgla

Jednostki Wytwórcze opalane gazem Alternatywa dla węgla VIII Konferencja Naukowo-Techniczna Ochrona Środowiska w Energetyce Jednostki Wytwórcze opalane gazem Alternatywa dla węgla Główny Inżynier ds. Przygotowania i Efektywności Inwestycji 1 Rynek gazu Realia

Bardziej szczegółowo

Nowe układy kogeneracyjne polska rzeczywistość i wyzwania przyszłości

Nowe układy kogeneracyjne polska rzeczywistość i wyzwania przyszłości Nowe układy kogeneracyjne polska rzeczywistość i wyzwania przyszłości Janusz Lewandowski Sulechów, 22 listopada 2013 Wybrane zapisy DYREKTYWY PARLAMENTU EUROPEJSKIEGO I RADY 2012/27/UE z dnia 25 października

Bardziej szczegółowo

Pompy ciepła do c.w.u. wschodząca gwiazda rynku techniki podgrzewu

Pompy ciepła do c.w.u. wschodząca gwiazda rynku techniki podgrzewu 31 Paweł Lachman Pompy ciepła i kotły gazowe razem czy osobno? Pompy ciepła do c.w.u. wschodząca gwiazda rynku techniki podgrzewu Coraz częściej słyszy się pozytywne opinie wśród instalatorów i klientów

Bardziej szczegółowo

Wpływ regeneracji na pracę jednostek wytwórczych kondensacyjnych i ciepłowniczych 1)

Wpływ regeneracji na pracę jednostek wytwórczych kondensacyjnych i ciepłowniczych 1) Wpływ regeneracji na pracę jednostek wytwórczych kondensacyjnych i ciepłowniczych 1) Autor: dr inż. Robert Cholewa ENERGOPOMIAR Sp. z o.o., Zakład Techniki Cieplnej ( Energetyka nr 9/2012) Regeneracyjny

Bardziej szczegółowo

Elektroenergetyka polska Wybrane wyniki i wstępne porównania wyników podmiotów gospodarczych elektroenergetyki za 2009 rok1)

Elektroenergetyka polska Wybrane wyniki i wstępne porównania wyników podmiotów gospodarczych elektroenergetyki za 2009 rok1) Elektroenergetyka polska 2010. Wybrane wyniki i wstępne porównania wyników podmiotów gospodarczych elektroenergetyki za 2009 rok1) Autor: Herbert Leopold Gabryś ( Energetyka kwiecień 2010) Wprawdzie pełnej

Bardziej szczegółowo

Rozwój kogeneracji wyzwania dla inwestora

Rozwój kogeneracji wyzwania dla inwestora REC 2013 Rozwój kogeneracji wyzwania dla inwestora PGE Górnictwo i Energetyka Konwencjonalna S.A. Departament Inwestycji Biuro ds. Energetyki Rozproszonej i Ciepłownictwa PGE Górnictwo i Energetyka Konwencjonalna

Bardziej szczegółowo

WPŁYW ROZPROSZONYCH INSTALACJI FOTOWOLTAICZNYCH NA BEZPIECZEŃSTWO KRAJOWEGO SYSTEMU ELEKTROENERGETYCZNEGO W OKRESIE SZCZYTU LETNIEGO

WPŁYW ROZPROSZONYCH INSTALACJI FOTOWOLTAICZNYCH NA BEZPIECZEŃSTWO KRAJOWEGO SYSTEMU ELEKTROENERGETYCZNEGO W OKRESIE SZCZYTU LETNIEGO WPŁYW ROZPROSZONYCH INSTALACJI FOTOWOLTAICZNYCH NA BEZPIECZEŃSTWO KRAJOWEGO SYSTEMU ELEKTROENERGETYCZNEGO W OKRESIE SZCZYTU LETNIEGO dr inż. Robert Wójcicki Instytut Informatyki Politechnika Śląska Sytuacja

Bardziej szczegółowo

Olsztyn ul. Morwowa 24 tel/fax (089) Kogeneracja. poradnik inwestora cz.

