THE INFLUENCE OF HARDNESS OF POLYURETHANE ON ITS ABRASIVE WEAR RESISTANCE

Podobne dokumenty
STUDY OF RESISTANCE TO ABRASIVE WEAR OF MULTICOMPONENT POLYOXYMETHYLENE COMPOSITES

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

BADANIA ODPORNOŚCI NA ZUŻYCIE ŚCIERNE WYBRANYCH POLIMERÓW INŻYNIERYJNYCH

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

FRICTION PROCESSES OF SELECTED POLYMERS SLIDING ON STEEL AND DURALUMIN IN A LUBRICANT ENVIRONMENT

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Wpływ powłoki Al Si na proces wytwarzania i jakość zgrzewanych aluminiowanych rur stalowych

WPŁYW WYBRANYCH SMAROWYCH PREPARATÓW EKSPLOATACYJNYCH NA WŁAŚCIWOŚCI TRIBOLOGICZNE MATERIAŁÓW POLIMEROWYCH PODCZAS TARCIA ZE STALĄ

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

ROZPRAWY NR 128. Stanis³aw Mroziñski

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

METODYKA BADAŃ WYZNACZANIA ODPORNOŚCI NA KOROZJĘ NAPRĘŻENIOWĄ ELEMENTÓW Z TWORZYW POLIMEROWYCH

WPŁYW UKSZTAŁTOWANIA STRUKTURY GEOMETRYCZNEJ POWIERZCHNI STALI NA WSPÓŁCZYNNIK TARCIA STATYCZNEGO WSPÓŁPRACUJĄCYCH MATERIAŁÓW POLIMEROWYCH

Wylewanie pianek miekkich i twardych - PUR. Pouring of soft and hard foams - PUR. TECHNOLOGIA POLIURETANÓW / POLYURETHANE TECHNOLOGY

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH BRĄZU CuSn12Ni2 W OBECNOŚCI PREPARATU EKSPLOATACYJNEGO O DZIAŁANIU CHEMICZNYM

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

BADANIA TRIBOLOGICZNE KOMPOZYTÓW POM Z WŁÓKNEM ARAMIDOWYM I Z PROSZKIEM PTFE WSPÓŁPRACUJĄCYCH ZE STALĄ

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK ELEKTROLITYCZNYCH ZE STOPÓW NIKLU PO OBRÓBCE CIEPLNEJ

ON INFLUENCE OF DIESEL OIL SORT ON FRICTION AND WEAR PROCESSES Tarkowski Piotr, Paluch Roman Katedra Pojazdów Samochodowych Politechnika Lubelska

ZUŻYCIE TRYBOLOGICZNE KOMPOZYTU NA OSNOWIE ZGARU STOPU AK132 UMACNIANEGO CZĄSTKAMI SiC

p ISSN TRIBOLOGIA 1/2018 Key words: Abstract

DELTIM Sp. z o.o. S.K.A ul. Rząsawska 30/38; Częstochowa. Bumper bar X-Lander X-Move

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH BRĄZU CuSn12Ni2

WPŁYW DODATKU NA WŁASNOŚCI SMAROWE OLEJU BAZOWEGO SN-150

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski


PRÓBY EKSPLOATACYJNE KOMPOZYTOWYCH WSTAWEK HAMULCOWYCH TOWAROWEGO

Krytyczne czynniki sukcesu w zarządzaniu projektami

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY POWIERZCHNIOWEJ CRN W WARUNKACH TARCIA MIESZANEGO

BUILDING BUILDING. Patrol Group offers a broad spectrum of building products: building buckets and containers of various shapes and sizes.

