LASER MODIFICATION OF B-Ni GALVANIC-DIFFUSION LAYER. LASEROWA MODYFIKACJA WARSTWY B-Ni GALWANICZNO-DYFUZYJNEJ



Podobne dokumenty
EFFECT OF LASER MODIFICATION ON STRUCTURE AND SELECTED PROPERTIES OF TOOL STEEL

WEAR AND CORROSION RESISTANCE OF C45 STEEL LASER ALLOYED WITH BORON AND SILICON

INFLUENCE OF DIFFUSION BORIDING AND LASER BORIDING ON CORROSION RESISTANCE HARDOX 450 STEEL

T R I B O L O G I A 93

SELECTED PROPERTIES OF DIFFUSION BORONIZED LAYER MODIFIED WITH COPPER WYBRANE WŁA CIWO CI WARTSYW BOROWANEJ DYFUZYJNIE MODYFIKOWANEJ MIEDZI

BADANIA STRUKTURY I WŁAŚCIWOŚCI BOROWANEJ STALI KONSTRUKCYJNEJ 41Cr4 I NARZĘDZIOWEJ 102Cr6

MOŻLIWOŚCI KSZTAŁTOWANIA ODPORNOŚCI NA PROCESY ZUŻYWANIA LASEROWO BOROWANYCH WARSTW POWIERZCHNIOWYCH ELEMENTÓW STALOWYCH ORAZ ŻELIWNYCH

Wpływ powłoki Al Si na proces wytwarzania i jakość zgrzewanych aluminiowanych rur stalowych

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK ELEKTROLITYCZNYCH ZE STOPÓW NIKLU PO OBRÓBCE CIEPLNEJ

WARSTWY WĘGLIKOWE WYTWARZANE W PROCESIE CHROMOWANIA PRÓŻNIOWEGO NA POWIERZCHNI STALI POKRYTEJ STOPAMI NIKLU Z PIERWIASTKAMI WĘGLIKOTWÓRCZYMI

STRUKTURA I W A CIWO CI KONSTRUKCYJNEJ STALI 42CrMo4 PO REGULOWANYM AZOTOWANIU I LASEROWYM STOPOWANIU BOREM

MICROSTRUCTURE AND WEAR RESISTANCE OF STELLITE-6/WC METAL MATRIX COMPOSITE COATINGS

ANTYŚCIERNE I ANTYKOROZYJNE WARSTWY NOWEJ GENERACJI WYTWARZANE W PROCESIE TYTANOWANIA PRÓŻNIOWEGO NA STALI NARZĘDZIOWEJ

Laser alloying of 316L steel with boron using CaF 2

STRUCTURE AND PROPERTIES OF Ni-P/PTFE COMPOSITE COATINGS PRODUCED BY CHEMICAL REDUCTION METHOD

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY WIERZCHNIEJ STALI MODYFIKOWANEJ BOREM W WARUNKACH TARCIA MIESZANEGO

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

BOROAZOTOWANIE STALI 42CrMo4

EVALUATION OF THE SURFACE LAYER MIKROSTRUCTURE OF HIGH CARBON ALLOY STEEL AFTER LASER MODIFICATION

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Badania tribologiczne ślizgowych węzłów obrotowych z czopami z powłoką TiB 2

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

THE INFLUENCE OF THE LASER AND DIFFUSION BORONIZING ON THE SURFACE LAYER OF NODULAR IRON

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

Dr inż. Łukasz Rogal zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW DUPLEX WYTWARZANYCH W PROCESIE TYTANOWANIA PRÓŻNIOWEGO NA STALI NARZĘDZIOWEJ POKRYTEJ STOPEM NIKLU

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH TYPU CrC+(Ni-Mo)+CrN

ANALIZA ZUŻYCIA STALOWYCH PIERŚCIENI WSPÓŁPRACUJĄCYCH Z ŻELIWEM SFEROIDALNYM PODDANYM LASEROWEJ OBRÓBCE CIEPLNEJ

Wpływ stanu strukturalnego na skutki obróbki laserowej stali o różnym składzie chemicznym. Część I: Stale węglowe

