LANDSCAPE PARK OF JANOWSKIE FORESTS AS A HOTSPOT OF DRAGONFLY (ODONATA) SPECIES DIVERSITY IN POLAND

Podobne dokumenty
Maria WISZNIOWSKA. ul. Pod Kasztanami 79/1, Katowice:

Wyniki obserwacji ważek (Odonata) na terenie rozlewiska wśród nieużytkowanych łąk koło miejscowości Kajny (Polska, Warmia, gm.

Andrzej HERMAŃSKI.

UMCS w Lublinie. Zakład Zoologii UMCS, ul. Akademicka 19, Lublin

Ważki (Odonata) zaobserwowane nad Jeziorem Wojnowskim Zachodnim i Jeziorem Wojnowskim Wschodnim (województwo lubuskie) w latach

Andrzej HERMAŃSKI.

Ważki (Odonata) Zespołu Zbiorników Wodnych Czorsztyn-Niedzica i Sromowce Wyżne oraz okolic

Ważki (Odonata) Lasów Kozłowieckich Dragonflies (Odonata) of the Kozłowieckie Forests

Przemysław ŻURAWLEW. Kwileń 67a, Chocz,

URBAN FAUNA. Studies of animal biology, ecology and conservation in European cities

Przyczynek do wiedzy o ważkach (Odonata) Roztocza Contribution to the knowledge of dragonflies (Odonata) of the Roztocze Upland

Paweł Buczyński Zakład Zoologii UMCS, ul. Akademicka 19, Lublin; Czerwona lista ważek województwa lubelskiego

Odonatrixo8(1) 23. Paweł Buczyński Zakład Zoologii, Uniwersytet Marii Curie-Skłodowskiej, ul. Akademicka 19, Lublin;

Dragonflies (Odonata) of some small anthropogenic water bodies in Cracow City

Preferencje siedliskowe ważek na wybranym obszarze Gór Świętokrzyskich i Płaskowyżu Suchedniowskiego oraz możliwości ich ochrony

Odonatrix ISSN Tom 9(2)

Sargent Opens Sonairte Farmers' Market

Has the heat wave frequency or intensity changed in Poland since 1950?

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 728 ACTA BIOLOGICA

River Drzewiczka, Poland

Marek Holly Ośrodek Naukowo Dydaktyczny Bieszczadzkiego Parku Narodowego, ul. Bełska 7, Ustrzyki Dolne;

METODA OGÓLNEJ OCENY STANU ŚRODO- WISKA OBSZARÓW WIEJSKICH NA PODSTAWIE INFORMACJI Z BANKU DANYCH REGIONALNYCH GUS I OSZACOWAŃ PROGRAMU EMEP

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)


Ważki (Odonata) wybranych zbiorników torfowiskowych okolic Bornego Sulinowa (Pojezierze Zachodniopomorskie oraz Południowopomorskie) *

Występowanie ważki rudej Libellula fulva O.F. MÜLLER, 1764 (Odonata: Libellulidae) w dolinie górnego Sanu

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

Tychy, plan miasta: Skala 1: (Polish Edition)

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

Bogusław Daraż ul. Kościelna 41, Rzeszów; 14 Odonatrixo7(1)

Odonatrix 15_4 (2019)

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

SPITSBERGEN HORNSUND

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

SPITSBERGEN HORNSUND

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

NOWELLIA CURVIFOLIA (MARCHANTIOPHYTA) IN THE DOLINA ŻABNIKA NATURE RESERVE (SILESIA PROVINCE, POLAND) ADAM STEBEL, DOROTA SMOLIŃSKA

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Raport z projektu: Ważki (Odonata) Etap I. Opracowała: Anna Rychła

Instructions for student teams

SPITSBERGEN HORNSUND

Helena Boguta, klasa 8W, rok szkolny 2018/2019

poltegor - projekt sp. z o.o.

RAPOT Z MONITORINGU SKALNICY TORFOWISKOWEJ (SAXIFRAGA HIRCULUS) (KOD 1523) NA STANOWISKACH GÓRNEJ BIEBRZY

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

ISSN Rok 1, Suplement 1 (czerwiec 2005)

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Ważki (Odonata) zbiorników eutroficznych gminy Borne Sulinowo (Pojezierze Zachodniopomorskie i Południowopomorskie) *

Appendix. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej R. 10. Zeszyt 2 (17) /

Oceny oddziaływania na stan wód w rozumieniu RDW, a inne instrumenty oceny oddziaływania na środowisko

DOI: / /32/37

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

SPITSBERGEN HORNSUND

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Jerzy Bolesław P a r u s e l. Występowanie niedźwiedzia brunatnego Ursus arctos L. w pasmach Babiej Góry, Jałowca i Policy w Beskidzie Wysokim

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND


Country fact sheet. Noise in Europe overview of policy-related data. Poland

Zakład Botaniki i Mykologii Uniwersytet Marii Curie-Skłodowskiej Akademicka 19, PL Lublin. dr Zofia Flisińska

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

SPITSBERGEN HORNSUND

Monitorowanie zagrożenia pożarowego lasów w Polsce

AKTYWIZACJA SPOŁECZNO-GOSPODARCZA OBSZARÓW PRZYRODNICZO CENNYCH DLA POTRZEB ICH ZRÓWNOWA ONEGO ROZWOJU

Akademia Morska w Szczecinie. Wydział Mechaniczny

Zakład Zoologii, Uniwersytet Marii Curie-Skłodowskiej, ul. Akademicka 19, Lublin; 2

Zakład Zoologii, Uniwersytet Marii Curie-Skłodowskiej, ul. Akademicka 19, Lublin; 2

С R A C OV I E N S I A

Odonatrix 6(2), 2010 zawartość / contents

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

No matter how much you have, it matters how much you need

WALORYZACJA PRZYRODNICZA MIASTA BRZESKO

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Zarządzanie sieciami telekomunikacyjnymi

Stargard Szczecinski i okolice (Polish Edition)

PAWEŁ BUCZYŃSKI, ANDRZEJ ZAWAL. Ważki (Odonata) rezerwatu przyrody Źródlisko Skrzypowe

Preparation and publication grant-aided by the Ministry of Science and Higher Education within the project No. 2P04C

Gdański Uniwersytet Medyczny Wydział Nauk o Zdrowiu z Oddziałem Pielęgniarstwa i Instytutem Medycyny Morskiej i Tropikalnej. Beata Wieczorek-Wójcik

The Overview of Civilian Applications of Airborne SAR Systems

Materiały do znajomości ważek (Odonata) Lubelszczyzny. Część III. Zbiory Katedry Zoologii i Hydrobiologii AR w Lublinie

DIVERSITY OF NEEDLES OF THE SCOTS PINE (Pinus sylvestris L.)

Spatial planning in floodplains in mountain catchments of different row, in the basin of the Upper Vistula and the Upper and Central Odra

Odonatrix 4(1), 2008 zawarto (contents) 1

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Patients price acceptance SELECTED FINDINGS

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Analiza porównawcza zmian w rozbiorach wody z uwzględnieniem sposobu jej dostarczania do odbiorców


Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI


Transkrypt:

Paweł BUCZYŃSKI 1, Andrzej ŁABĘDZKI 2 1 Department of Zoology, Maria Curie-Skłodowska University in Lublin, Akademicka Str. 19, 20-033 Lublin, Poland; e-mail: pawbucz@gmail.com 2 Department of Forest Entomology, Poznań University of Life Sciences, Wojska Polskiego Str. 71C, 60-625 Poznań, Poland; e-mail: andrzej_lab@poczta.onet.pl LANDSCAPE PARK OF JANOWSKIE FORESTS AS A HOTSPOT OF DRAGONFLY (ODONATA) SPECIES DIVERSITY IN POLAND Abstract: The Janowskie Forests Landscape Park protects a major part of the Janowskie Forests one of the most environmentally valuable, compact forest complexes in Poland. It constitutes a key fragment of one of hotspots of diversity of dragonflies in Poland. The authors discuss results of long-term studies on the area (1988-1990, 1993-1998). In a relatively small area (approximately 40 000 ha) 58 species of dragonflies were recorded here (79.4% of the national fauna). Such rich species diversity results from a fortunate coincidence. In spite of regular conducting of forest economy measures, natural waters were destroyed to little extent. Particularly peatbogs, streams, and rivers survived in a good state. This is why populations of majority of stenotopes were preserved, as reflected by identification of 10 protected species, two species from the Polish red list of dragonflies, and one species from the European red list of dragonflies. Human economy contributed to increased differentiation of the landscape, and development of numerous anthropogenic waters, particularly fish ponds and sand pits, inhabited by rich communities of dragonflies. The character of the catchment, constituting an efficient forest biological filter, often determines the habitat features of ponds, similar to those of dystrophic lakes, or at most moderately eutrophic lakes. The study area can be treated as an object of an unintentional experiment which contributed to enriching the dragonfly fauna, and did not lead to loss of majority of the most valuable primary elements. It provides valuable guidelines for management of other protected areas, and particularly for implementation of active protection measures. Introduction Drastic loss of biodiversity is recognised as the greatest disaster of our times (Wilson 1985). In search for methods of its preservation, in the course of studies on the irregularity of distribution of organisms on the Earth s surface, diversity hot spots were identified. Those are areas with the greatest species richness, threatened by human activity (Myers 1988; Myers et al. 2000). Focusing on their protection should be more effective than dispersing activities over vast areas with lower biodiversity [Głowaciński 2009]. In addition to implementing protective measures, it is also important to determine how the species richness developed and how it is maintained. Answers to those questions can provide valuable guidelines for optimal environment management. 151

Dragonflies constitute a very useful group in assessment of environmental conditionings and general species diversity of specific areas [e.g. Hornung & Rice 2003; Sahlén & Ekestubbe 2001]. One of approximately10 hotspots of their species diversity in Poland, eight of which exist today, is located at the boundary between the Sandomierz Basin, Lublin Upland, and Roztocze region. Its key part is the Janowskie Forests Landscape Park [Bernard et al. 2009 based on data presented in this paper]. The objective of the authors is to conduct a case study of the hotspot. 152 Study area Janowskie Forests are a forest complex located in south-eastern Poland, in the north-eastern part of the Sandomierz Basin. Their land relief is dominated by dunes, and distinguished by high elevation differentiation, reaching as much as 50 m at short distances. Absolute heights vary from 180 to 250 m a.s.l. As much as 80% of the area is covered by forests, occupying vast, largely natural areas [Kondracki 2000; Radwan et al. 1996, 1997]. The eastern and central part of the Janowskie Forests is subject to protection as the Janowskie Forests Landscape Park (JFLP) with the area of 39 150 ha and the buffer zone of 60 500 ha. The landscape park also includes five nature reserves with the total area of almost 3 968.21 ha [Fijałkowski 2003]. The entire area is under protection as the Janowskie Forests Special Protection Area. The most valuable fragments are to be included in the currently designed Janowskie Forests Ranges Special Area of Conservation, ranked among areas of high significance for the European Community [Rapa et al., 2011; Rogała, 2011]. The study area is rich in closed-drainage areas. This results from: the abundance of surface waters, impermeable substratum (loamy Miocene deposits), restricted drainage of underground waters, and high groundwater table. As much as 10% of the area of LPJF constitutes surface waters, including pond complexes ranked among the largest in Poland. Further 20% are wetlands. The landscape park includes 50 fens and peatbogs with the total area of 1 539.8 ha. Raised bogs (565.5 ha) and transitional bogs predominate (867.6 ha). Moreover, the effect of melioration in the post-war period are ditches and channels. Sand exploitation resulted in small sand pits filled with water, usually located at boundaries of river valleys and streams. The role of waters in development of the natural environment is evidenced by the fact that hydrogenic soils of various types cover 27.60% of its area [Borowiec, 1990; Radwan et al., 1996, 1997]. Physiochemical parameters of the surface waters of the study area are determined by the forest character of the catchment and low degree of anthropopression. Apart from the River Biała, polluted by the town of Janów Lubelski, they are distinguished

by low mineralisation, low hardness, reaction from slightly acidic to acidic (except for certain fish ponds subject to liming), low nutrient concentration, and medium-high to high concentrations of dissolved oxygen [Radwan et al., 1997]. The climate of the Janowskie Forests is distinguished by a large number of sunny days and warm summer season, with cold winter. The mean air temperature in July is among the highest in Poland (18.5-19.0 C), and in February the lowest (-4.5 C). The vegetation period varies from 210 to 220 days, and total annual precipitation from 550 to more than 700 mm [Cukierska, 1997; Okołowicz, 1974]. Study sites The study concerned 101 sites (Fig. 1), listed below. Several of the sites are located in the buffer zone of JFLP. They are mainly springs or upper sections of running water bodies within the Park. The number of permanent sites distinguished was 44 (marked with an asterisk below). They were studied systematically, including from six to eight controls for at least one, usually two vegetation seasons. The remaining sites were studied less regularly. They were usually subject to three or four controls. 1. Frampol, Frampolski Reservoir; 2. *Kolonia Sokołówka, old sand pit on a meadow; 3. Kolonia Sokołówka, forest water body on a stream flowing out of the Bagno Rakowskie marsh; 4. *Kolonia Sokołówka, Bagno Rakowskie marsh, water body at the outflow from a Sphagnum bog; 5. *1.6 km W from Kolonia Sokołówka, Bagno Rakowskie wetland, stagnant ditches on a transitional bog at a road embankment; 6. *600 m S from Kolonia Sokołówka, spring of the River Bukowa; 7. *Korytków Duży, the River Bukowa; 8. 2.5 km SE from Boreczki, outflow from the Bagno Rakowskie marsh (on a fen); 9. *2.5 km SE from Boreczki, outflow from the Bagno Rakowskie marsh (on a transitional bog); 10. *1.7 km S from Boreczki, Sphagnum bog with an old ditch; 11. Kapronie, the River Rakowa; 12. 0.9 km SW from Władysławów- Dychy, stagnant ditch on a meadow; 13. 0.9 km SW from Władysławów-Dychy, the River Rakowa; 14. *Szewce, the River Rakowa; 15. Szewce, oxbow lake of the River Rakowa; 16. *Szewce, three astatic water bodies in a sand pit at a meadow boundary; 17. *Szewce, the River Bukowa, 18. Branew, spring of the River Branew; 19. 3 km W-WN from Kapronie, the River Branewka Górna; 20. 2.3 km SE from Flisy, oxbow lake of the River Branewka Górna; 21. *1 km N from Flisy, the River Branew; 22. Flisy, water body at the bottom of a dried-out melioration ditch; 23. Flisy, water body at the boundary of a marshy alder forest and meadow; 24. *1 km below Flisy, the River Branew; 25. 3 km SW from Flisy, spring of the River Czartosowa; 26. 2.5 km SW from Flisy, the River Branew; 27. * Janowskie Forests reserve, ditch in a fish pond complex; 28. * Janowskie Forests reserve, fish pond; 29. Wypalony Ług range, fish pond; 30. *Momoty Górne, fish pond; 31. *Momoty Górne, ditch at a fish pond; 153