Olsztyn ul. Morwowa 24 tel/fax (089) Kogeneracja. poradnik inwestora cz. OPERATOR Doradztwo TechnicznoFinansowe NIP 7392835699, REGON 510814239 10337 Olsztyn ul. Morwowa 24 tel/fax (089) 5357409 email: biuro@dotacjeue.com.pl www.dotacjeue.com.pl Kogeneracja poradnik inwestora

Bardziej szczegółowo

Efektywność ekonomiczna elektrociepłowni opalanych gazem ziemnym

Efektywność ekonomiczna elektrociepłowni opalanych gazem ziemnym Efektywność ekonomiczna elektrociepłowni opalanych gazem ziemnym Autor: dr hab. inŝ. Bolesław Zaporowski ( Rynek Energii 3/2) 1. WPROWADZENIE Jednym z waŝnych celów rozwoju technologii wytwarzania energii

Bardziej szczegółowo

KOGENERACJA ENERGII CIEPLNEJ I ELEKTRYCZNEJ W INSTALACJACH ŚREDNIEJ WIELKOŚCI

KOGENERACJA ENERGII CIEPLNEJ I ELEKTRYCZNEJ W INSTALACJACH ŚREDNIEJ WIELKOŚCI KOGENERACJA ENERGII CIEPLNEJ I ELEKTRYCZNEJ W INSTALACJACH ŚREDNIEJ WIELKOŚCI Autor: Opiekun referatu: Hankus Marcin dr inŝ. T. Pająk Kogeneracja czyli wytwarzanie energii elektrycznej i ciepła w skojarzeniu

Bardziej szczegółowo

G-10.1k. Sprawozdanie o działalności elektrowni cieplnej zawodowej za kwartał r.

G-10.1k. Sprawozdanie o działalności elektrowni cieplnej zawodowej za kwartał r. MINISTERSTWO ENERGII www.me.gov.pl Nazwa i adres jednostki sprawozdawczej Numer identyfikacyjny - REGON G-10.1k Sprawozdanie o działalności elektrowni cieplnej zawodowej za kwartał... 2017 r. Agencja Rynku

Bardziej szczegółowo

Wymagania BAT w ujęciu parametru sprawności dla jednostek wytwórczych czy jest się czego obawiać?

Wymagania BAT w ujęciu parametru sprawności dla jednostek wytwórczych czy jest się czego obawiać? Wymagania BAT w ujęciu parametru sprawności dla jednostek wytwórczych czy jest się czego obawiać? Autorzy: dr inż. Piotr Plis, mgr inż. Tomasz Słupik ENERGOPOMIAR Sp. z o.o., Zakład Techniki Cieplnej (

Bardziej szczegółowo

Nadpodaż zielonych certyfikatów

Nadpodaż zielonych certyfikatów Nadpodaż zielonych certyfikatów Polskie Stowarzyszenie Energetyki Wiatrowej (PSEW) od co najmniej 2 lat postuluje o wprowadzenie przejrzystego systemu informacji o rynku zielonych certyfikatów. Bardzo

Bardziej szczegółowo

Bezkrytycznie podchodząc do tej tabeli, możemy stwierdzić, że węgiel jest najtańszym paliwem, ale nie jest to do końca prawdą.

Bezkrytycznie podchodząc do tej tabeli, możemy stwierdzić, że węgiel jest najtańszym paliwem, ale nie jest to do końca prawdą. Taryfa dla ciepła Popatrzmy na tabelkę poniżej. Przedstawiam w niej ceny energii przeliczone na 1GJ różnych paliw. Metodyka jest tu prosta; musimy znać cenę danej jednostki paliwa (tona, kg, litr, m3)

Bardziej szczegółowo

Wykorzystanie ciepła odpadowego dla redukcji zużycia energii i emisji 6.07.09 1

Wykorzystanie ciepła odpadowego dla redukcji zużycia energii i emisji 6.07.09 1 Wykorzystanie ciepła odpadowego dla redukcji zużycia energii i emisji 6.07.09 1 Teza ciepło niskotemperaturowe można skutecznie przetwarzać na energię elektryczną; można w tym celu wykorzystywać ciepło

Bardziej szczegółowo

Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe miasta Kościerzyna. Projekt. Prezentacja r.

Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe miasta Kościerzyna. Projekt. Prezentacja r. Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe miasta Kościerzyna Projekt Prezentacja 22.08.2012 r. Bałtycka Agencja Poszanowania Energii S.A. 1 Założenia do planu. Zgodność

Bardziej szczegółowo

Warunki realizacji zadania

Warunki realizacji zadania Nazwa zadania: Wielowariantowa koncepcja techniczno-ekonomiczna rozbudowy i modernizacji elektrociepłowni Szczegółowy opis przedmiotu zamówienia (warunki techniczne itp.): Przedmiotem niniejszego zadania

Bardziej szczegółowo

Spotkanie prasowe. Konstancin-Jeziorna 22 września 2016

Spotkanie prasowe. Konstancin-Jeziorna 22 września 2016 Spotkanie prasowe Konstancin-Jeziorna 22 września 2016 Kluczowe czynniki oddziaływujące na bieżący bilans mocy w KSE 1. Temperatura powietrza wpływa na poziom zapotrzebowania odbiorców (w skrajnych warunkach

Bardziej szczegółowo

Krok 1 Dane ogólne Rys. 1 Dane ogólne

Krok 1 Dane ogólne Rys. 1 Dane ogólne Poniższy przykład ilustruje w jaki sposób można przeprowadzić analizę technicznoekonomiczną zastosowania w budynku jednorodzinnym systemu grzewczego opartego o konwencjonalne źródło ciepła - kocioł gazowy

Bardziej szczegółowo

Rozwój przedsiębiorstw ciepłowniczych w Polsce

Rozwój przedsiębiorstw ciepłowniczych w Polsce Rozwój przedsiębiorstw ciepłowniczych w Polsce XX Wiosenne Spotkanie Ciepłowników Zakopane 22-24 kwietnia 2013r Zagadnienia 1. Rozwój ciepłownictwa sieciowego w Polsce 2. Wsparcie rozwoju kogeneracji w

Bardziej szczegółowo

Pytania zaliczeniowe z Gospodarki Skojarzonej w Energetyce

Pytania zaliczeniowe z Gospodarki Skojarzonej w Energetyce Pytania zaliczeniowe z Gospodarki Skojarzonej w Energetyce Temperatura jest miarą: a) ilości energii, b) Ilości ciepła c) Intensywności energii Gaz doskonały jest: a) najlepszy, b) najbardziej odpowiadający

Bardziej szczegółowo

XIX Konferencja Naukowo-Techniczna Rynek Energii Elektrycznej REE 2013. Uwarunkowania techniczne i ekonomiczne rozwoju OZE w Polsce

XIX Konferencja Naukowo-Techniczna Rynek Energii Elektrycznej REE 2013. Uwarunkowania techniczne i ekonomiczne rozwoju OZE w Polsce XIX Konferencja Naukowo-Techniczna Rynek Energii Elektrycznej REE 2013 Uwarunkowania techniczne i ekonomiczne rozwoju OZE w Polsce Dorota Gulbinowicz, Adam Oleksy, Grzegorz Tomasik 1 7-9 maja 2013 r. Plan

Bardziej szczegółowo

ZAGADNIENIA KOGENERACJI ENERGII ELEKTRYCZNEJ I CIEPŁA

ZAGADNIENIA KOGENERACJI ENERGII ELEKTRYCZNEJ I CIEPŁA Bałtyckie Forum Biogazu ZAGADNIENIA KOGENERACJI ENERGII ELEKTRYCZNEJ I CIEPŁA Piotr Lampart Instytut Maszyn Przepływowych PAN, Gdańsk Gdańsk, 7-8 września 2011 Kogeneracja energii elektrycznej i ciepła

Bardziej szczegółowo

Rynek ciepła z OZE w Polsce źródła rozproszone: stan i tendencje rozwojowe

Rynek ciepła z OZE w Polsce źródła rozproszone: stan i tendencje rozwojowe Rynek ciepła z OZE w Polsce źródła rozproszone: stan i tendencje rozwojowe Janusz Starościk PREZES ZARZĄDU SPIUG 69 Spotkanie Forum EEŚ Warszawa, NFOŚiGW 28 stycznia 2015 Rynek ciepła ze źródeł odnawialnych

Bardziej szczegółowo

Flex E. Elastyczność w nowoczesnym systemie energetycznym. Andrzej Rubczyński. Warszawa Warszawa r.