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

WIADRA I KASTRY BUDOWLANE BUILDING BUCKETS AND CONTAINERS

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

WYKAZ PRÓB / SUMMARY OF TESTS

WPŁYW WILGOTNOŚCI I TEMPERATURY POWIETRZA NA WSPÓŁCZYNNIK TARCIA STATYCZNEGO WYBRANYCH PAR ŚLIZGOWYCH METAL POLIMER

Helena Boguta, klasa 8W, rok szkolny 2018/2019

WPŁYW PARAMETRÓW RUCHOWYCH TARCIA NA MIKROTWARDOŚĆ WYBRANYCH POLIMERÓW ŚLIZGOWYCH

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

ODPORNOŚĆ NA ZUŻYCIE CIERNE KOMPOZYTÓW WARSTWOWYCH NA BAZIE STOPÓW ŻELAZA

Tychy, plan miasta: Skala 1: (Polish Edition)

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Streszczenie rozprawy doktorskiej

Akademia Morska w Szczecinie. Wydział Mechaniczny


EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Wpływ zanieczyszczenia torowiska na drogę hamowania tramwaju

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH POLIAMIDU PA6 I MODARU

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY WIERZCHNIEJ STALI MODYFIKOWANEJ BOREM W WARUNKACH TARCIA MIESZANEGO

WPYW STANU WARSTWY WIERZCHNIEJ NA WŁAŚCIWOŚCI TRIBOLOGICZNE ŻELIWA SFEROIDALNEGO FERRYTYCZNEGO PO NAGNIATANIU

Patients price acceptance SELECTED FINDINGS

NEW WELTED 6" BLACK S3 REF

Veles started in Our main goal is quality. Thanks to the methods and experience, we are making jobs as fast as it is possible.

FREZY PM; END MILLS PM


4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Auditorium classes. Lectures

Conception of reuse of the waste from onshore and offshore in the aspect of

OPORY W RUCHU OSCYLACYJNYM MECHANIZMÓW MASZYN GÓRNICZYCH

WYSOKOTEMPERATUROWE WŁASNOŚCI TRIBOLOGICZNE STOPÓW Fe-Al

NUMERYCZNA ANALIZA ROZKŁADÓW NACISKU WYSTĘPUJĄCYCH W STANDARDOWYCH WĘZŁACH TRIBOLOGICZNYCH

BARIERA ANTYKONDENSACYJNA

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

WPŁYW OBCIĄŻENIA I PRĘDKOŚCI OBROTOWEJ N A ZUŻYCIE STALI BAINITYCZNEJ W SKOJARZENIU ŚLIZGOWYM NA STANOWISKU AMSLERA

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Stargard Szczecinski i okolice (Polish Edition)

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM

WEAR TEST STAND FOR OILS APPLIED IN REFRIGERATING COMPRESSORS

Publikacje pracowników Katedry Inżynierii Materiałowej w 2010 r.

WPŁYW WARUNKÓW UTWARDZANIA I GRUBOŚCI UTWARDZONEJ WARSTEWKI NA WYTRZYMAŁOŚĆ NA ROZCIĄGANIE ŻYWICY SYNTETYCZNEJ

IMPACT OF THE RESEARCH CONDITIONS ON THE ACCURACY OF THE DESIGNATION OF HIGH PERFORMANCE CONCRETE STRENGTH PARAMETERS

Professor Dr.-Ing. habil.

ANALIZA EKONOMICZNA BUDOWY I EKSPLOATACJI SYSTEMÓW TELEFONII INTERNETOWEJ W PRZEDSIĘBIORSTWIE ROLNICZYM

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

IDENTYFIKACJA PARAMETRÓW CHARAKTERYZUJĄCYCH OBCIĄŻENIE SEKCJI OBUDOWY ZMECHANIZOWANEJ SPOWODOWANE DYNAMICZNYM ODDZIAŁYWANIEM GÓROTWORU

Profil Czasopisma / The Scope of a Journal

SCIENTIFIC PROBLEMS OF MACHINES OPERATION AND MAINTENANCE

REHABILITATION OF MEDIUM-HEAD HYDROPOWER PLANTS WITH EXPLOITED TWIN-FRANCIS TURBINES.

CHARAKTERYSTYKI TRIBOLOGICZNE APT-T5W W ASPEKCIE RÓŻNYCH WĘZŁÓW TARCIA I RODZAJÓW RUCHU

Struktury proponowane dla unikalnych rozwiązań architektonicznych.