32. *Momoty Górne, the River Bukowa; 33. *Momoty Dolne, broads around an astatic stream; 34. *Momoty Dolne, water bodies in a sand pit; 35. Toboła Range, the River Trzebensz; 36. * Szklarnia reserve, fen; 37. Szklarnia reserve, water body in a forest sand pit; 38. Szklarnia, forest water body; 39. *0.7 km SW from Szklarnia, the River Czartosowa; 40. *0.7 km SW from Szklarnia, two fire fighting water tanks near Czartosowa; 41. *3 km W from Szklarnia, transitional bog near the Kowalikowa Hill; 42. 1 km W from Szklarnia, water body in a forest sand pit; 43. 1 km NE from Nalepy, the River Czartosowa; 44. *Janów Lubelski, spring in the River Biała valley; 45. *Jonaki, the River Biała; 46. Cegielnia, forest fen (locally transitional bog); 47. Kruczek, the River Trzebensz; 48. *Przywory Range, River the Biała; 49. *1 km S from Pikule, meadow water body in the River Trzebensz valley; 50. *1 km S from Pikule, the River Trzebensz; 51. 1 km S from Pikule, oxbow lake of the River Trzebensz; 52. *2 km NE from Łążek Ordynacki, raised bog with a water basin; 53. *2.5 km E from Łążek Ordynacki, transitional bog; 54. Nowa Wieś, forest fen; 55. *Łążek Przymiarki, the River Bukowa; 56. *Łążek Ordynacki, the River Biała; 57. *Łążek Ordynacki, small meadow water body; 58. *Łążek Ordynacki, clay pit; 59. *Szwedy, the River Bukowa; 60. Studzieniec, the River Gilówka near Lisia Hill; 61. *Modliborzyce, spring of the River Łukawica; 62. 1 km W from Świnki, fish pond Łopata; 63. Ciechocin, fish pond; 64. Ciechocin, small meadow water body; 65. Kalenne, water body at the bottom of a melioration ditch; 66. *1.5 km SE from Gwizdów, fish pond Pogorzelec; 67. * Imielty Ług reserve, NW boundary of pond Imielty Ług, fen transferring into transitional bog; 68. * Imielty Ług reserve, fish pond Imielty Ług; 69. Imielty Ług reserve, swamp coniferous forest; 70. 3.5 km SE from Gwizdów, peat-covered forest depression; 71. * Imielty Ług reserve, transitional bog at the shore of pond Imielty Ług; 72. * Imielty Ług reserve, transitional bog with a permanent water body; 73. Gajówka Łukawica, fish pond Majdanka; 74. Gajówka Łukawica, the River Łukawica at an outflow from fish pond Parzeka; 75. Gajówka Pieńki, fish pond Żuraw; 76. Łysaków, fish ponds at the left bank of the Sanna River; 77. 1.5 km S-SE from Kolonia Łysaków, forest road among wetlands and water bodies; 78. Wilczów, fish pond Wilczów; 79. Maliniec, transitional bog; 80. Maliniec, mouth of the River Łukawica to a fish pond. 81. Maliniec, fish pond; 82. *Bania, the River Łukawica; 83. Łęka reserve, wetlands in a bog coniferous forest; 84. Świdry, fish pond; 85. Siembida, fish pond Stary Witold; 86. Siembida, the River Łukawica; 87. Kruszyna, the River Łukawica; 88. Kochany, fish pond; 89. Jastkowice, the River Dębowiec; 90. Jastkowice reserve, water body in a sand pit in a mixed deciduous forest; 91. Moskale, the River Bukowa; 92. Goliszowiec, the River Łukawica; 93. 2 km W from Kolonia Łysaków, Sphagnum bogs; 94. Gajówka Narożniki, forest ditch; 95. *1 km E-NE from Gielnia, fen; 96. *1 km E-NE from Gielnia, transitional bog; 97. 3 km E from Gielnia, melioration ditch; 98. Gielnia, the River Złodziejka; 99. 1.5 km W from Gielnia, fish pond; 100. 1 km NE from Dąbrowa Rzeczycka, transitional bog; 101. Dąbrowa Rzeczycka, melioration ditch. 154

Fig. 1. The study A borders of the Janowskie Forests Landscape Park, B rivers. C larger fish ponds and dam reservoirs, D 10 10 km UTM squares, E study sites 155

156 Methods and material The material was collected in the years 1988-90 and 1993-98. The most intensive studies were carried out in the years 1995-97. Data up to 1994 is based exclusively on imagines. In the years 1995-98, also larvae were caught and exuviae were sporadically collected. Imagines were caught by means of an entomological net, identified in the field, and released. Only single evidential specimens were retained. Presence of juvenile individuals and reproductive behaviours were also observed. The material collected was preserved in 70% ethyl alcohol. Larvae were caught by means of a manual hydrobiological sampler. Majority of samples were processed in the field. Animals other than dragonflies were released. The material was preserved in 70% ethyl alcohol. Exuviae were collected from littoral vegetation, and stored dry. In total, the following material was collected: 6982 dragonfly larvae (isolated from 594 samples), 175 exuviae, and 1002 imagines observations (site/date/species). The species recorded in the JFLP were divided into three categories: development recorded when larvae and exuviae were collected, or juvenile imagines were observed along with intensive reproductive behaviour; probable development when sporadic reproductive behaviours were observed, or at least numerous imagines in an environment relevant for the species; development not recorded remaining determinations. In the scope of quantitative analysis of the material, the species were divided into four dominance categories [Czachorowski, 2006]. Habitat preferences of dragonflies were adopted following Bernard et al. (2009). The sozological analysis considered: umbrella species [Bernard et al., 2002], protected species [Rozporządzenie..., 2011], species from the Polish red list of dragonflies [Bernard et al., 2009], species from the European red list of dragonflies [Kalkman et al., 2010], and species from the IUCN red list of dragonflies [Bernard & Wildermuth, 2006]. Results Occurrence of 58 species of dragonflies was recorded, representing 22 genera and eight families. 53 species in the larval stadium were observed, and as imagines 54 species (Tab. 1).

Table 1. Dragonflies (Odonata) recorded in the Janowskie Forests Landscape Park in the years 1988-90 and 1993-98. Symbols and abbreviations: LE % of larvae and exuviae collected, Ob % of records of imagines, Lo number of study sites. (?) uncertain records based on larvae. Habitats: A springs, B natural running water bodies, C regulated and man-made running water bodies, D fish ponds, E natural small water bodies (including oxbow lakes), F sand and clay pits, G fens, H Sphagnum bogs. Species status: developed, probably developed, + no development recorded. Material Habitat distribution No. Species Study sites LE Ob Lo A B C D E F G H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1. Calopteryx splendens (Harr.) 0.9 3.2 29 2. C. virgo (L.) 5.1 4.6 28 3. Sympecma fusca (Vander L.) >0.1 1.9 24 5, 7-9, 13, 14, 17, 19, 20, 24, 26-28, 31, 32, 35, 39, 47, 48, 50, 55, 59, 63, 72, 76, 80, 82, 92, 94 5, 7, 11, 13, 14, 17, 20, 26, 31, 32, 35, 39, 43, 47, 48, 50, 55, 56, 59, 60, 74, 80, 82, 87, 89, 91, 93, 98 5, 8-10, 20, 21, 26, 28, 29, 46, 60, 67, 69, 71, 73, 75, 82, 83, 88, 90, 92, 94, 99, 101 + + + + + + 4. S. paedisca (Brau.) 1.0 3,0 18 5, 9, 10, 26, 28, 30, 31, 34, 36, 57, 67, 68, 69, 71, 82, 83, 84, 88 5. L. barbarus (Fabr.) 1,0 0,9 10 2, 10, 33, 36, 41, 49, 57, 71, 78, 96 6. L. dryas Kirby 1.3 3.1 22 2, 4, 9, 10, 20, 28, 33, 36, 41, 53, 54, 57, 65-67, 69, 71, 74, 93-96 7. L. sponsa (Hansem.) 1.4 6.5 40 8. L. virens (Charp.) 2.1 4.1 24 2, 4, 5, 8-10, 24, 26-28, 30, 31, 33, 34, 36, 38, 41, 46, 49, 52-54, 65-69, 71, 72, 74, 76, 78, 82, 83, 92, 94-96, 98, 100 2, 5, 10, 28, 33, 36, 40, 41, 49, 52, 57, 64, 66-69, 72, 82, 83, 95, 96, 98, 100, 101 + + 9. L. viridis (Vander L.) 0.6 0.9 9 2, 5, 20, 27, 31, 49, 63, 76, 82 10. Ischnura elegans (Vander L.) 2.1 3.0 23 1, 2, 5, 20, 28-31, 34, 41, 58, 62, 63, 66-68, 71, 73, 75, 76, 82, 85, 99 11. I. pumilio (Charp.) 1.2 0.5 7 1, 2, 5, 30, 34, 58, 76 12. Enallagma cyathigerum (Charp.) 0.2 1.5 15 2, 20, 28-31, 34, 38, 62, 68, 71, 76, 80, 95, 99 + 13. Pyrrhosoma nymphula (Sulz.) 0.2 1.6 18 5, 7-9, 17, 26, 31, 36, 40, 42, 46, 54, 56, 71, 74, 75, 82, 94 14. Coenagrion armatum (Charp.) >0.1 0.0 1 78 157