Flex E. Elastyczność w nowoczesnym systemie energetycznym. Andrzej Rubczyński. Warszawa Warszawa r. Flex E Elastyczność w nowoczesnym systemie energetycznym Warszawa Warszawa 28.03.2017 r. Andrzej Rubczyński Dlaczego system musi być elastyczny? Obecnie Elektrownie Odbiorcy Elektrownie podążają za popytem

Bardziej szczegółowo

G-10.1k. Sprawozdanie o działalności elektrowni cieplnej zawodowej za kwartał r.

G-10.1k. Sprawozdanie o działalności elektrowni cieplnej zawodowej za kwartał r. MINISTERSTWO ENERGII www.me.gov.pl Nazwa i adres jednostki sprawozdawczej Numer identyfikacyjny - REGON G-10.1k Sprawozdanie o działalności elektrowni cieplnej zawodowej za kwartał... 2019 r. Agencja Rynku

Bardziej szczegółowo

Polityka zrównoważonego rozwoju energetycznego w gminach. Edmund Wach Bałtycka Agencja Poszanowania Energii S.A.

Polityka zrównoważonego rozwoju energetycznego w gminach. Edmund Wach Bałtycka Agencja Poszanowania Energii S.A. Polityka zrównoważonego rozwoju energetycznego w gminach Toruń, 22 kwietnia 2008 Edmund Wach Bałtycka Agencja Poszanowania Energii S.A. Zrównoważona polityka energetyczna Długotrwały rozwój przy utrzymaniu

Bardziej szczegółowo

Rozdział 05. Uwarunkowania rozwoju miasta

Rozdział 05. Uwarunkowania rozwoju miasta ZZAAŁŁO ŻŻEENNIIAA DDO PPLLAANNUU ZZAAO PPAATTRRZZEENNIIAA W CCIIEEPPŁŁO,,, EENNEERRGIIĘĘ EELLEEKTTRRYYCCZZNNĄĄ II PPAALLIIWAA GAAZZOWEE MIIAASSTTAA DDĘĘBBIICCAA Rozdział 05 Uwarunkowania rozwoju miasta

Bardziej szczegółowo

Projekt: Poprawa jakości powietrza poprzez zwiększenie udziału OZE w wytwarzaniu energii na terenie Gminy Hażlach

Projekt: Poprawa jakości powietrza poprzez zwiększenie udziału OZE w wytwarzaniu energii na terenie Gminy Hażlach Konkurs RPSL.4.1.3-IZ.1-24-199/17 w ramach Regionalnego Programu Operacyjnego Województwa Śląskiego na lata 214-22 dla Projekt: Poprawa jakości powietrza poprzez zwiększenie udziału OZE w wytwarzaniu energii

Bardziej szczegółowo

Ciepłownictwo filarem energetyki odnawialnej

Ciepłownictwo filarem energetyki odnawialnej Ciepłownictwo filarem energetyki odnawialnej Autor: Maciej Flakowicz, Agencja Rynku Energii, Warszawa ( Czysta Energia nr 6/2013) Z zaprezentowanego w 2012 r. sprawozdania Ministra Gospodarki dotyczącego

Bardziej szczegółowo

IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ

IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ Dwie grupy technologii: układy kogeneracyjne do jednoczesnego wytwarzania energii elektrycznej i ciepła wykorzystujące silniki tłokowe, turbiny gazowe,

Bardziej szczegółowo

G k Sprawozdanie o działalności podstawowej elektrowni cieplnej zawodowej za kwartał r.