RESEARCH ON THE TRIBOLOGICAL PARAMETERS FOR MATERIALS COUPLES USED FOR VALVES, VALVE GUIDES AND SEAT INSERTS

WPŁYW WYBRANYCH NAPEŁNIACZY STOSOWANYCH W KOMPOZYTACH PTFE NA WSPÓŁCZYNNIK TARCIA STATYCZNEGO PO STALI

WARSTWY WĘGLIKOWE WYTWARZANE W PROCESIE CHROMOWANIA PRÓŻNIOWEGO NA POWIERZCHNI STALI POKRYTEJ STOPAMI NIKLU Z PIERWIASTKAMI WĘGLIKOTWÓRCZYMI

Uniwersytet Medyczny w Łodzi. Wydział Lekarski. Jarosław Woźniak. Rozprawa doktorska

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

Prints by Lech C O L L E C T I O N

miniature, low-voltage lighting system MIKRUS S

SNP SNP Business Partner Data Checker. Prezentacja produktu

STRUCTURE AND PROPERTIES OF Ni-P/PTFE COMPOSITE COATINGS PRODUCED BY CHEMICAL REDUCTION METHOD

Transkrypt:

4-2016 T R I B O L O G I A 29 Dymitry CAPANIDIS * THE INFLUENCE OF HARDNESS OF POLYURETHANE ON ITS ABRASIVE WEAR RESISTANCE WPŁYW TWARDOŚCI POLIURETANU NA JEGO ODPORNOŚĆ NA ZUŻYWANIE ŚCIERNE Key words: PUR polyurethane, polyurethane foam, Shore hardness, abrasive wear resistance Słowa kluczowe: PUR poliuretan, pianka poliuretanowa, twardość Shore, odporność na zużywanie ścierne Abstract This paper presents the experimental determination of the effect of hardness of the polyurethane (PUR) in a form of the elastomer foam used in various parts of machines or appliances subjected to intensive abrasive wear. Such elements, among others, are static and dynamic technical seals, bumpers, shock-absorbing * Wrocław University of Technology, Mechanical Engineering Faculty, Fundamentals of Machine Design and Tribology Department, ul. Ignacego Łukasiewicza 7/9, 50-371 Wrocław, Poland.

30 T R I B O L O G I A 4-2016 parts in joints of machine components, and elements of transport equipment in mining or in aggregate and mineral processing [L. 1 3]. Intensive abrasive wear also concerns parts of agricultural and construction machines, road transport, and transport packaging, as well as protective coatings, housing or shields of various machines, and equipment elements [L. 4, 5]. An increase in the abrasive wear resistance of directly determines an increase in the durability and operational reliability of machines and equipment [L. 6]. The hardness of the elastomeric polyurethane influences its physicomechanical and tribological properties [L. 7]. So far, relatively few works have focused on research into the effect of various factors, including the hardness of PUR on the tribological properties of PUR. The aim of this study is to broaden knowledge on the impact of the polyurethane hardness on its resistance to abrasive wear. INTRODUCTION Polyurethane generally consists of two components: a polyol and isocyanate. Combining the two ready-for-processing liquid components and other auxiliary materials, such as catalysts, blowing agents, and stabilizers, initiates a chemical reaction that results in the creation of PUR [L. 8, 9]. By changing the ingredients and proportions of the mixture, materials of very different properties that suitable for special applications can be produced. Polyurethanes can be made in a form of foams, cast, and thermoplastic elastomers, varnishes, adhesives, fibres, or leather-like materials, used in many areas of life and economy [L. 10]. The production technology of polyurethane foams involves the reaction of polyesters or polyethers containing free hydroxyl groups (polyols) with diisocyanates and blowing agents. The mixing of the polyisocyanate and polyol is immediately followed by a chemical reaction that is a basis for the preparation of all types of polyurethane plastics. Depending on the reaction conditions, the type and number of components, products of different properties, for instance of different hardnesses, are obtained. The polymerization of urethane plastics includes two main simultaneous processes: the additional polymerization of the reactive mixture and forming products from the mixture. An important factor determining the proper course of polymerization is the intensive mixing of the ingredients, occurring directly before filling the processing mould cavity, as shown in Figure 1 [L. 10]. The research presented in paper [L. 7] shows that the hardness of PUR foam can be defined by changing the polyol-isocyanate ratio, the rotational speed of the mixing head, and the mould temperature.

