Wstęp. Regresja logistyczna. Spis treści. Hipoteza. powrót

Podobne dokumenty
Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Uogolnione modele liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Agnieszka Nowak Brzezińska Wykład III

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

Agnieszka Nowak Brzezińska Wykład III

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Modele zapisane w przestrzeni stanów

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Spacery losowe generowanie realizacji procesu losowego

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne

Wnioskowanie bayesowskie

Testowanie hipotez statystycznych.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

STATYSTYKA

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

Własności statystyczne regresji liniowej. Wykład 4

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

6.4 Podstawowe metody statystyczne

Elementy statystyki wielowymiarowej

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

3. Macierze i Układy Równań Liniowych

1. Ubezpieczenia życiowe

Programowanie celowe #1

Elementy inteligencji obliczeniowej

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

Aby mówić o procesie decyzyjnym Markowa musimy zdefiniować następujący zestaw (krotkę): gdzie:

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Weryfikacja hipotez statystycznych

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Opis zakładanych efektów kształcenia na studiach podyplomowych WIEDZA

Algorytm grupowania danych typu kwantyzacji wektorów

Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński

Zmienne losowe ciągłe i ich rozkłady

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

W ostatnim wykładzie doszliśmy do tego, że problem znalezienia klasyfikatora optymalnego pod względem marginesów można wyrazić w następujący sposób:

166 Wstęp do statystyki matematycznej

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Modelowanie niezawodności prostych struktur sprzętowych

1 Grupa SU(3) i klasyfikacja cząstek

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

Wykład 3 Hipotezy statystyczne

Regresja linearyzowalna

Podstawowe modele probabilistyczne

Mikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

8. Neuron z ciągłą funkcją aktywacji.

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization

Metody systemowe i decyzyjne w informatyce

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Stanisław Cichocki. Natalia Neherebecka. Zajęcia 15-17

Optymalizacja systemów

Prawdopodobieństwo i statystyka

Analiza danych. TEMATYKA PRZEDMIOTU

Metody probabilistyczne

Informacja o przestrzeniach Hilberta

Quick Launch Manual:

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału.

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2

Spis treści 3 SPIS TREŚCI

Definicje i przykłady

8. Funkcje wielu zmiennych - pochodne cząstkowe

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka i eksploracja danych

Aproksymacja funkcji a regresja symboliczna

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Układy równań i nierówności liniowych

Stanisław Cichocki. Natalia Nehrebecka

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6

WYKŁAD 9 METODY ZMIENNEJ METRYKI

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

UBEZPIECZENIA NA ŻYCIE

Rozpoznawanie obrazów

Prawdopodobieństwo i statystyka

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16


Lekcja : Tablice + pętle

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

1 Podstawowe oznaczenia

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Agata Boratyńska Statystyka aktuarialna... 1

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Komputerowa analiza danych doświadczalnych

Metody Rozmyte i Algorytmy Ewolucyjne

Wykład z równań różnicowych

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Transkrypt:

powrót Spis treści 1 Wstęp 2 Regresja logistyczna 2.1 Hipoteza 2.2 Estymacja parametrów 2.2.1 Funkcja wiarygodności 3 Uogólnione modele liniowe 3.1 Rodzina wykładnicza 3.1.1 Rozkład Bernouliego 3.1.2 Rozkład Gaussa 4 Konstrukcja uogólnionego modelu liniowego 4.1 Regresja liniowa jako GLM 4.2 Regresja logistyczna jako GLM 4.3 Regresja wieloraka (softmax) jako GLM Wstęp W tym wykładzie zajmiemy się problemem konstrukcji Uogulnionych Modeli Liniowych (ang. generalized linear models - GML). Metodologia ta pozwala objąć w jednym formaliźmie zarówno problemy regresji jak i klasyfikacji. W pewnym sensie klasyfikacja jest podobna do regresji, z tą różnicą, że zmienne które chcemy przewidywać mogą przybierać tylko niewielką ilość dyskretnych wartości. Na początek skupimy się na dwóch nieco już oswojonych przykładach, pod koniec dołożymy jeden bardzo przydatny przykład klasyfikacji wielorakiej (z więcej niż dwoma klasami). Zaczniemy od problemu klasyfikacji binarnej, czyli takiej w której wejściom mamy przypisywać jedną z dwóch klas (podobnie jak to było dla preceptronu Rosenblatta), np. oznaczonych 0 i 1. Na chwilę też odłożymy na bok sieci i zajmiemy się tym zagadnieniem bardziej z punktu widzenia statystyki. Regresja logistyczna Hipoteza W tym podejściu ignorujemy fakt, że zbiór wartości jest dyskretny. Jako funkcję pełniącą rolę hipotezy wybierzemy sigmiodę uzyskaną z funkcji logistycznej, znaną nam już jako jedną z popularnych form nieliniowości neuronów: która wraz z parametrami i wejściami jest postaci:

Pod koniec wykładu okaże się dlaczego taki akurat wybór hipotezy jest bardzo naturalny. Estymacja parametrów Jak znaleźć parametry? W języku funkcji kosztu moglibyśmy oczywiście zapostulować odpowiednią funkcję kosztu i zastosować do niej minimalizację gradientową. Tu jednak spróbujemy pokazać, że analogiczny algorytm można też wyprowadzić z interpretacji probabilistycznej. Dzięki temu będziemy mogli nabrać nowego wglądu w proces doboru parametrów. Hipotezę wybraliśmy tak, że: Zauważmy, że powyższe wyrażenia można zapisać w zwartej formie: Funkcja wiarygodności Zakładając, że przykłady zbioru uczącego są niezależne od siebie prawdopodobieństwo zaobserwowania całego zbioru uczącego wynosi: Możemy to prawdopodobieństwo potraktować jako funkcję parametrów, nazywamy ją wówczas funkcją wiarygodności i oznaczamy. Łatwiejsza w posługiwaniu się jest funkcja log-wiarygodności: Dobre parametry to te, dla których zaobserwowanie ciągu uczącego jest największe. Aby je znaleźć

należy zmaksymalizować funkcję wiarygodności, czy też dowolną monotonicznie rosnącą funkcję funkcji wiarygodności np. log-wiarygodność. Robimy to modyfikując parametry zgodnie z jej pochodną: skorzystaliśmy po drodze z postaci pochodnej funkcji logistycznej. Zatem aby zwiększać funkcję wiarygodności powinniśmy parametry zmieniać zgodnie z obliczoną pochodną: Może to się wydać dziwne, ale startując z zupełnie innych założeń i stosując optymalizację innej funkcji dostaliśmy taką samą regułę zmiany parametrów jak przy gradientowej minimalizacji funkcji (średniokwadratowej) kosztu (proszę porównać)! Uogólnione modele liniowe Dotychczas rozważaliśmy przykłady regresji gdzie zwykle oraz klasyfikacji gdzie. Wkrótce przekonamy się, że oba te problemy sa szczególnymi przypadkami większej rodziny modleli, tzw. uogólnionych modeli liniowych. Rodzina wykładnicza Mówimy, że dany rozkład należy do rodziny wykładniczej jeśli da się go zapisać w postaci: (*) tutaj: nazywana jest parametrem naturalnym lub kanonicznym dystrybucji; jest tzw. statystyką wystarczającą (często ); wielkość jest czynnikiem normalizującym, takim aby rozkład sumował/całkował się do 1. Tak więc członka rodziny wykładniczej określamy podając konkretne postaci.

Rozkład Bernouliego Pokażemy teraz, że rozkład Bernouliego należy do rodziny wykładniczej. to taki rozkład wartości, że zaś. w sposób zwarty możemy napisać ten rozkład tak: Zatem w rozkładzie Bernouliego parametrem naturalnym jest. Warto zauważyć, że jeśli przekształcić to wyrażenie ze względu na to dostaniemy dobrzez znaną funkcję logistyczną:. Widzimy też, że: Czyli możemy przedstawić ten rozkład w postaci (*). Rozkład Gaussa Teraz rozważymy rozkład Gaussa. Do estymacji parametrów regresji liniowej nie musieliśmy używać jego wariancji, więc dla uproszczenia obliczeń przyjmiemy, że nasz rozkład Gaussa ma wariancję. Mamy: Widzimy więc, że rozkład Gaussa należy do rodziny wykładniczej z następującymi parametrami: Rodzina wykładnicza jest znacznie bogatsza. Zawiera w sobie rozkłady wielorakie, Poissona (do modelowania zliczeń), gamma i wykładnicze (np. interwałów czasowych) i wiele innych. W kolejnej