G k Sprawozdanie o działalności podstawowej elektrowni cieplnej zawodowej za kwartał r. MINISTERSTWO GOSPODARKI, pl. Trzech KrzyŜy 3/5, 00-507 Warszawa Nazwa i adres jednostki sprawozdawczej Numer identyfikacyjny - REGON G - 10.1 k Sprawozdanie o działalności podstawowej elektrowni cieplnej

Bardziej szczegółowo

Elektroenergetyka w Polsce Z wyników roku 2013 i nie tylko osądy bardzo autorskie

Elektroenergetyka w Polsce Z wyników roku 2013 i nie tylko osądy bardzo autorskie Elektroenergetyka w Polsce 2014. Z wyników roku 2013 i nie tylko osądy bardzo autorskie Autor: Herbert Leopold Gabryś ("Energetyka" - czerwiec 2014) Na sytuację elektroenergetyki w Polsce w decydujący

Bardziej szczegółowo

Środki publiczne jako posiłkowe źródło finansowania inwestycji ekologicznych

Środki publiczne jako posiłkowe źródło finansowania inwestycji ekologicznych Środki publiczne jako posiłkowe źródło finansowania Bio Alians Doradztwo Inwestycyjne Sp. z o.o. Warszawa, 9 października 2013 r. Wsparcie publiczne dla : Wsparcie ze środków unijnych (POIiŚ i 16 RPO):

Bardziej szczegółowo

KOGENERACJA W dobie rosnących cen energii

KOGENERACJA W dobie rosnących cen energii KOGENERACJA W dobie rosnących cen energii Co to jest? Oszczędność energii chemicznej paliwa Niezależność dostaw energii elektrycznej i ciepła Zmniejszenie emisji Redukcja kosztów Dlaczego warto? ~ 390

Bardziej szczegółowo

Rola kogeneracji w osiąganiu celów polityki klimatycznej i środowiskowej Polski. dr inż. Janusz Ryk Warszawa, 22 październik 2015 r.

Rola kogeneracji w osiąganiu celów polityki klimatycznej i środowiskowej Polski. dr inż. Janusz Ryk Warszawa, 22 październik 2015 r. Rola kogeneracji w osiąganiu celów polityki klimatycznej i środowiskowej Polski dr inż. Janusz Ryk Warszawa, 22 październik 2015 r. Polskie Towarzystwo Elektrociepłowni Zawodowych Rola kogeneracji w osiąganiu

Bardziej szczegółowo

G k. Sprawozdanie o działalności elektrowni cieplnej zawodowej za kwartał r. z tego. poza własną grupę kapitałową 06 X.

G k. Sprawozdanie o działalności elektrowni cieplnej zawodowej za kwartał r. z tego. poza własną grupę kapitałową 06 X. MINISTERSTWO GOSPODARKI, plac Trzech Krzyży 3/5, 00-507 Warszawa Nazwa i adres jednostki sprawozdawczej Numer identyfikacyjny - REGON G - 10.1 k Sprawozdanie o działalności elektrowni cieplnej zawodowej

Bardziej szczegółowo

Skutki makroekonomiczne przyjętych scenariuszy rozwoju sektora wytwórczego

Skutki makroekonomiczne przyjętych scenariuszy rozwoju sektora wytwórczego Skutki makroekonomiczne przyjętych scenariuszy rozwoju sektora wytwórczego Maciej Bukowski WiseEuropa Warszawa 12/4/17.wise-europa.eu Zakres analizy Całkowite koszty produkcji energii Koszty zewnętrzne

Bardziej szczegółowo

Kogeneracja w oparciu o źródła biomasy i biogazu

Kogeneracja w oparciu o źródła biomasy i biogazu Biogazownie dla Pomorza Kogeneracja w oparciu o źródła biomasy i biogazu Piotr Lampart Instytut Maszyn Przepływowych PAN Przemysław Kowalski RenCraft Sp. z o.o. Gdańsk, 10-12 maja 2010 KONSUMPCJA ENERGII

Bardziej szczegółowo

Elektrociepłownie w Polsce statystyka i przykłady. Wykład 3

Elektrociepłownie w Polsce statystyka i przykłady. Wykład 3 Elektrociepłownie w Polsce statystyka i przykłady Wykład 3 Zakres wykładu Produkcja energii elektrycznej i ciepła w polskich elektrociepłowniach Sprawność całkowita elektrociepłowni Moce i ilość jednostek