4-2016 T R I B O L O G I A 31 Fig. 1. Scheme for preparing a polyurethane foam [L. 10] Rys. 1. Schemat wytwarzania pianki poliuretanowej [L. 10] Polyurethane elastomers are rubber-like in their form. They are characterized by excellent mechanical properties, e.g., tensile strength and, at the same time, the relative elongation of up to 600% (Fig. 2, [L. 11]) and resistance to tearing. PUR is distinguished by outstanding resistance to abrasive wear and compression, which is higher than for any other polymeric material [L. 12, 13], even higher than for the high-resistant rubber or steel [L. 14]. Polyurethane elastomers perfectly dampen mechanical vibration; therefore, they are used as flexible machine parts, such as inserts of flexible couplings, buffers, anti-vibration pads, tire treads, as well as elements of technical seals.

32 T R I B O L O G I A 4-2016 Fig. 2. Tensile stress of PUR featuring different hardnesses as a function of deformation [L. 11] Rys. 2. Naprężenie rozciągające PUR o różnej twardości w funkcji odkształcenia [L. 11] PURs are further characterized by excellent resistance to mineral oils, grease, gasoline, organic solvents, as well as acids and alkaline solutions. In the presence of oxygen and ozone, PURs do not age, and they are not affected by light radiation (including UV), which prolongs the service life of the polyurethane products [L. 11]. Polyurethanes have self-extinguishing properties (they do not burn), electro-insulating properties, are non-staining, and they show approximately six times lower density than steel. PURs maintain their flexibility in the temperature range from 30 C to +120 C, in which they can be used for a long time. THE AIM OF THE TRIBOLOGICAL STUDY The aim of the tribological research was to determine the influence of the hardness of polyurethane foams on their resistance to abrasive wear and to explain the mechanism of the PUR foams abrasive wear process, depending on their hardness. METHODOLOGY OF THE TRIBOLOGICAL STUDY Tests on the resistance of the polyurethane foams of different hardnesses to abrasive wear were carried out on a Tester T-07 stand [L. 15, 16]. In [L. 17], the usefulness of Tester T-07 for that type of research into polymer materials

4-2016 T R I B O L O G I A 33 was confirmed. A view of the friction couple and the research method diagram is shown in Figure 3. a) b) Fig. 3. View of the friction couple (a), scheme of the test of resistance to abrasive wear (b), 1 sample of the tested material, 2 rubber roller, 3 abradant [L. 5, 13] Rys. 3. Widok pary ciernej a) oraz schemat metody badania odporności na zużywanie ścierne b); 1 próbka z badanego materiału, 2 rolka gumowa, 3 ścierniwo [L. 5, 13] This method is compliant with recommendations of the Russian standard GOST 23.208-79, which provides guidelines for testing the abrasive wear resistance of abrasive wear protection materials and coatings. A sample of the tested material (1) during the test is pressed with a force of 44.4 F N = N to the d = 50 mm diameter rubber roller (2) rotating at a constant rotational speed of n = 60 rev/min. Between the rotating disc and a fixed sample, a loose abrasive (3) is continuously supplied, causing the abrasion of the sample. The abrasive recommended for this method is corundum F90 (according to DIN ISO 8486: 1998). The REFERENCES sample was made of standardized C45 steel featuring the hardness of approx. 200 HB. Weight wear Z wb both of the test samples and of standard sample Z ww were determined after the same time of testing, during which the rubber roller performed N b = 600 revolutions, which was assumed for materials featuring the hardness equal to or higher than 400 HV. However, the assumption of the same number of revolutions for the PUR samples, even though, for the materials showing hardness lower than 400 HV, the recommended number of revolutions is N w = 150 rpm, was due to the exceptional resistance of polyurethane to abrasive wear. Based on the recorded weight wear values, the coefficient of abrasive wear K b was derived from formula (1), which is defined as a coefficient of the volumetric wear of the standard sample Z Vw and the volumetric wear of the tested materials Z Vb.

