Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych zajęć edukacyjnych (kształcenie ogólne). Przedmiot: Matematyka Zakres: Podstawowy
FUNKCJE WYKŁADNICZE I LOGARYTMY ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca oblicza potęgi o wykładnikach bardzo wymiernych stosuje równości wynikające z upraszcza wyrażenia, stosując podaje odpowiednie założenia dowodzi twierdzenia o zapisuje daną liczbę w postaci definicji logarytmu do prostych prawa działań na potęgach dla podstawy logarytmu lub logarytmach potęgi o wykładniku obliczeń porównuje liczby liczby logarytmowanej wykorzystuje twierdzenie o wymiernym wyznacza wzór funkcji przedstawione w postaci potęg stosuje twierdzenie o zmianie podstawy logarytmu w zapisuje daną liczbę w postaci wykładniczej i szkicuje jej odczytuje rozwiązania logarytmie iloczynu, ilorazu i zadaniach potęgi o danej podstawie wykres, znając współrzędne nierówności na postawie potęgi do uzasadnienia rozwiązuje zadania o znacznym upraszcza wyrażenia, stosując punktu należącego do jej wykresów funkcji równości wyrażeń stopniu trudności dotyczące prawa działań na potęgach wykresu wykładniczych wykorzystuje własności funkcji funkcji wykładniczej i szkicuje wykres funkcji, będący podaje przybliżoną wartość wykładniczej i logarytmu do logarytmicznej porównuje liczby przedstawione w postaci potęg wyznacza wartości funkcji efektem jednego przekształcenia wykresu funkcji wykładniczej i określa jej własności logarytmów dziesiętnych z wykorzystaniem tablic rozwiązywania zadań o kontekście praktycznym wykładniczej dla podanych wyznacza podstawę logarytmu argumentów sprawdza, czy punkt należy do lub liczbę logarytmowaną, gdy dana jest jego wartość wykresu funkcji wykładniczej rozwiązuje równania szkicuje wykres funkcji wykładnicze, stosując logarytm wykładniczej, stosując oblicza logarytm iloczynu, przesunięcie o wektor i określa jej własności oblicza logarytm danej ilorazu i potęgi, stosując odpowiednie twierdzenia o logarytmach liczby
CIĄGI bardzo wyznacza kolejne wyrazy ciągu, gdy danych jest kilka wyznacza wzór ogólny ciągu, wyznacza wzór ogólny ciągu stosuje własności ciągu wyznacza wyrazy ciągu jego początkowych wyrazów mając danych kilka jego spełniającego podane warunki arytmetycznego i określonego rekurencyjnie szkicuje wykres ciągu początkowych wyrazów bada monotoniczność ciągów geometrycznego w zadaniach dowodzi wzór na sumę n wyznacza początkowe wyrazy ciągu określonego wzorem ogólnym lub słownie wyznacza, które wyrazy ciągu przyjmują daną wartość podaje przykłady ciągów monotonicznych, których wyrazy spełniają dane warunki uzasadnia, że dany ciąg nie jest monotoniczny, mając dane jego kolejne wyrazy podaje przykłady ciągów arytmetycznych wyznacza wyrazy ciągu arytmetycznego, mając dany pierwszy wyraz i różnicę sprawdza, czy dany ciąg jest arytmetyczny (proste przypadki) sprawdza, czy dany ciąg jest geometryczny (proste przypadki) wyznacza wyraz an 1 ciągu określonego wzorem ogólnym wyznacza wzór ogólny ciągu arytmetycznego, mając dane dowolne dwa jego wyrazy wyznacza wzór ogólny ciągu geometrycznego, mając dane dowolne dwa jego wyrazy określa monotoniczność ciągu arytmetycznego i geometryczn. stosuje monotoniczność ciągu geometrycznego do stosuje własności ciągu arytmetycznego lub geometrycznego do oblicza wysokość kapitału przy różnym okresie kapitalizacji oblicza oprocentowanie lokaty rozwiązuje zadania z parametrem dotyczące monotoniczności ciągu sprawdza, czy dany ciąg jest arytmetyczny sprawdza, czy dany ciąg jest geometryczny rozwiązuje równania z zastosowaniem wzoru na sumę wyrazów ciągu arytmetycznego rozwiązuje równania z zastosowaniem wzoru na sumę wyrazów ciągu geometrycznego określa monotoniczność ciągu arytmetycznego i geometrycznego rozwiązuje zadania związane z kredytami dotyczące okresu oszczędzania i wysokości oprocentowania wyznacza wartości zmiennych tak, aby wraz z podanymi wartościami tworzyły ciąg arytmetyczny lub geometryczny rozwiązuje zadania o podwyższonym stopniu trudności dotyczące monotoniczności ciągu początkowych wyrazów ciągu arytmetycznego stosuje średnią geometryczną do rozwiązywania zadań rozwiązuje zadania o znacznym stopniu trudności dotyczące ciągów