Bardziej szczegółowo

Optymalizacja produkcji ciepła produkty dedykowane

Optymalizacja produkcji ciepła produkty dedykowane Optymalizacja produkcji ciepła produkty dedykowane Autor: dr inż. Robert Cholewa - ENERGOPOMIAR Sp. z o.o., Zakład Techniki Cieplnej ("Energetyka Cieplna i Zawodowa" - nr 3/2014) Wstęp Produkcję ciepła

Bardziej szczegółowo

ENERGETYKA A OCHRONA ŚRODOWISKA. Wpływ wymagań środowiskowych na zakład energetyczny (Wyzwania EC Sp. z o.o. - Studium przypadku)

ENERGETYKA A OCHRONA ŚRODOWISKA. Wpływ wymagań środowiskowych na zakład energetyczny (Wyzwania EC Sp. z o.o. - Studium przypadku) ENERGETYKA A OCHRONA ŚRODOWISKA Wpływ wymagań środowiskowych na zakład energetyczny (Wyzwania EC Sp. z o.o. - Studium przypadku) Kim jesteśmy Krótka prezentacja firmy Energetyka Cieplna jest Spółką z o.

Bardziej szczegółowo

REC Waldemar Szulc. Rynek ciepła - wyzwania dla generacji. Wiceprezes Zarządu ds. Operacyjnych PGE GiEK S.A.

REC Waldemar Szulc. Rynek ciepła - wyzwania dla generacji. Wiceprezes Zarządu ds. Operacyjnych PGE GiEK S.A. REC 2012 Rynek ciepła - wyzwania dla generacji Waldemar Szulc Wiceprezes Zarządu ds. Operacyjnych PGE GiEK S.A. PGE GiEK S.A. PGE Górnictwo i Energetyka Konwencjonalna Spółka Akcyjna Jest największym wytwórcą

Bardziej szczegółowo

ANALIZA UWARUNKOWAŃ TECHNICZNO-EKONOMICZNYCH BUDOWY GAZOWYCH UKŁADÓW KOGENERACYJNYCH MAŁEJ MOCY W POLSCE. Janusz SKOREK

ANALIZA UWARUNKOWAŃ TECHNICZNO-EKONOMICZNYCH BUDOWY GAZOWYCH UKŁADÓW KOGENERACYJNYCH MAŁEJ MOCY W POLSCE. Janusz SKOREK Seminarium Naukowo-Techniczne WSPÓŁCZSN PROBLMY ROZWOJU TCHNOLOGII GAZU ANALIZA UWARUNKOWAŃ TCHNICZNO-KONOMICZNYCH BUDOWY GAZOWYCH UKŁADÓW KOGNRACYJNYCH MAŁJ MOCY W POLSC Janusz SKORK Instytut Techniki

Bardziej szczegółowo

Konsekwencje termodynamiczne podsuszania paliwa w siłowni cieplnej.

Konsekwencje termodynamiczne podsuszania paliwa w siłowni cieplnej. Marcin Panowski Politechnika Częstochowska Konsekwencje termodynamiczne podsuszania paliwa w siłowni cieplnej. Wstęp W pracy przedstawiono analizę termodynamicznych konsekwencji wpływu wstępnego podsuszania

Bardziej szczegółowo

Trajektoria przebudowy polskiego miksu energetycznego 2050 dr inż. Krzysztof Bodzek

Trajektoria przebudowy polskiego miksu energetycznego 2050 dr inż. Krzysztof Bodzek Politechnika Śląska Centrum Energetyki Prosumenckiej Wydział Elektryczny Instytut Elektrotechniki i Informatyki Konwersatorium Inteligentna Energetyka Transformacja energetyki: nowy rynek energii, klastry

Bardziej szczegółowo

Scenariuszowa analiza salda wytwórczo-odbiorczego w granulacji dobowo-godzinowej dla klastra energii opartego o farmę wiatrową

Scenariuszowa analiza salda wytwórczo-odbiorczego w granulacji dobowo-godzinowej dla klastra energii opartego o farmę wiatrową Scenariuszowa analiza salda wytwórczo-odbiorczego w granulacji dobowo-godzinowej dla klastra energii opartego o farmę wiatrową Wykonano przez na zlecenie Polskiego Towarzystwa Energetyki Wiatrowej O nas