OBRÓBKA CIEPLNA STOPOWYCH KOMPOZYTÓW POWIERZCHNIOWYCH

WPŁYW CHROPOWATOŚCI POWIERZCHNI MATERIAŁU NA GRUBOŚĆ POWŁOKI PO ALFINOWANIU

Wpływ stanu strukturalnego na skutki obróbki laserowej stali o różnym składzie chemicznym. Część II: Stale konstrukcyjne stopowe

Badania wpływu obróbki laserowej i azotowania na własności warstwy wierzchniej próbek ze stali WCL

OBRÓBKA CIEPLNA SILUMINU AK132

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

FREZY PM; END MILLS PM

Fracture toughness of gas borided Nimonic 80A alloy

ZUŻYCIE TRIBOLOGICZNE POWŁOK KOMPOZYTOWYCH Ni-P-Al 2 O 3 WYTWORZONYCH METODĄ REDUKCJI CHEMICZNEJ

LASEROWE UMACNIANIE STALI NIESTOPOWYCH. A. BYLICA 1, S. ADAMIAK 2 Instytut Techniki, Uniwersytet Rzeszowski Rzeszów, ul.

DIFFUSION LAYERS FORMED ON STEEL AND THEIR WEAR BEHAVIOUR

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Badania nad stopowaniem laserowym warstw wierzchnich elementów cylindrycznych z żeliwa sferoidalnego

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

-Special. Ceny wraz z dopłatą surowcową Prices without any addition new! Ø 32 Strona/Page 4,5. Black Panther DN 630 +

THE COMPARISON OF EFFECTS OF THERMAL SPRAYING EUTALLOY AND LASER ALLOYING WITH SILICON NITRIDE OF CAST IRON OUTMOST DISK COULTER

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /amm

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH TYPU CRC+CRN WYTWARZANYCH PRZEZ POŁĄCZENIE PROCESU CHROMOWANIA PRÓŻNIOWEGO Z OBRÓBKĄ PVD

OTRZYMYWANIE KOMPOZYTÓW METALOWO-CERAMICZNYCH METODAMI PLAZMOWYMI

TOPOGRAFIA WSPÓŁPRACUJĄCYCH POWIERZCHNI ŁOŻYSK TOCZNYCH POMIERZONA NA MIKROSKOPIE SIŁ ATOMOWYCH

WĘGLOAZOTOWANIE JAKO ELEMENT OBRÓBKI CIEPLNEJ DLA ŻELIWA ADI

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

WPŁYW ODKSZTAŁCENIA WZGLĘDNEGO NA WSKAŹNIK ZMNIEJSZENIA CHROPOWATOŚCI I STOPIEŃ UMOCNIENIA WARSTWY POWIERZCHNIOWEJ PO OBRÓBCE NAGNIATANEM

Fixtures LED HEDRION

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY POWIERZCHNIOWEJ CRN W WARUNKACH TARCIA MIESZANEGO

WPŁYW WYBRANYCH SMAROWYCH PREPARATÓW EKSPLOATACYJNYCH NA WŁAŚCIWOŚCI TRIBOLOGICZNE MATERIAŁÓW POLIMEROWYCH PODCZAS TARCIA ZE STALĄ

Dr inż. Paulina Indyka

BARIERA ANTYKONDENSACYJNA

STRUCTURE OF PHOSPHOR TIN BRONZE CuSn10P MODIFIED WITH MIXTURE OF MICROADDITIVES

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

Volume Issue 1 WEAR RESISTANCE OF STEEL DESIGNED FOR SURGICAL INSTRUMENTS AFTER HEAT AND SURFACE TREATMENTS

ROZPRAWY NR 128. Stanis³aw Mroziñski

MODIFYING THE STRUCTURE OF CERTAIN STEEL GRADES BY LOW-TEMPERATURE GLOW DISCHARGE ASSISTED NITRIDING

OpenPoland.net API Documentation

THE ANALISYS OF THE INFLUENCE OF COOLING RATE DURING LASER ALLOYING WITH SILICON NITRIDE ON SURFACE LAYER STATE OF CAST IRON MACHINE PARTS

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

-Special. -Endmills. Ceny wraz z dopłatą surowcową Prices without any addition new! Ø 32 Strona/Page 4,5. Black Panther DN 630 +