34 T R I B O L O G I A 4-2016 K b Zv Zv w b / N / N w b Zww b N Z N w wb b w (1) where Z ww weight wear of the standard sample (C45 steel) in the test, Z wb weight wear of the tested material in the test, w density of the standard sample material, b density of the tested sample material, N w the number of revolutions of the standard sample friction path, N b - the number of revolutions of the tested sample friction path. STUDIED MATERIALS Tribological comparative studies of the abrasive wear resistance included polyurethane elastomers (PUR foams) of 75, 80, 83 and 93 Shore A hardness. Different hardness values of the polyurethane foams were obtained by changing the ratio of two main components, namely of polyol and 4,4- methylene phenyl isocyanate. Plates of polyurethane foams were produced by pressureless casting in open metal moulds. Then, from the plates, samples of approx. 30 30 mm in size were cut out (Fig. 4), which were subject to the abrasive wear resistance tests on Tester T-07. Fig. 4. PUR samples after the resistance to abrasive wear test Rys. 4. Próbki PUR po badaniach odporności na zużywanie ścierne RESULTS AND ANALYSIS OF THE TRIBOLOGICAL STUDY The results of the abrasive wear resistance tests of the different hardness polyurethane foams are illustrated by the bar chart in Figure 4 [L. 18].

4-2016 T R I B O L O G I A 35 Fig. 5. Index of abrasive wear resistance K b of polyurethane foams of different hardness Rys. 5. Wskaźnik odporności na zużywanie ścierne K b pianek poliuretanowych o różnej twardości The tribological test results clearly demonstrate that the polyurethane foams feature very good abrasive wear resistance; Kb index of which is more than three times higher in relation to the C45 steel REFERENCES sample, Kb index of which equals 1. Moreover, the test results show that the abrasive wear resistance of the PUR foams increases with an increase in their hardness. The abrasive wear resistance coefficient of the 93 Sh A hardness polyurethane foam is over 16% higher than the one of the polyurethane foam featuring 75 Sh A hardness. STRUCTURAL STUDY In order to explain the mechanism of the abrasive wear process of the polyurethanes, a structural study of the friction surface before and after friction was carried out by means of a Phenom ProX manual electron microscope. The results of the microscopic examination of the studied samples are shown in a form of a photomicrograph of their surface in Figures 6 9. a) b) Fig. 6. Micrographs of the surface of PUR foam samples featuring 75 Sh A hardness: prior to testing, b) after the test of resistance to abrasive wear Rys. 6. Mikrofotografie powierzchni próbek z pianek PUR o twardości 75 Sh A; a) przed badaniem, b) po badaniu odporności na zużywanie ścierne

36 T R I B O L O G I A 4-2016 a) b) Fig. 7. Micrographs of the surface of PUR foam samples featuring 80 Sh A hardness: prior to testing, b) after the test of resistance to abrasive wear. Rys. 7. Mikrofotografie powierzchni próbek z pianek PUR o twardości 80 Sh A; a) przed badaniem, b) po badaniu odporności na zużywanie ścierne a) b) Fig. 8. Micrographs of the surface of PUR foam samples featuring 83 Sh A hardness: prior to testing, b) after the test of resistance to abrasive wear. Rys. 8. Mikrofotografie powierzchni próbek z pianek PUR o twardości 83 Sh A; przed badaniem, b) po badaniu odporności na zużywanie ścierne a) b) Fig. 9. Micrographs of the surface of PUR foam samples featuring 93 Sh A hardness: prior to testing, b) after the test of resistance to abrasive wear. Rys. 9. Mikrofotografie powierzchni próbek z pianek PUR o twardości 93 Sh A; przed badaniem, b) po badaniu odporności na zużywanie ścierne