Table 1. cont. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. C. hastulatum (Charp.) 7.2 1.7 21 2, 5, 10, 28, 30, 33, 34, 36, 41, 49, 52, 57, 66-68, 72, 78, 79, 83, 85, 95 16. C. lunulatum (Charp.) 2.1 0.5 16 2, 5, 10, 28, 30, 52, 53, 66, 67, 71, 72, 77, 79, 95, 96, 100 17. C. puella (L.) 20.0 6.8 53 18. C.pulchellum (Vander L.) 2.3 3.1 36 1, 2, 4, 5, 8-10, 20, 21, 23, 24, 26-28, 30-34, 36, 38, 40, 41, 48, 49, 52, 53, 56-58, 61, 63-68, 71-73, 75, 77, 78, 80, 82-85, 93, 95, 96, 98, 100 2, 5, 9, 19-21, 26-28, 30, 31, 34, 48, 49, 52, 53, 58, 62-64, 66-69, 71, 72, 75, 77, 82, 84, 85, 87, 95, 96, 99, 100 19. Erythromma najas (Hansem.) 2.4 1.2 22 1, 2, 27-32, 54, 58, 63, 66-68, 71, 73, 76, 78, 82, 85, 88, 99 + 20. E. viridulum (Charp.) >0.1 0.1 3 30, 71, 82 21. Platycnemis pennipes (Pall.) 1.1 1.3 22 2, 5, 8, 9, 14, 17, 19, 21, 24, 26, 30, 35, 48, 58, 59, 60, 74, 76, 80, 82, 87, 92 22. Gomphus vulgatissimus (L.) 0.6 0.5 6 17, 31, 55, 59, 72, 82 + 23. Ophiogomphus cecilia (Fourcr.) 1.9 0.9 12 9, 13, 17, 21, 24, 35, 55, 59, 60, 82, 87, 92 + 24. Onychogomphus forcipatus (L.) 0.0 0.2 2 19, 21 25. Brachytron pratense (O.F. Müll.) >0.1 0.5 8 28, 29, 67, 71, 73, 75, 82, 99 + + 26. Aeshna affinis Vander L. 0.1 0.2 3 27, 42, 66 27. A. cyanea (O.F. Müll.) 11.8 3.3 48 28. A. grandis (L.) 0.3 1.8 22 2, 3, 5, 7, 8, 10, 12, 15, 17, 20, 22, 23, 27, 28, 30, 31, 34, 36-43, 46, 49, 51-53, 57, 60, 62, 63, 66, 68-71, 75, 77, 82, 84, 90, 95, 97-99 2, 20, 24, 26, 34, 36, 62, 66-69, 71, 74, 75, 78, 80, 82, 84, 92, 95, 96, 101 + 29. A. juncea (L.) >0.1 1.4 13 4, 5, 20, 26, 36, 54, 67-69, 71, 94-96 + 30. A. mixta Latr. 0.2 1.7 16 9, 17, 27, 28, 30, 34, 40, 46, 49, 53, 66, 68, 82, 95, 99, 101 + 31. A. subarctica (Walk.) 0.1 0.0 3 72, 93, 96 32. A. viridis Eversm. 0.0 0.1 1 95 + 33. Anax imperator Leach 0.5 0.5 12 1, 2, 28, 30, 31, 34, 58, 62, 66, 75, 78, 99 34. A. parthenope (Sél.) >0.1 0.1 1 30 158

Table 1. cont. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 35. Cordulegaster boltonii (Don.) 0.0 0.5 4 21, 24, 87, 92 36. Cordulia aenea (L.) 0.5 1.5 19 2, 5, 9, 28, 29, 36, 54, 63, 66-68, 71-73, 75, 78, 81, 82, 90 37. Somatochlora arctica (Zett.) 0.2 0.4 4 5, 10, 67, 72 38. S. flavomaculata (Vander L.) 0.2 2.1 19 5, 8, 10, 17, 26, 28, 31, 36, 53, 54, 66-69, 71, 74, 78, 82, 95 39. S. metallica (Vander L.) 2.5 2.7 25 2, 5, 7, 8, 17, 24, 26-28, 32, 39, 52-54, 63, 66, 69, 74, 76, 80, 82, 89, 94, 98, 101 40. Epitheca bimaculata (Charp.) >0.1 0.0 1 31 41. Libellula depressa L. 1.5 2.1 17 2, 4, 8, 9, 16, 28, 31, 34, 50, 57, 63, 69, 71, 76, 82, 83, 92 + + 42. L. fulva (O.F. Müll.) 0.0 0.3 3 9, 38, 54 + + + 43. L. quadrimaculata L. 9.3 5.6 46 2-5, 8-10, 17, 20, 23, 24, 28, 30-34, 36, 38, 41, 48, 52, 53, 57, 61, 63, 64-69, 71, 72, 78, 79, 81, 83, 82, 85, 88, 92, 93, 95, 96, 100 44. Orthetrum albistylum (Sél.) 0.2 0.8 8 26, 28, 30, 31, 34, 68, 82, 86 45. O. cancellatum (L.) 0.2 0.7 9 30, 31, 63, 68, 73, 71, 75, 76, 82, 99 46. Sympetrum danae (Sulz.) 3.8 5.3 39 2-5, 8-10, 14, 20, 28, 31, 36, 38, 41, 42, 46, 49, 52-54, 57, 66-72, 74, 76, 77, 80, 82, 93, 95-97, 100, 101 + 47. S. depressiusculum (Sél.) 0.2 0.7 7 28, 30, 31, 34, 68, 76, 82 + 48. S. flaveolum (L.) 1.9 3.5 37 2, 4, 5, 9, 10, 19, 20, 28, 31, 34-36, 38, 41, 42, 48, 49, 53, 54, 57, 61, 62, 64, 66-69, 73, 75-77, 82, 92-95, 99, 100 49. S. fonscolombii (Sél.) 0.3 0.0 2 2, 30 50. S. meridionale (Sél.) 0.2 0.1 3 2(?), 34(?), 68 51. S. pedemontanum (All.) 0.1 0.9 10 8, 20, 27, 28, 31, 33, 69, 76, 82, 94 52. S. sanguineum (O.F. Müll.) 1.4 5.1 27 53. S. vulgatum (L.) 2.3 4.2 38 2, 5, 10, 12, 27, 28, 30, 34, 36, 37, 40, 41, 49, 52, 57, 66-69, 71, 76, 82, 90, 95, 98, 100, 101 2, 4, 5, 8-10, 20, 24, 27-31, 33-36, 38, 41, 48, 49, 52, 53, 57, 61, 66-69, 71, 73, 74, 76, 77, 82, 99, 100, 101 + 54. Leucorrhinia albifrons (Burm.) >0.1 0.1 4 66, 72, 79, 95 + 159

Table 1. cont. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 55. L. caudalis (Charp.) 0.0 0.1 1 67 56. L. dubia (Vander L.) 2.3 0.6 11 5, 9, 10, 41, 52, 67, 69, 71, 79, 93, 95 57. L. pectoralis (Charp.) 0.9 0.9 19 2, 5, 8-10, 23, 41, 52, 53, 54, 66, 67, 69, 71, 72, 75, 79, 95, 99 58. L. rubicunda (L.) 4.3 1.3 17 5, 9, 10, 28, 41, 52, 53, 54, 66, 67, 71, 72, 79, 93, 95, 96, 100 Fig. 2. Contribution of synecological elements in the fauna of LPJF and Poland (quantitative data): A eurytopes, B crenophiles, C reobionts and reophiles, D limnebionts and limnephiles, E species of small permanent water bodies, F species of small astatic water bodies, G tyrphobionts and tyrphophiles 160