stosuje średnią arytmetyczną do wyznaczania wyrazów ciągu arytmetycznego (proste przypadki) oblicza sumę n początkowych wyrazów ciągu arytmetycznego i geometrycznego podaje przykłady ciągów geometrycznych wyznacza wyrazy ciągu geometrycznego, mając dany pierwszy wyraz i iloraz TRYGONOMETRIA bardzo podaje definicje funkcji trygonometrycznych kąta oblicza wartości funkcji oblicza wartości pozostałych oblicza wartości funkcji rozwiązuje zadania o ostrego w trójkącie trygonometrycznych kątów funkcji trygonometrycznych, trygonometrycznych kątów podwyższonym stopniu prostokątnym ostrych w trójkącie mając dany sinus kąta lub ostrych w bardziej złożonych trudności dotyczące funkcji podaje wartości funkcji prostokątnym cosinus kąta sytuacjach trygonometrycznych trygonometrycznych kątów 30, stosuje zależności między stosuje funkcje oblicza wartości pozostałych stosuje związek między 45, 60 funkcjami trygonometrycznymi trygonometryczne do funkcji trygonometrycznych, współczynnikiem kierunkowym odczytuje z tablic wartości do upraszczania wyrażeń rozwiązywania zadań mając dany tangens kąta a kątem nachylenia prostej do funkcji trygonometrycznych zawierających funkcje praktycznych o podwyższonym uzasadnia związki między osi OX danego kąta ostrego trygonometryczne stopniu trudności funkcjami trygonometrycznymi znajduje w tablicach kąt ostry, stosuje funkcje rozwiązuje trójkąty prostokątne gdy dana jest wartość jego trygonometryczne do funkcji trygonometrycznej
podaje związki między osadzonych w kontekście funkcjami trygonometrycznymi praktycznym tego samego kąta rozwiązuje trójkąty prostokątne zaznacza kąt w układzie w prostych zadaniach współrzędnych wyznacza wartości funkcji trygonometrycznych kąta, gdy dane są współrzędne punktu leżącego na jego końcowym ramieniu określa znaki funkcji trygonometrycznych danego kąta oblicza wartości funkcji trygonometrycznych szczególnych kątów, np.: 90, 120, 135 PLANIMETRIA bardzo podaje i stosuje wzory na długość okręgu, długość łuku, oblicza pola figur, stosując stosuje wzory na długość stosuje wzór na odległość dowodzi twierdzenia dotyczące pole koła i pole wycinka koła zależności między okręgami okręgu, długość łuku okręgu, między punktami oraz środek kątów w okręgu określa wzajemne położenie pole koła i pole wycinka do odcinka do rozwiązywania dowodzi wzoru na pole trójkąta okręgów, mając dane promienie oblicza pole trójkąta, dobierając obliczania pól i obwodów figur trudniejszych zadań rozwiązuje zadania z tych okręgów oraz odległość odpowiedni wzór (proste oblicza pole figury, stosując stosuje własności symetrii planimetrii o znacznym stopniu ich środków przypadki) zależności między okręgami osiowej i środkowej do trudności określa liczbę punktów rozwiązuje zadania dotyczące stosuje własności stycznej do rozwiązywania trudniejszych stosuje przesunięcie figury o