4-2016 T R I B O L O G I A 37 The analysis of the microphotographs shows that the friction surface of the tested PUR samples has clear signs typical of abrasive wear, but no signs of elastic deformation. In the PUR samples of lower hardness (Fig. 6), areas of intensive wear of the material as well as areas with no wear signs can be observed. The higher hardness PUR samples surface (Figures 8, 9), however, shows smaller damage due to wear, even though numerous cracks of the material are visible. Those cracks may result from the cyclic (fatigue) material deformation during the friction process. The structural study does not allow us to fully explain the reasons for the increased resistance to abrasive wear of the harder types of the studied polyurethanes. The reasons for such behaviour of the tested materials during friction under conditions of intense abrasion seem to be an effect of the differences arising from their chemical composition and molecular structure of particular PUR types, which, however, requires further study. SUMMARY AND CONCLUSIONS The tribological laboratory research into the commercial types of polyurethane has shown a relation between abrasion resistance index K b and the hardness of the test samples. With an increase in the hardness of the tested PUR foams, the value of K b index increases. The research results prove that the tested polyurethane foams feature very high resistance to abrasive wear in comparison to other polymeric materials used in the construction of machines. The study of the friction surface structure before and after friction do not explain the causes of the increased resistance to abrasive wear of the harder types of the studied polyurethanes, which probably results from the chemical composition and the structure of particular PUR types. Based on the analysis of the research results, the following conclusions can be drawn: 1. The results showed an increased rate of tribological abrasive wear resistance K b of the polyurethane that depended on an increase in its hardness. 2. The elastomeric polyurethane foams, compared to other polymeric materials, as well as to the abrasion-resistant metals, feature considerably higher, even more than three times, resistance to abrasive wear. 3. The use of polyurethane in the components of machines, appliances or the coating of parts exposed to intensive abrasive wear can contribute to an increase in their stability and operational reliability. 4. The structural study on the friction surface of the polyurethanes has not explained the causes of the increased resistance to abrasive wear of the harder types of the studied polyurethanes, since this may be due to different chemical compositions and molecular structures of particular PUR types.

38 T R I B O L O G I A 4-2016 5. The research into the physical modification of the elastomeric polyurethanes and a polyurethane coatings applied to the bases made of various materials should be continued, both in order to explain the processes of their wear, as well as possible future technological applications. REFERENCES 1. Wieleba W., Capanidis D., Kowalewski P., Paszkowski M., Materiały polimerowe w uszczelnieniach tarcie statyczne, Hydraulika i Pneumatyka, 6, 2011, 10 13. 2. Capanidis D., Elementy ślizgowe uszczelnień technicznych z polimerowych kompozytów na osnowie polioksymetylenu, Hydraulika i Pneumatyka. 2013, R. 33, nr 6, s. 17 20. 3. Capanidis D., Kowalewski P., Leśniewski T., Paszkowski M., Wieleba W., Rola badań tribologicznych w aspekcie zwiększania trwałości i niezawodności eksploatacyjnej maszyn i urządzeń użytkowanych w Zagłębiu Miedziowym, Zeszyty Naukowe Dolnośląskiej Wyższej Szkoły Przedsiębiorczości i Techniki. Studia z Nauk Technicznych, 2015, z. 4, s. 47 64. 4. Kowalski Z., Powłoki z tworzyw sztucznych, Wydawnictwa Naukowo- -Techniczne, Warszawa 1973. 5. Capanidis D., Wieleba W., Badania odporności na ścieranie materiałów polimerowych stosowanych na opakowania transportowe. Czasopismo Techniczne. M, Mechanika. 2009, R. 106, z. 1-M, s. 51 55. 6. Capanidis D., Wpływ modyfikacji polioksymetylenu (POM) napełniaczem szklanym na efektywność trwałościową elementów maszyn, w: Efektywność wykorzystania maszyn roboczych i urządzeń w przemyśle: eksploatacja niezawodność bezpieczeństwo, monografia, red. nauk. A. Idzikowski, Sekcja Wydawnictw Wydziału Zarządzania Politechniki Częstochowskiej, Częstochowa 2013, s. 59 68. 7. Capanidis D., Kowalewski P., Krauze M., Zięba K., Wpływ parametrów wytwarzania pianki PUR na jej twardość w aspekcie zastosowania na uszczelnienia spoczynkowe, Międzynarodowa XIII Konferencja Naukowo-Techniczna Uszczelnienia i technika uszczelniania maszyn i urządzeń, pod red. M. Gawlińskiego, Wrocław, 2016, s. 21 33. 8. Olczyk W., Poliuretany, Wydawnictwa Naukowo-Techniczne, Warszawa 1968. 9. Żuchowska D., Polimery konstrukcyjne. Przetwórstwo i właściwości. Wydanie II zmienione, Wrocław 1993. 10. Rokicki G., Ryszkowska J., Prociak A., Materiały poliuretanowe, Wydawnictwo Naukowe PWN, Warszawa 2014. 11. http://www.griffithpolymersinc.com/index.php?page=tensile_strength [dostęp dn. 02.05.2016]. 12. Capanidis D., Tański A., Badania odporności na zużycie ścierne wybranych polimerów inżynieryjnych. Tribologia, 2012, R. 43, nr 4, s. 25 32. 13. Capanidis D., Kowalewski P., Krauze M., Study of resistance to abrasive wear of multicomponent polyoxymethylene composites, Tribologia, 2016, R. 47, nr 1, s. 7 19.