In the material collected, six groups of synecological elements were represented, with contributions in the fauna of JFLP similar to those in the Polish fauna (Fig. 2). The largest number of species belonged to eurytopes and dragonflies of running and peatbog waters. Species of small permanent and astatic water bodies and limnephiles were less numerous. No crenophiles were recorded. The widest distribution concerned: Coenagrion puella (52.5% sites), Aeshna cyanea (47.5%), and Libellula quadrimaculata (45.5%). At more than 10% of sites, 34 species in total were observed. The group of weakly distributed species was relatively scarce: at 1-3 sites, only 12 such species were recorded (Tab. 1). Eudominants in the group of larvae and exuviae were Coenagrion puella and Aeshna cyanea. Dominants were: Libellula quadrimaculata, Coenagrion hastulatum, and Calopteryx virgo. Moreover, 10 subdominants and 38 recedents were identified (Tab. 1). As imagines, the most frequently observed were: Coenagrion puella, Lestes sponsa, Libellula quadrimaculata, Sympetrum danae, and S. sanguineum (more than 5% of observations each). Further 13 species reached the level of 2.1-5.0% of observations, 11 species 1.1-2.0%, and 25 species 1.0% (Tab. 1). Individual species were recorded in 1-8 types of waters. Only Coenagrion puella and Libellula quadrimaculata developed in all of them. A wide habitat spectrum was a feature of further 11 species developing in 6-7 types of waters. A moderately wide spectrum (3-5) was typical of 22 species, narrow (1-2) 23 species (Tab. 1). The latter were dominated by habitat specialists, also distinguished by the mean number of inhabited types of waters (3.0) significantly lower than in the case of generalists (4.5). In individual types of waters, from 4 to 41 species of dragonflies were determined, including from 4 to 37 species with recorded or probable development. The fauna of fish ponds was the richest. Slightly less species were related to small anthropogenic and artificial water bodies and regulated running water bodies, fens, and Sphagnum bogs. The faunas of natural running waters and small natural water bodies were medium-rich. The lowest number of species developed in springs (Fig. 3). The highest number of exclusive species occurred on fens and Sphagnum bogs (5 in each case), and in natural running water bodies (4). They were mainly specialised species: Ophiogomphus cecilia, Onychogomphus forcipatus, Somatochlora arctica, and Leucorrhinia spp. Three exclusive species were recorded in anthropogenic running water bodies, and two in fish ponds. Limnephilous larvae of Epitheca bimaculata were caught in autumn in a channel draining water from an emptied 161

fish pond. Therefore, its occurrence should be correlated with fish ponds. Also Anax parthenope, constituting an exclusive species for ponds, is a limnephile. Springs and small water bodies included no exclusive species (Table 1). Fig. 3. Dragonfly species numbers in habitats studied. Species status: a development recorded, b probable development, c development not recorded. Symbols of habitats like in Table 1 At individual sites, up to 33 species of dragonflies were determined. Negative results were obtained for five sites: in four springs and in the strongly polluted River Biała below Janów Lubelski. The highest number of species were typical of fish ponds and anthropogenic and regulated running water bodies. It should be considered, however, that ditches and regulated rivers, which were the richest in dragonflies, received water from fish ponds. Therefore, part of the species got there along with waters from emptied fish ponds. Among natural waters, also fens and Sphagnum bogs were significant for the species diversity of the study area, and among artificial water bodies sand pits. The fauna of streams and rivers was quite poor, and the fauna of springs very poor (Fig. 4). Ten sites with the highest number of species included seven artificial (4 fish ponds, 2 channels, and 1 sand pit) and three natural water bodies (2 Sphagnum bogs, 1 fen). Also the mean number of species per site was higher for anthropogenic (11.1) than for natural waters (8.8). 162

Fig. 4. Number of dragonfly species recorded in particular study sites in various habitats (range and average values). Symbols of habitats like in Table 1. Only regularly studied sites were taken into account In natural waters, recorded or probable development of 48 species of dragonflies was observed (the number of all species identified was 51), in anthropogenic waters 44 (46). Seven species developed exclusively in anthropogenic waters: Coenagrion armatum, Erythromma viridulum, Anax parthenope, Epitheca bimaculata, Sympetrum depressiusculum, S. fonscolombii, and S. meridionale. The anthropogenic waters constituted exclusive expansion centres for further four species: Ischnura pumilio, Enallagma cyathigerum, Anax imperator, and Orthetrum cancellatum. Those were mainly thermophilous dragonflies (9 of 11 species). Numerous special care species were recorded in the study area: 10 species protected by law Sympecma paedisca, Coenagrion armatum, Ophiogomphus cecilia, Aeshna subarctica, A. viridis, Somatochlora arctica, Cordulegaster boltonii, Leucorrhinia albifrons, L. caudalis, and L. pectoralis; 2 species from the Polish red list of dragonflies Coenagrion armatum (category CR), and Somatochlora arctica (EN), 1 species from the European red list of dragonflies Sympetrum depressiusculum (VU). Moreover, 20 out of 25 umbrella species distinguished for the area of Poland were observed. No species from the IUCN red list of dragonflies were recorded. 163

The analysis of species assemblages in individual types of waters, and of occurrence of special care species, reveals high values of natural habitats (except for springs). Coenoses of fish ponds also turned out to be very valuable, corresponding with the fauna of lakes of various trophy, including dystrophic lakes. Sand pits significantly supplemented the network of small natural water bodies. Special care species occurred numerously both in natural and anthropogenic waters which often became similar to the natural ones as a result of succession. Discussion The total of 58 species of dragonflies identified constitutes 79.4% of the national fauna of 73 species (Bernard et al. 2009). Comparable results were recently obtained only in two areas of Poland, namely: the Białowieża Primeval Forest (61 species) [Buczyński, 2002, 2004a; Buczyński & Tończyk, 2006; Dijkstra & Kalkman, 1997; Grzywocz, 2003; Ihssen, 2006; Jödicke, 1999; Kalkman & Dijkstra, 2000; Łabędzki, 2001; Theuerkauf & Rouys, 2001; Zięba & Buczyński, 2007] and the Poleski National Park with its buffer zone (57 species) [Buczyński, 2004b; Buczyński et al., 2010]. An area twice as large as JFLP was studies as the Białowieża Primeval Forest. The authors of the papers cited even took into consideration the Siemianówka Reservoir and its vicinity, although the surface area of the forest complex itself amounts to little more than 60 000 ha [Rąkowski, 2010]. It is difficult to specify another area of Poland studied so thoroughly and by so many researchers. Moreover, 52 species were identified in the Wielkopolski National Park. Those are already partly historical data, however, e.g. 10 species were recorded there for the last time in the mid-war period [Mielewczyk. 1966, 2000]. Bernard (2002) mentions the number of 55 species determined within the administrative boundaries of the city of Poznań. However, a part of this data is also only historical. Comparative data from thoroughly studied, compact forest areas is scarce. However, even in relation to this data, the fauna of the study area is very rich: in the Białowieża Primeval Forest sensu stricte, 55 species of dragonflies were recorded [Buczyński & Tończyk, 2006; Ihssen, 2006; Jödicke, 1999; Kalkman & Dijkstra, 2000; Łabędzki, 2001; Theuerkauf & Rouys, 2001], in the Iława Lake District Landscape Park 47 [Buczyński, 2003], in the Bory Tucholskie National Park and in the Kozłowieckie Forests 45 each [Buczyński, 2008; Tończyk, 2006], and in the Zielonka Forest 44 [Łabędzki,1984, 1987]. Four groups of factors determining maintenance and development of the dragonfly population are defined: microclimate enabling effective thermoregulation in imagines; the vicinity enabling effective hunting by imagines; presence of places for spending nights and hiding from unfavourable weather or predators during the day; presence or vicinity of a water body appropriate for reproduction and 164

for survival and development of larvae. European forests with a moderate climate meet the conditions, and are inhabited by dragonfly communities with high species diversity, often richer than that in non-forest areas [Corbet, 2006]. Also i n Scandinavia, forest fauna is richer than the fauna of open spaces. Significantly more stenotopic species were also found in forested areas [Sáhlen, 2006]. The opinions are confirmed the data from Poland cited above. Part of the areas richest in dragonflies are forest complexes. Majority of the remaining areas are also largely forested: the forest cover in the Poleski National Park amounts to 49% [Baryła & Urban, 2002], and in the Wielkopolski National Park 57% [Turkowiak, 2009]. According to data from forest areas with medium-rich dragonfly fauna, however [Buczyński, 2003, 2008; Łabędzki, 1984, 1987; Tończyk, 2006], it is not only the forest cover that determines the species diversity of the insects. Data from JFLP constitutes an accurate illustration of the thesis. Variety of water environments is a significant factor, reflected in representation of synecological elements. In JFLP, all of the elements except for crenophiles were recorded. In the Polish fauna, however, they are represented exclusively by Cordulegaster bidentata (Sél.), a species inhabiting mountains and foothills [Bernard et al., 2009; Buczyński, 1999b]. Its lack in JFLP results from strictly zoogeographical factors. Contributions of individual elements were similar to those in the Polish fauna. Differentiation of water environments is significant, because only approximately 30 species occurring in Poland are eurytopes with a very wide habitat spectrum (they were all found in JFLP). The remaining species are specialised to various degrees. Some of them are distinguished by very narrow environmental selectivity [Bernard et al., 2009]. Another significant factor is the state of natural environments. Their disturbance and degradation mainly result in diminishing of stenotopic species. This in turn, in addition to decreasing environmental values of the area, also results in qualitative impoverishment of the fauna (Bernard et al. 2002). In view of the specific construction of the ecological niche of dragonflies, both water environments and their vicinity are of significance [Corbet, 2006; Schmidt, 1989, 1991. Sáhlen (2006) draws attention to the negative effect of forest economy on dragonflies. It is particularly unfavourable for species with long life cycles. Effects of related disturbances are the most evident within 5-10 years after the forest economy measures. It is significant from our point of view, because life cycles of a number of dragonfly species in Polish conditions have a duration of several years, and the group of semivalent species is particularly numerous. It should be taken into account, however, that methods applied in Polish forestry are different from those used in Scandinavia. Clearings and loggings of forests 165