wspólnych prostej i okręgu przy okręgu wpisanego w trójkąt okręgu do rozwiązywania zadań opisuje równaniem okrąg wektor do rozwiązywania zadań danych warunkach prostokątny lub równoboczny trudniejszych zadań o danym środku i przechodzący podaje środek obrotu i kąt stosuje własności stycznej do rozwiązuje zadania związane z stosuje twierdzenie o kącie przez dany punkt obrotu w prostych sytuacjach okręgu do rozwiązywania okręgiem opisanym na trójkącie środkowym i kącie wpisanym, wyznacza środek i promień prostych zadań oblicza odległość punktów w opartych na tym samym łuku okręgu, mając jego równanie rozpoznaje kąty wpisane i układzie współrzędnych oraz wnioski z tego twierdzenia rozwiązuje zadania związane z środkowe w okręgu oraz oblicza odwód wielokąta, mając do rozwiązywania zadań o okręgiem wpisanym w wskazuje łuki, na których są dane współrzędne jego większym stopniu trudności dowolny trójkąt i opisanym na one oparte wierzchołków stosuje różne wzory na pole dowolnym trójkącie stosuje twierdzenie o kącie wykorzystuje funkcje trójkąta i przekształca je środkowym i kącie wpisanym, trygonometryczne do wykorzystuje umiejętność opartych na tym samym łuku wyznaczania pól czworokątów wyznaczania pól trójkątów do obliczania pól wielokątów podaje różne wzory na pole wyznacza współrzędne środka stosuje własności środka trójkąta odcinka, mając dane okręgu opisanego na trójkącie podaje wzory na pole rombu, współrzędne jego końców w zadaniach z geometrii równoległoboku i trapezu wskazuje środek symetrii figury analitycznej stosuje wzór na odległość konstruuje figury symetryczne wykorzystuje funkcje między punktami do w danej symetrii środkowej trygonometryczne do rysuje figury symetryczne w wyznaczania pól czworokątów określa liczbę i wskazuje osi danej symetrii osiowej symetrii figury stosuje własności symetrii znajduje obrazy figur w osiowej i środkowej do symetrii osiowej względem osi układu współrzędnych znajduje obrazy figur geometrycznych w symetrii środkowej względem środka układu współrzędnych
RACHUNEK PRAWDOPODOBIEŃSTWA bardzo wypisuje wyniki doświadczenia stosuje w typowych sytuacjach przedstawia w prostych stosuje regułę mnożenia i oblicza w bardziej złożonych rozwiązuje zadania o znacznym regułę mnożenia sytuacjach drzewo ilustrujące regułę dodawania do sytuacjach liczbę permutacji stopniu trudności dotyczące wypisuje permutacje zbioru wyniki danego doświadczenia wyznaczenia liczby wyników danego zbioru prawdopodobieństwa stosuje definicję silni podaje rozkład doświadczenia spełniających oblicza w bardziej złożonych ilustruje doświadczenia oblicza w prostych sytuacjach prawdopodobieństwa dla dany warunek sytuacjach liczbę wariacji bez wieloetapowe za pomocą liczbę permutacji danego zbioru rzutów kostką, monetą zapisuje zdarzenia w postaci powtórzeń drzewa i na tej podstawie oblicza w prostych sytuacjach stosuje w prostych, typowych sumy, iloczynu oraz różnicy oblicza w bardziej złożonych oblicza prawdopodobieństwa liczbę wariacji bez powtórzeń sytuacjach klasyczną definicję zdarzeń sytuacjach liczbę wariacji z zdarzeń oblicza w prostych sytuacjach prawdopodobieństwa do stosuje własności powtórzeniami liczbę wariacji z powtórzeniami obliczania prawdopodobieństw prawdopodobieństwa do stosuje w bardziej złożonych stosuje w prostych sytuacjach zdarzeń losowych obliczania prawdopodobieństw sytuacjach klasyczną definicję regułę dodawania do podaje rozkład zdarzeń prawdopodobieństwa do wyznaczenia liczby wyników prawdopodobieństwa stosuje własności obliczania prawdopodobieństw doświadczenia spełniających oblicza prawdopodobieństwo prawdopodobieństwa w zdarzeń losowych warunek zdarzenia przeciwnego dowodach twierdzeń określa zbiór zdarzeń stosuje w prostych sytuacjach elementarnych doświadczenia twierdzenie o określa zbiór zdarzeń prawdopodobieństwie sumy elementarnych sprzyjających zdarzeń danemu zdarzeniu losowemu określa zdarzenia przeciwne, zdarzenia niemożliwe, zdarzenia pewne i zdarzenia wykluczające się