4-2016 T R I B O L O G I A 39 14. Capanidis D., Wieleba W., Badania odporności na ścieranie wybranych gatunków stali trudnościeralnych oraz wysokowytrzymałych, Tribologia, 2005, R. 36, nr 3, s. 23-33. 15. http://www.tribologia.eu/ptt/inst/rad/t-07.pdf [29.05.2016] 16. http://www.katalog.itee.radom.pl/images/stories/karty/59.t-07.pdf [29.05.2015] 17. Piekoszewski W., Wulczyński J., Przepiórka J., Ocena przydatności testera T-07 do badania odporności na zużycie ścierne tworzyw sztucznych. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji Państwowego Instytutu Badawczego, Problemy Eksploatacji, nr 4, 1999, s. 179 188. 18. Raczkowska J., Analiza możliwości zwiększenia odporności na zużywanie ścierne opakowań transportowych, praca magisterska wykonana pod kierunkiem Capanidis D., Wydział Mechaniczny Politechniki Wrocławskiej, Wrocław 2016. Streszczenie W artykule przedstawiono doświadczalne określenie wpływu twardości poliuretanu (PUR) o postaci pianki elastomerowej stosowanej na różne elementy maszyn i urządzeń narażonych na intensywne zużywanie ścierne. Takimi elementami m.in. są: uszczelnienia techniczne spoczynkowe i ruchowe, odboje, części amortyzujące w połączeniach podzespołów maszyn, elementy urządzeń transportowych w przemyśle wydobywczym i przetwórczym kruszyw oraz minerałów. Na intensywne zużywanie ścierne narażone są też części maszyn rolniczych, budowlanych, środków transportu kołowego i opakowań transportowych, jak również powłoki ochronne na różnych elementach, czy też osłony i obudowy wielu innych maszyn i urządzeń. Zwiększenie odporności na zużywanie ścienne tych części bezpośrednio przekłada się na wzrost trwałości i niezawodności eksploatacyjnej maszyn i urządzeń. Twardość PUR o postaci elastomeru ma wpływ na jego własności fizykomechaniczne i właściwości użytkowe, w tym także tribologiczne. Dotychczas stosunkowo niewiele prac dotyczyło badań różnych czynników, w tym twardości PUR, mających wpływ na właściwości tribologiczne PUR. W niniejszej pracy wykazano, że wzrost twardości elastomerowych pianek PUR powoduje zwiększenie ich odporności na zużywanie ścierne.

40 T R I B O L O G I A 4-2016