composed of majority of forest-forming species, conducted in small areas (of up to 3 ha), do not affect surface waters to a large extent. On the contrary, in the case of lowland spruce forests, the effect is positive. Clearing spruce, fulfilling the function of strong dehydrating pumps, results in occurrence at the clearing site and its close vicinity (within a radius of 100-200 m) of transitional local waterholes, wetlands, and pools functioning for several years. Tree clearings and the statutory obligation of repeated forestation of the areas within two years from the clearing, exceptionally strictly enforced in National Forests, result in occurrence of transitional small water bodies exposed to insolation. Simultaneously, at boundaries of cleared and renewed forests, zones shielded from wind develop, constituting hunting areas for young imagines of dragonflies [Kaiser, 1974; Łabędzki, 1989, 1990]. It is also important that within the last 20 years, the National Forests administration ceased dehydrating local wetlands, depressions, and peatbogs entirely, eliminating the threat of destruction of biotopes of tyrphophilic dragonfly species. The situation of dragonflies in JFLP was and is beneficial. The area is sparsely populated. Since the 16 th century, it belonged to the Zamość Ordinance, where wasteful exploitation of forests was avoided. After the 2nd World War, experimental forests functioned here. Vast nature reserves were also established, including large areas of waters and peatbogs (NLJ 2011). This reduced pressure on the most valuable water and wetland ecosystems. Special attention should be paid to perfect preservation of very large areas of peatbogs, at a scale rarely encountered in Poland and outside lake districts in the north of the country [Ilnicki, 2002]. All of the tyrphobionts and tyrphophiles occurring outside the montane and foothill areas of Poland were recorded there, except for Nehalennia speciosa (Charp.). Also the fauna of long sections of rivers and streams survived with no serious disturbances. Dense and largely natural forests also constitute a filter protecting waters against eutrophication and polluted overland flow. It is among others evidenced by the fact that dominant species or species with the widest distribution in JFLP included: sensitive to oxygen depletion, reobiontic species Calopteryx virgo and tyrphophilous Coenagrion hastulatum [Bernard et al., 2009]. The factors discussed above, however, would not be sufficient for occurrence of dragonfly species diversity as rich as in JFLP. All comparable areas of Poland with current odonatofauna extremely rich in qualitative terms are distinguished by moderate anthropopression related to among others existence of anthropogenic waters and at least small open areas. In the Poleski National Park, maintenance of traditional forms of use of anthropogenic environments and those transformed or created by human activity was 166

recognised as the condition sine qua non of preservation of the values of the dragonfly fauna [Buczyński, 2004b]. Also in the Białowieża Primeval Forest, some species are related not to natural environments, but to sand pits, retention reservoirs, and fish ponds [Dijkstra & Kalkman, 1997; Jödicke, 1999; Kalkman & Dijkstra, 2001; Łabędzki, 2001; Theuerkauf & Rouys, 2001]. In the case of JFLP, the original fauna probably included 45-50 species. The remaining species occur mainly or exclusively owing to human activity, resulting in creating water habitats not encountered before, or in local changes of the microclimate. The latest occurrence of species inhabiting lakes as natural habitats is evident. In JFLP, their replacement habitats are fish ponds, created in the Janowskie Forests in the 19 th century, in so-called entailment estates. They constitute land confiscated by authorities of the Russian Empire after Polish national uprisings, and granted to officers of merit in their suppressing (NLJ 2011). Expansion of limnephiles outside the area of lake districts, related to the occurrence of appropriate replacement habitats, is well illustrated by Bernard et al. (2009). In the case of JFLP, an important factor is also forest and/or peatbog catchment of ponds, owing to which polytrophic water bodies are rarely encountered, and many are dystrophic. Changes in landscape were particularly favourable for thermophilous dragonflies, usually related to small water bodies. With no open areas resulting from exploitation of meadows, fish breeding, and obtaining mineral resources, temperature conditions in the waters of JFLP were very unfavourable for them. They currently regularly occur in the area, inhabiting smaller fish ponds, and particularly surface rock excavations (here: sand pits). Those constitute very important habitats of the dragonflies, or even their expansion centres in a number of areas of Poland [Bernard, 1996; Bernard & Musiał, 1995; Buczyński, 1999a, 2011; Buczyński, Pakulnicka 2000; Theuerkauf & Rouys, 2001; Wendzonka, 2001; Zabłocki & Wolny, 2011]. Anthropogenic habitats have long been indicated as means of enriching local faunas impoverished as a result of anthropopression. It is recommended to avoid land reclamation involving e.g. burying sand pits filled with water. Their dragonfly communities can be not only rich in quantitative terms, but also include stenotopic, endangered, and protected species [Bernard et al., 2002; Bilek, 1952; Buczyński, 1999b; Donath, 1994; Geissler-Strobel, et al. 1998; Rademacher, 1999; Rychła, 2006; Rychła et al., 2011]. It is the case in JFLP, where ponds and sand pits not only enriched the fauna by thermophilous dragonflies inhabiting small water bodies, or limnephiles, but also became an important part of the habitat base of certain stenotopes. 167

The above considerations suggest that the high richness of the odonatofauna of JFLP is a result of a specific, unintentional ecological experiment: economic activities significant sufficiently to create or extend the habitat base of dragonflies, and simultaneously sufficiently restricted not to destroy natural environments at a large scale. A state of balance between creation and destruction developed. Lower rate of human activity would not result in such enrichment of the fauna. Its increase would cause diminishing of part of habitats (particularly due to melioration), or their degradation as a result of eutrophication, again leading to impoverishment of the fauna. Considering the degree of transformation of the landscape of majority of areas of Poland [Symonides, 2007] or other Central European countries, it is worth conducting a detailed analysis of the functioning of the fauna of such areas. They provide valuable guidelines for environmental management, and for implementation of active protection measures. Simultaneously, it should be remembered that such anthropological hotspots of biodiversity are less stable than hotspots dependent exclusively on natural environments. Secondary habitats are more liable than natural ones. They are subject to fast succession, and changes in their management may cause rapid degradation of the water bodies. Therefore, such areas should be monitored particularly thoroughly. References [1] Baryła R. & Urban D. 2002. Ekosystemy Poleskiego Parku Narodowego, ekosystemy łąkowe. [In:] Radwan S. (ed.) Poleski Park Narodowy, monografia przyrodnicza. Morpol, Lublin 199-216: [2] Bernard R. 1996. Ważki (Odonata) rezerwatu Meteoryt Morasko w Poznaniu. Roczn. nauk. Pol. Tow. Ochr. Przyr. Salamandra 1: 157-166. [3] Bernard R. 2002. Zalotny lot zalotki. Kronika Miasta Poznania 2002 (3): 101-108. [4] Bernard R., Buczyński P. & Tończyk G. 2002. Present state, threats and conservation of dragonflies (Odonata) in Poland. Nature Conserv. 59(2): 53-71 [5] Bernard R., Buczyński P., Tończyk G. & Wendzonka J. 2009. A distribution atlas of dragonflies (Odonata) in Poland. Bogucki Wydawnictwo Naukowe, Poznań, 256 pp. [6] Bernard R. & Musiał J. 1995. Observations of an abundant occurrence of Hemianax ephippiger (Burmeister, 1839) in western Poland in 1995 (Odonata: Aeshnidae). Opusc. zool. Fluminensia 138: 1-9. [7] Bernard R. & Wildermuth H. 2006. Nehalennia speciosa. In: 2006 IUCN Red List of Threatened Species. Internet: www.iucnredlist.org. 168