Bardziej szczegółowo

Prawo Energetyczne I Inne Ustawy Dotyczące Energetyki Kogeneracja Skuteczność Nowelizacji I Konieczność

Prawo Energetyczne I Inne Ustawy Dotyczące Energetyki Kogeneracja Skuteczność Nowelizacji I Konieczność Prawo Energetyczne I Inne Ustawy Dotyczące Energetyki Kogeneracja Skuteczność Nowelizacji I Konieczność dr inż. Janusz Ryk Polskie Towarzystwo Elektrociepłowni Zawodowych II Ogólnopolska Konferencja Polska

Bardziej szczegółowo

Najważniejsze wyzwania związane z zarządzaniem energią na poziomie lokalnym

Najważniejsze wyzwania związane z zarządzaniem energią na poziomie lokalnym Najważniejsze wyzwania związane z zarządzaniem energią na poziomie lokalnym Kraków, 31.03-01.04.2016 r. 1 Najważniejsze wyzwania związane z zarządzaniem energią na poziomie lokalnym: 1. Termomodernizacja

Bardziej szczegółowo

Instalacje z kolektorami pozyskującymi energię promieniowania słonecznego (instalacje słoneczne)

Instalacje z kolektorami pozyskującymi energię promieniowania słonecznego (instalacje słoneczne) Czyste powietrze - odnawialne źródła energii (OZE) w Wyszkowie 80% dofinansowania na kolektory słoneczne do podgrzewania ciepłej wody użytkowej dla istniejących budynków jednorodzinnych Instalacje z kolektorami

Bardziej szczegółowo

Zachowania odbiorców. Grupa taryfowa G

Zachowania odbiorców. Grupa taryfowa G Zachowania odbiorców. Grupa taryfowa G Autor: Jarosław Tomczykowski Biuro PTPiREE ( Energia elektryczna luty 2013) Jednym z założeń wprowadzania smart meteringu jest optymalizacja zużycia energii elektrycznej,

Bardziej szczegółowo

Inwestycje w ochronę środowiska w TAURON Wytwarzanie. tauron.pl

Inwestycje w ochronę środowiska w TAURON Wytwarzanie. tauron.pl Inwestycje w ochronę środowiska w TAURON Wytwarzanie Moc zainstalowana TAURON Wytwarzanie TAURON Wytwarzanie w liczbach 4 506 MWe 1 274.3 MWt Elektrownia Jaworzno Elektrownia Łagisza Elektrownia Łaziska

Bardziej szczegółowo

silniku parowym turbinie parowej dwuetapowa

silniku parowym turbinie parowej dwuetapowa Turbiny parowe Zasada działania W silniku parowym tłokowym energia pary wodnej zamieniana jest bezpośrednio na energię mechaniczną w cylindrze silnika. W turbinie parowej przemiana energii pary wodnej

Bardziej szczegółowo

Efektywność energetyczna -

Efektywność energetyczna - Efektywność energetyczna - czyste powietrze i przyjazna gospodarka Warszawa, 14.11.2017 Jacek Janas, Stanisław Tokarski Konkluzje BAT IED i kolejne nowe wymagania Kolejne modernizacje jednostek Zmniejszenie

Bardziej szczegółowo

RYSZARD BARTNIK ANALIZA TERMODYNAMICZNA I EKONOMICZNA MODERNIZACJI ENERGETYKI CIEPLNEJ Z WYKORZYSTANIEM TECHNOLOGII GAZOWYCH

RYSZARD BARTNIK ANALIZA TERMODYNAMICZNA I EKONOMICZNA MODERNIZACJI ENERGETYKI CIEPLNEJ Z WYKORZYSTANIEM TECHNOLOGII GAZOWYCH POLITECHNIKA ŁÓDZKA ZESZYTY NAUKOWE Nr943 ROZPRAWY NAUKOWE, Z. 335 SUB Gottingen 7 217 776 736 2005 A 2640 RYSZARD BARTNIK ANALIZA TERMODYNAMICZNA I EKONOMICZNA MODERNIZACJI ENERGETYKI CIEPLNEJ Z WYKORZYSTANIEM