sekcji podamy ogólny sposób na konstruowanie modeli, w których pochodzi z rozkładów wykładniczych. Konstrukcja uogólnionego modelu liniowego Załóżmy, że chcemy zbudować model służący do szacowania liczby (y) klientów odwiedzających sklep (lub witrynę) w dowolnej godzinie, na podstawie pewnych cech x, takich jak promocje, ostatnie reklamy, prognoza pogody, dzień tygodnia, itd. Wiemy, że rozkład Poissona zwykle daje dobry model zliczeń np. liczby odwiedzających. Wiedząc o tym, jak możemy wymyślić model dla naszego problemu? Na szczęście, rozkład Poissona należy do rodziny rozkładów wykładniczych, więc możemy zastosować uogólniony model liniowy (GLM). W tej sekcji opiszemy metodę konstruowania modeli GLM. W ogólności chcielibyśmy przewidywać wartość zmiennej losowej (zależnej) y traktując ją jako funkcję zmiennej (niezależnej) x. Aby móc zastosować tu metodologię GLM musimy poczynić następujące założenia: 1. 2. 3. Zmienna y przy ustalonych x i podlega pewnemu rozkładowi wykładniczemu z parametrem tzn.: RodzinaWykładnicza( ) Naszym celem jest estymacja wartości oczekiwanej mając dany. W wielu przypadkach mamy, co oznacza, że chcielibyśmy aby hipoteza otrzymana w wyniku uczenia spełniałą warunek. (Zauważmy, że własność ta jest spełniona dla regresji liniowej i logistycznej. Np. dla regresji logistycznej mamy ). Parametr naturalny jest liniowo związany z wejściem :. Te trzy założenia pozwalają wyprowadzić klasę algorytmów uczących GLM. Poniżej przedstawimy trzy przykłady. Regresja liniowa jako GLM Przekonajmy się, że regresja liniowa jest szczególnym przykładem GLM. Zmienna zależna jest ciągła i jej prawdopodobieństwo warunkowe dla danego jest modelowane przez rozkład Gaussa ( może zależeć od ). Tak więc w tym wypadku wspomnianą w założeniu 1 RodzinąWykładniczą jest rozkład Gaussa. Tak jak widzieliśmy wcześniej w tym przypadku. Dalej mamy: pierwsza równość wynika z założenia 2, druga równość wynika z tego, że, tak więc wartość oczekiwana wynosi

trzecia równość wynika z założenia 1 ostatnia równość wynika z założenia 3 Zauważmy jak przyjęcie założeń co do postaci rozkładu zmiennej zależnej i metodologi GLM (trzy założenia) prowadzą do konkretnej postaci hipotezy. Regresja logistyczna jako GLM Rozważmy teraz regresję logistyczną. Interesuje nas tutaj klasyfikacja binarna, więc. Ponieważ przyjmuje wartości binarne to naturalnym rozkładem prawdopodobieństwa do modelowania warunkowego rozkładu jest rozkład Bernoulliego z parametrem ( jest prawdopodbieństwem tego, że y=1). Pokazaliśmy już wcześniej, że rozkład ten należy do rodziny RozkładówWykładniczych i, że w tym przypadku. Dalej zauważmy, że jeśli, to, więc analogicznie jak dla regresji liniowej mamy: Otrzymaliśmy więc funkcję hipotezy w postaci. To jest wytłumaczenie dlaczego stosuje się funkcje logistyczne w problemach klasyfikacji: jak tylko założymy, że zmienna zależna podlega rozkładowi Bernoulliego to funkcja logistyczna jest konsekwencją definicji uogólnionych modeli liniowych i rodziny rozkładów wykładniczych. Wprowadzimy tu jeszcze dwa pojęcia: funkcja dająca średnią rozkładu jako funkcję parametru naturalnego, nazywamy kanoniczną funkcją odpowiedzi (canonical response function) jej odwrotność, nazywamy kanoniczną funkcją łączącą (canonical link function.) Regresja wieloraka (softmax) jako GLM Rozważmy jeszcze jeden przypadek modelu GLM. Tym razem nasz problem polega na przydzieleniu zmiennych niezależnych do jednej z k klas, czyli zmienna zależna nadal jest dyskretna, ale może przyjmować jedną z k wartości: wielorakiemu (ang. multinomial).. Mówimy, że zmienne y podlegają rozkładowi Wyprowadzimy teraz GLM do modelowania takich wielorakich danych. Zaczniemy od wyrażenia rozkładu wielorakiego jako rozkładu należącego do rodziny rozkładów wykładniczych. Aby sparametryzować wielorakość z k możliwymi wynikami, można by zacząć od k parametrów