[8] Bilek A. 1952. Eine Kiesgrube als Lebensraum für die Hälfte aller mitteleuropäischen Odonaten- Arten. Nachr.bl. Bayer. ent. 1(11): 85-86. [9] Borowiec J. 1990. Torfowiska Regionu Lubelskiego. PWN, Warszawa, 348 pp. [10] Buczyński P. 1999a. Dragonflies (Odonata) of sand pits in south-eastern Poland. Acta hydrobiol. 41(3/4): 219-230. [11] Buczyński P. 1999b. Ważki (Odonata) terenów źródliskowych Polski stan poznania i propozycje dalszych badań. [In:] Biesiadka E. & Czachorowski S. (eds). Źródła Polski stan badań, monitoring i ochrona. WSP w Olsztynie, Olsztyn: 31-36. [12] Buczyński P. 2002. Materiały do poznania ważek (Odonata) Lubelszczyzny. Część II. Ważki w kolekcji Zakładu Zoologii UMCS w Lublinie. Wiad. ent. 21(1): 5-10. [13] Buczyński P. 2003. Ważki (Odonata) Parku Krajobrazowego Pojezierza Iławskiego. Roczn. nauk. Pol. Tow. Ochr. Przyr. Salamandra 7: 65-85. [14] Buczyński P. 2004a. Coenagrion armatum (Charpentier, 1840), łątka zielona. [In:] Głowaciński Z. & Nowacki J. (eds). Polska czerwona księga zwierząt, Bezkręgowce. Instytut Ochrony Przyrody PAN, Akademia Rolnicza im. A. Cieszkowskiego, Kraków Poznań: 52-54. [15] Buczyński P. 2004b. Ważki (Odonata) Poleskiego Parku Narodowego i jego otuliny: nowe dane i podsumowanie badań z lat 1985-2003. Parki nar. Rez. Przyr. 23(3): 381-394. [16] Buczyński P. 2008. Ważki (Odonata) Lasów Kozłowieckich (województwo lubelskie). Odonatrix 4(2): 33-42. [17] Buczyński P. 2011. Pierwsze stwierdzenia Lestes barbarus (Fabricius, 1798) i Erythromma viridulum (Charpentier, 1840) (Odonata: Lestidae, Coenagrionidae) na wyspach Wolin i Uznam. Odonatrix 7(2): 57-58. [18] Buczyński P. & Pakulnicka J. 2000. Odonate larvae of gravel and clay pits in the Mazurian Lake District (ne Poland), with notes on extremely northern localities of some Mediterranean species. Notul. odonatol. 5(6): 69-72. [19] Buczyński P. & Tończyk G. 2006. Ważki odnotowane w Białowieży podczas Konferencji Naukowej Polskiej Platformy Bioróżnorodności (23-24.04.2004) i 45. Zjazdu PTEnt. (17-19.09.2004). Odo-natrix 2(1): 20-21. [20] Buczyński P., Żurawlew P. & Michalczuk W. 2010. Nowe dane o występowaniu Crocothemis erythraea (Brullé, 1832) (Odonata: Libellulidae) w Polsce. Odonatrix 6(2): 50-60. 169

[21] Corbet P.S. 2006. Forest as habitats for dragonflies (Odonata). In: Cordero Rivera A. (ed.). Forest and dragonflies. Fourth WDA International Symposium of Odonatology, Pontevedra (Spain), July 2005. Pensoft, Sofia Moscow: 13-36. [22] Cukierska Z. (ed.) 1997. Geograficzny atlas świata. PPWK, Warszawa, 84 pp. [23] Czachorowski S. 2006. Opisywanie biocenozy. Internet: www.uwm.edu.pl/czachor/publik/ pdf-inne/zoocenozy.pdf [24] Dijkstra K.D. & Kalkman V. (eds), 1997. Report on the flora and fauna of Bialowieza, NJN-summercamps 1996. Private publication, Leiden, 54 pp. [25] Donath H. 1994. Möglichkeiten des Naturschutzes und der Landschaftsentwicklung während der Bergbausanierung. Natursch. Landsch.pfl. Brandenb. 94(2): 16-19. [26] Geissler-Strobel S., Bugner J., Feldmann R., Günther K., Gras J., Herbst F., Seluga K. 1998. Berg-baulandschaften in Ostdeutschland durch Sanierung bedrohte Sekundärlebensräume. Vorkommen hochgradig gefährdeten Tierarten im Tagebau Goitsche bei Bitterfeld. Natursch. u. Land-schaftspl. 30 (4): 106-114. [27] Głowaciński Z. 2009. Faunistyczne centra różnorodności gatunkowej, czyli poszukiwanie i ochrona gorących plam. Roczn. Bieszcz. 17: 79-88. [28] Grzywocz J. 2003. Materiały do poznania odonatofauny Polski. Acta ent. Silesiana 11: 97-99. [29] Hornung J.P. & Rice T.C. 2003. Odonata and wetland quality in southern Alberta, Canada: a preliminary study. Odonatologica 32(2): 119-129. [30] Fijałkowski D. 2003. Ochrona przyrody i środowiska na Lubelszczyźnie. Lubelskie Towarzystwo Naukowe, Lublin, 409 pp. [31] Ihssen G. 2006. Natur und Nationalparke in Nordost-Polen. Bericht zweier Reisen zur Biebrza- Niederung und zum Bialowieza Urwald im Juni 1998 und 2000. Reisetagebuch; Artenlisten: Vögel, Säugetiere, Libellen, Schmetterlingsnotizen. Naturkundl. Reiseber. 33: 1 59. [32] Ilnicki P. 2002. Torfowiska i torf. Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu, Poznań, 606 pp. [33] Jödicke R. 1999. Libellenbeobachtungen in Podlasie, Nordostpolen. Libellula 18(1/2): 31-48. [34] Kaiser H. 1974. Verhaltengefüge und Temporialverhalten der Libelle Aeschna cyanea (Odonata). Z. Tierpsychol. 34(4): 398-429. 170

[35] Kalkman V.J., Boudot J.-P., Bernard R., Conze K.-J., De Knijf G., Dyatlova E., Ferreira S., Jović M., Ott J., Riservato E. & Sahlén G. 2010. European Red List of Dragonflies. Publications Office of the European Union, Luxembourg, 28 pp. [36] Kalkman V., Dijkstra K.-D.B. 2000. The dragonflies of the Białowieża area, Poland and Belarus (Odonata). Opuscula Zoologica Fluminensia, 185: 1-19. [37] Kondracki J. 1998. Geografia regionalna Polski. PWN, Warszawa, 440 pp. [38] Łabędzki A. 1984. Ważki (Odonata) rezerwatu Jezioro Czarne na terenie nadleśnictwa doświadczalnego Zielonka. Roczn. Nauk. Akad. Roln. Poznań 42: 17-26. [39] Łabędzki A. 1987. Ważki (Odonata) Puszczy Zielonki koło Poznania. Bad. fizjogr. Pol. Zach. (C) 35: 41-52. [40] Łabędzki A. 1989. Ważki różnoskrzydłe (Odonata: Anisoptera) drzewostanów sosnowych a ich potencjalne możliwości regulacji liczebności szkodliwych owadów leśnych. Pr. Kom. nauk Roln. Kom. nauk Leśn. PTPN 58: 39-45. [41] Łabędzki A. 1990. Uwarunkowania siedliskowo drzewostanowe liczebności i funkcji drapieżnych imagines ważek różnoskrzydłych. [w:] Dynamika naturalnych i półnaturalnych ekosystemów leśnych i ich związki z innymi ekosystemami w krajobrazie. CPBP 04.10.07, Warszawa, 23: 137-142. [42] Łabędzki A. 2001. Odonata ważki. [w:] Gutowski J.M. & Jaroszewicz B. (eds). Katalog fauny Puszczy Białowieskiej. Instytut Badawczy Leśnictwa, Warszawa: 88-91. [43] Mielewczyk S. 1966. Larwy ważek (Odonata) Wielkopolskiego Parku Narodowego. Pr. monogr. Przyr. Wielkop. Parku nar. 4(1): 1-39. [44] Mielewczyk S. 2000. Larwy ważek (Odonata) Wielkopolskiego Parku Narodowego i zmiany zachodzące w ich składzie. [w:] S. Cerbin (ed.). Fauna denna jezior. Materiały VII Ogólnopolskich Warsztatów Bentologicznych, Jeziory, Wielkopolski Park Narodowy, Wielkopolski Park Naro-dowy, UAM, Jeziory Poznań: 13-17. [45] Myers N. 1988. Threatened biotas: hot-spots in tropical forests. Environmentalist 8(3): 187-208. [46] Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A. & Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853 858. [47] NLJ [Nadleśnictwo Janów Lubelski] 2011. Lasy Janowskie w przeszłości. Internet: http://www.okl.lasy.gov.pl/web/janow_lubelski/ryshistoryczny 171