Bardziej szczegółowo

MINISTERSTWO GOSPODARKI, plac Trzech Krzyży 3/5, 00-507 Warszawa. G-10.1k

MINISTERSTWO GOSPODARKI, plac Trzech Krzyży 3/5, 00-507 Warszawa. G-10.1k MINISTERSTWO GOSPODARKI, plac Trzech Krzyży 3/5, 00-507 Warszawa Nazwa i adres jednostki sprawozdawczej Numer identyfikacyjny - REGON G-10.1k Sprawozdanie o działalności elektrowni cieplnej zawodowej za

Bardziej szczegółowo

Jak wspierać dalszy rozwój kogeneracji w Polsce? Rola sektora kogeneracji w realizacji celów PEP 2050 Konferencja PKŚRE

Jak wspierać dalszy rozwój kogeneracji w Polsce? Rola sektora kogeneracji w realizacji celów PEP 2050 Konferencja PKŚRE Jak wspierać dalszy rozwój kogeneracji w Polsce? Rola sektora kogeneracji w realizacji celów PEP 2050 Konferencja PKŚRE Warszawa 22.10.2015r Polska jest dobrym kandydatem na pozycję lidera rozwoju wysokosprawnej

Bardziej szczegółowo

CIEPŁO Z OZE W KONTEKŚCIE ISTNIEJĄCYCH / PLANOWANYCH INSTALACJI CHP

CIEPŁO Z OZE W KONTEKŚCIE ISTNIEJĄCYCH / PLANOWANYCH INSTALACJI CHP CIEPŁO Z OZE W KONTEKŚCIE ISTNIEJĄCYCH / PLANOWANYCH INSTALACJI CHP Andrzej Schroeder Enea Wytwarzanie andrzej.schroeder@enea.pl Emisja CO 2 : 611 kg/mwh 44 straty 14 Emisja CO 2 : 428 kg/mwh 34 10 Elektrownia

Bardziej szczegółowo

Wszyscy zapłacimy za politykę klimatyczną

Wszyscy zapłacimy za politykę klimatyczną Wszyscy zapłacimy za politykę klimatyczną Autor: Stanisław Tokarski, Jerzy Janikowski ( Polska Energia - nr 5/2012) W Krajowej Izbie Gospodarczej, w obecności przedstawicieli rządu oraz środowisk gospodarczych,

Bardziej szczegółowo

G 10.3 Sprawozdanie o mocy i produkcji energii elektrycznej i ciepła elektrowni (elektrociepłowni) przemysłowej

G 10.3 Sprawozdanie o mocy i produkcji energii elektrycznej i ciepła elektrowni (elektrociepłowni) przemysłowej MINISTERSTWO GOSPODARKI, pl. Trzech KrzyŜy 3/5, 00-507 Warszawa Nazwa i adres jednostki sprawozdawczej G 10.3 Sprawozdanie o mocy i produkcji energii elektrycznej i ciepła elektrowni (elektrociepłowni)

Bardziej szczegółowo

Bilans energetyczny (miks)

Bilans energetyczny (miks) Politechnika Śląska PPTE2050 Konwersatorium Inteligentna Energetyka Temat przewodni REAKTYWNY PROGRAM ODDOLNEJ ODPOWIEDZI NA PRZESILENIE KRYZYSOWE W ELEKTROENERGETYCE POTRZEBNY W LATACH 2019-2020 Bilans

Bardziej szczegółowo

Stanowisko w sprawie dyskusji na temat kosztów energii z morskich farm wiatrowych i energetyki jądrowej.

Stanowisko w sprawie dyskusji na temat kosztów energii z morskich farm wiatrowych i energetyki jądrowej. Warszawa, 09 sierpnia 2012 r. Stanowisko w sprawie dyskusji na temat kosztów energii z morskich farm wiatrowych i energetyki jądrowej. W związku z podjęciem w Polsce dyskusji na temat porównania wysokości

Bardziej szczegółowo