określających prawdopodobieństwo każdego z wyników. Taka parametryzacja jest jednak redundantna, tzn. parametry te nie są niezależne (znając spośród parametrów ostatni, k-ty, parametr jest jednoznacznie określony bo musi być spełniona równość sparametryzujemy rozkład przez k-1 parametrów:.) Tak więc, gdzie:. Dla wygody notacji zapiszemy, że, ale będziemy pamiętać, że to nie jest parametr, i że nasz rozkład wieloraki jest w pełni określony przez parametry:. Aby wyrazić rozkład wieloraki w języku rodziny rozkładów wykładniczych zdefiniujmy w następujący sposób: W odróżnieniu od poprzednich przykładów nie mamy tu, ale jest k-1 wymiarowym wektorem a nie skalarem. Aby oznaczyć i-ty element tego wektora będziemy pisać. I jeszcze jedna użyteczna konwencja. Wprowadźmy funkcję, przyjmuje ona wartość 1 gdy jej argument jest prawdziwy i 0 gdy jest fałszywy, np.: zaś. Tak więc. Dalej mamy. Teraz możemy pokazać jak rozkład wieloraki wyrazić w języku rozkładu wykładniczego i sformułować model klasy GLM.

gdzie: To kończy prezentację rozkładu wielorakiego jako członka rodziny rozkładów wykładniczych. Funkcja łącząca (dla ) dana jest przez: dla wygody zdefiniowaliśmy także Stąd mamy: (**) Suma po wszystkich możliwych zdarzeniach daje zdarzenie pewne: Stąd: Podstawiając to wyrażenie do (**) otrzymujemy funkcję odpowiedzi postaci:

Ta funkcja mapująca na nazywa się funkcją softmax. Aby dokończyć formulację modelu użyjemy założenia 3, że jest liniowo związana ze zmienną niezależną. Tak więc mamy: dla. Wynika stąd, że. gdzie to parametry modelu. Dla wygody notacji definiujemy Zatem model nasz zakłada, że rozkład warunkowy dany jest przez: W wyprowadzonym powyżej modelu regresji softmax hipoteza ma postać: Wyrażając to słowami: nasza hipoteza zwróci prawdopodobieństwo warunkowe przynależności danego x do każdej z klas i: dla, przy czym prawdopodobieństwo przynależności do ostatniej klasy dane jest przez:

. Na koniec zastanówmy się jak estymować parametry tego modelu. Podobnie jak w przypadku regresji liniowej i regresji logistycznej potrzebny jest nam zbiór uczący postaci. Można ponownie skorzystać z zasady największej wiarygodności i wyznaczyć parametry, które maksymalizują prawdopodobieństwo zaobserwowania całego zbioru uczącego. Funkcja log-wiarygodności ma postać: Teraz maksymalizację można przeprowadzić np. za pomocą algorytmu gradientowego (tzn. zmieniamy iteracyjnie parametry w kierunku zgodnym z gradientem funkcji log-wiarygodności).