[48] Okołowicz W. 1974. Regiony klimatyczne. [w:] W. Górski and Z. Cukierska (eds), Powszechny atlas świata. PPWK, Warszawa: 31. [49] Rademacher M. 1999. Die Bedeutung von Kleingewässern in Kiesgruben für Libellen (Odonata) Ein Beispiel aus der südbayerischen Trockenaue. Ber. Naturf. Ges. Freiburg i. Br. 88/89: 185-222. [50] Radwan S., Sałata B. & Szunke Z. (eds) 1996. Walory Przyrodnicze Parku Krajobrazowego Lasy Janowskie. Wyd. UMCS, Lublin, 84 s. [51] Radwan S., Sałata B. & Harasimiuk M. (eds) 1997. Środowisko przyrodnicze Parku Krajobrazowego Lasy Janowskie. AR w Lublinie, PK Lasy Janowskie, 214 pp. [52] Rapa A., Krawczyk R., Nowak S. & Kucharczyk M. 2011. Specjalny obszar ochrony siedlisk Uroczyska Lasów Janowskich (PLH060031). [w:] Rogała D. & Marcela A. (eds), Obszary Natura 2000 na Podkarpaciu. Regionalna Dyrekcja Ochrony Środowiska w Rzeszowie, Rzeszów: 304-309. [53] Rąkowski G. 2010. Przyrodnicze i kulturowe walory Puszczy Białowieskiej. Ochr. Środ. Zas. Nat. 42: 274-283. [54] Rogała D. 2011. Obszar specjalnej ochrony ptaków Lasy Janowskie (PLB060005). [w:] Rogała D. & Marcela A. (eds), Obszary Natura 2000 na Podkarpaciu. Regionalna Dyrekcja Ochrony Środowiska w Rzeszowie, Rzeszów: 53-57. [55] Rozporządzenie Ministra Środowiska z dnia 12 października 2011 r. w sprawie ochrony gatunkowej zwierząt. Dz. U. 237 (1419). [56] Rychła A. 2006. Ważki (Odonata) wód stojących Parku Krajobrazowego "Łuk Mużakowa" (woje-wództwo lubuskie) w aspekcie różnorodności i ochrony. Chrońmy Przyr. ojcz. 61(6): 67-80. [57] Rychła A., Benndorf J., Buczyński P. 2011. Impact of ph and conductivity on species richness and community structure of dragonflies (Odonata) in small mining lakes. Fundam. appl. Limnol. 179(1): 41-50. [58] Sahlén G. 2006. Specialists vs. generalists among dragonflies the importance of forest environments in the formation of diverse species pools. [In:] Cordero Rivera A. (ed.). Forest and dragonflies. Fourth WDA International Symposium of Odonatology, Pontevedra (Spain), July 2005. Pensoft, Sofia Moscow: 153-179. [59] Sahlén G. & Ekestubbe K. 2001. Identification of dragonflies (Odonata) as bioindicators of general species richness in boreal forest lakes. Biodiv. Conserv. 10(5): 673-690. 172

[60] Schmidt E. 1989. Libellen als Bioindikatoren für den praktischen Naturschutz: Prinzipien der Geländarbeit und ökologischen Analyse und ihre theoretische Grundlegung im Konzept der ökologi-schen Nischen. Schr.-R f. Landschaftspfl. u. Natursch. 29: 281-289. [61] Schmidt E. 1991. Das Nischenkonzept für die Bioindikation am Beispiel Libellen. Beitr. z. Landspfl. Rheinland-Pfalz 14: 95-117. [62] Symonides E. 2007. Ochrona Przyrody. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, 767 pp. [63] Theuerkauf J. & Rouys S. 2001. Habitats of Odonata in the Białowieża Forest and its surroundings (Poland). Fragm. faun. 44(3): 33 39. [64] Tończyk G. 2006. Ważki (Odonata) Parku Narodowego Bory Tucholskie analiza danych z roku 2004. [In:] Banaszak J. & Tobolski K. (eds). Park Narodowy Bory Tucholskie. U progu nowej dekady. Wydawnictwo Uniwersytetu im. Kazimierza Wielkiego w Bydgoszczy, Bydgoszcz: 209-221. [65] Turkowiak A. 2009. Podatność na antropopresję i stan lasów Wielkopolskiego Parku Narodowego. [w:] Walna B., Kaczmarek L., Lorenc M. & Dondajewska R. (eds). Wielkopolski Park Narodowy w badaniach przyrodniczych, Uniwersytet im. Adama Mickiewicza, Stacja Ekologiczna w Jeziorach, Poznań Jeziory: 143-156. [66] Wendzonka J. 2001. Ważki (Odonata) okolic Gostynia (południowa Wielkopolska). Bad. fizjogr. Pol. Zach. (C) 48: 29-39. [67] Wilson E.O. 1985. The biological diversity crisis. Bioscience 35: 700-706. [68] Zabłocki P. & Wolny M. 2011. Pierwsze stwierdzenie husarza wędrownego Anax ephippiger (Burmeister) (Odonata: Aeshnidae) na Opolszczyźnie. Forum faun. 1: 35-38. [69] Zięba P. & Buczyński P. 2007. Żagnica zielona (Aeshna viridis) złowiona w pułapki świetlne. Odonatrix 3(1): 26-28. PARK KRAJOBRAZOWY LASY JANOWSKIE JAKO GORĄCY PUNKT RÓŻNORODNOŚCI GATUNKOWEJ WAŻEK (ODONATA) W POLSCE Streszczenie Park Kra jo bra zo wy La sy Ja now skie chro ni więk szą część La sów Ja now skich jed ne go z cen niej szych przy rod ni czo, zwar tych kom plek sów le śnych Pol ski. Jest to klu czo wy frag ment jed nej z go rą cych plam ró żno rod no ści wa żek w Pol sce. Au to rzy oma wia ją wy ni ki wie lo let nich ba dań te go ob sza ru (1988-173

1990, 1993-1998). Na sto sun ko wo ma łej po wierzch ni (oko ło 40 000 ha) stwier dzo no tu 58 ga tun ków wa żek (79.4% fau ny kra jo wej). Tak du że bo gac two ga tun ko we to sku tek szczę śli we go zbie gu oko licz - no ści. Po mi mo pro wa dze nia re gu lar nej go spo dar ki le śnej, w ma łym stop niu znisz czo no wo dy na tu - ral ne. W do brym sta nie prze trwa ły zwłasz cza: tor fo wi ska, stru mie nie i rzecz ki. Dla te go za cho wa ły się po pu la cje więk szo ści ste no to pów, co od zwier cie dla wy ka za nie 10 ga tun ków chro nio nych, dwóch ga - tun ków z Czer wo nej li sty wa żek Pol ski i jed ne go z Czer wo nej li sty wa żek Eu ro py. Na to miast go - spo dar ka czło wie ka przy czy ni ła się do wzro stu zró żni co wa nia kra jo bra zu i po wsta nia licz nych wód an tro po ge nicz nych, zwłasz cza sta wów ryb nych i pia skow ni, za sie dla nych przez bo ga te ze spo ły wa - żek. Przy tym cha rak ter zlew ni, po zo sta ją cej spraw nie dzia ła ją cym le śnym fil trem bio lo gicz nym, czę - sto de cy du je o tym, że ce chy sie dli sko we sta wów są po dob ne, jak w je zio rach dys tro ficz nych lub naj wy żej umiar ko wa nie eu tro ficz nych. Te ren ba dań mo żna trak to wać ja ko obiekt nie za mie rzo ne go eks pe ry men tu, któ ry przy czy nił się do wzbo ga ce nia fau ny wa żek, a jed no cze śnie nie do pro wa dził do utra ty więk szo ści jej naj cen niej szych ele men tów pier wot nych. Da je on cen ne wska zów ki dla za - rzą dza nia in ny mi ob sza ra mi chro nio ny mi, w tym szcze gól nie dla pro wa dze nia czyn nych dzia łań ochron nych. 174