THE ANALYSIS OF THE SELECTED PROCESSES OF THERMO-CHEMICAL HEAT TREATMENT OF 20MnCr5 STEEL IN THE CONTEXT OF ABRASIVE WEAR

Krytyczne czynniki sukcesu w zarządzaniu projektami

ODPORNOŚĆ NA ZUŻYCIE CIERNE KOMPOZYTÓW WARSTWOWYCH NA BAZIE STOPÓW ŻELAZA

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

88 MECHANIK NR 3/2015

WPŁYW OBRÓBKI CIEPLNEJ NA WYBRANE WŁASNOŚCI STALIWA CHROMOWEGO ODPORNEGO NA ŚCIERANIE

p ISSN TRIBOLOGIA 1/2018 Key words: Abstract

STRUKTURA I WŁAŚCIWOŚCI STALI KONSTRUKCYJNEJ BOROWANEJ LASEROWO STRUCTURE AND PROPERTIES OF LASER BORIDED CONSTRUCTIONAL STEEL

WPŁYW DODATKU NA WŁASNOŚCI SMAROWE OLEJU BAZOWEGO SN-150

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3 DOI: /v

THE INFLUENCE OF THE STEEL CHEMICAL COMPOSITION ONTO THE POSSIBILITIES OF USING IT IN THE PROCESS OF COLD SHAPING

Wpływ odległości między ścieżkami hartowniczymi na własności stali stopowych

THE ANALYSIS OF THE INFLUENCE OF LASER HEAT TREATMENT OF THE CRANKSHAFT JOURNAL ON WEAR RESISTANCE OF THE BEARING

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.


EFFECT OF GAS NITRIDING PROCESS ON TRIBOLOGICAL PROPERTIES OF CONSTRUCTIONAL STEEL

Mikrostruktura, struktura magnetyczna oraz właściwości magnetyczne amorficznych i częściowo skrystalizowanych stopów Fe, Co i Ni

Analiza budowy strefy stopowanej laserowo borem w żeliwie sferoidalnym z wykorzystaniem metody spektroskopii elektronów Auger (AES)

Helena Boguta, klasa 8W, rok szkolny 2018/2019

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

Hard-Margin Support Vector Machines

NAPRĘŻENIA WŁASNE W STALI C45 NADTAPIANEJ LASEROWO

Has the heat wave frequency or intensity changed in Poland since 1950?

BADANIA PORÓWNAWCZE ODPORNOŚCI NA ZUŻYCIE PRZEZ TARCIE AZOTOWANYCH I NAWĘGLANYCH STALI KONSTRUKCYJNYCH

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH BRĄZU CuSn12Ni2 W OBECNOŚCI PREPARATU EKSPLOATACYJNEGO O DZIAŁANIU CHEMICZNYM

PRÓBY EKSPLOATACYJNE KOMPOZYTOWYCH WSTAWEK HAMULCOWYCH TOWAROWEGO

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

WŁASNOŚCI MECHANICZNE I STRUKTURA ŻELIWA Z GRAFITEM MIESZANYM PO DWUSTOPNIOWYM HARTO- WANIU IZOTERMICZNYM


Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Conception of reuse of the waste from onshore and offshore in the aspect of

Transkrypt:

Aneta BARTKOWSKA 1, Aleksandra PERTEK-OWSIANNA 1, Damian PRZESTACKI 2 1 Institute of Materials Science and Engineering, Poznan University of Technology 2 Institute of Mechanical Technology, Poznan University of Technology pl. M. Skłodowskiej-Curie 5, 60-965 Poznan, Poland e-mail: aneta.bartkowska@put.poznan.pl LASER MODIFICATION OF B-Ni GALVANIC-DIFFUSION LAYER Summary The paper presents test results for boronickelized C45 steel after laser surface modification. Influence of laser heat treatment on the microstructure, microhardness, cohesion and wear resistance of surface layer was investigated. The process of galvanic-diffusion boronickelized layer consists of nickel plating followed by diffusion boronizing. For nickel plating Watts bath was used, which uses a combination of nickel sulfate and nickel chloride, along with boric acid. Diffusion boronizing treatment was used in the gas-contact method at temperature 950ºC for 4 h in boronizing powder, containing: amorphous boron, KBF 4 as activator and carbon black as a filler. The laser heat treatment (LHT) was carried out with technological laser TRUMPF TLF 2600 Turbo CO 2 of nominal power 2.6 kw. Laser modification of the boronickelized layer was carried out with laser power P 1.04 kw and at laser beam scanning rate v: 0.67 m min -1, 1.12 m min -1, 2.88 m min -1 and laser beam d = 2 mm. After boronickelizing the microstructure of surface layer was composed of: compact-continuous subsurface zone of microhardness 1200 HV0,1, and deeper situated zone, at microhardness similar to needle-like iron borides. After laser heat treatment with re-melting, a new layer was obtained, which included: re-melted zone (MZ), heat affected zone (HAZ) and a substrate, with a mild microhardness gradient from the surface to the substrate. The microhardness measured along the axis of track after laser heat treatment of the boronickelized layer was about 1100 HV0,1. As a result of the influence of laser beam, the new layer was characterized by good properties in comparison to boronized and boronickelized layers. Key words: laser remelting, diffusion boronizing, nickel plating, microstructure, microhardness LASEROWA MODYFIKACJA WARSTWY B-Ni GALWANICZNO-DYFUZYJNEJ Streszczenie W pracy przedstawiono wyniki bada boroniklowanej stali C45 po laserowej modyfikacji. Badano wpływ laserowej obróbki cieplnej na mikrostruktur, mikrotwardo, kohezj i odporno na zu ycie przez tarcie wytworzonej warstwy. Proces wytwarzania galwaniczno-dyfuzyjnej warstwy boroniklowanej składał si z: nakładania wst pnej powłoki galwanicznej niklu i nast pnego borowania dyfuzyjnego. Do niklowania galwanicznego u yto k pieli Wattsa, która składała si z siarczanu niklawego, chlorku niklawego, kwasu borowego. Borowanie dyfuzyjne prowadzono metod gazowo-kontaktow w temperaturze 950 o C w proszku boruj cym zawieraj cym bor amorficzny, aktywator KBF 4 i wypełniacz w postaci sadzy. Laserowa obróbka cieplna (LOC) była wykonana przy u yciu lasera technologicznego CO 2 firmy TRUMPF TLF 2600 Turbo o mocy nominalnej 2,6 kw. Laserow modyfikacj warstwy boroniklowanej przeprowadzono przy u yciu mocy lasera P = 1,04 kw i pr dko ci skanowania wi zk laserow v: 0,67 m min -1, 1,12 m min -1, 2,88 m min -1, rednicy wi zki lasera d = 2 mm. Po boroniklowaniu struktura warstwy wierzchniej składa si z: przypowierzchniowej zwartej ci głej strefy o mikrotwardo ci 1200 HV0,1 i gł biej poło onej o strukturze iglastej odpowiadaj cej mikrotwardo ci borkom elaza oraz rdzenia. Po laserowej obróbce cieplnej z przetopieniem otrzymano now warstw składaj cej si z: strefy przetopionej (SP), strefy wpływu ciepła (SWC) i rdzenia o łagodnym gradiencie mikrotwardo ci od powierzchni do rdzenia. Mikrotwardo w osi cie ki warstwy wierzchniej laserowo obrobionej cieplnie wynosiła 1100 HV0,1. W wyniku oddziaływania wi zki lasera otrzymana warstwa charakteryzowała si dobrymi wła ciwo ciami w stosunku do warstw borowanej i boroniklowanej. Słowa kluczowe: laserowe przetapianie, borowanie dyfuzyjne, niklowanie galwaniczne, modyfikacja, mikrostruktura, mikrotwardo 1. Introduction Surface engineering plays an important ant role in surface layer modifications whose purpose is to improve the properties of materials [1, 2]. Surface engineering includes treatments such as: heat treatment, thermo-chemical treatment, galvanic treatment as well as laser heat treatment (LHT) [1-3]. A major advantage of laser treatment is the possibility to improve properties of a defined material surface. Currently, the leading processes of laser heat treatment include among others: laser hardening [4, 5], laser alloying with elements, phases or alloys [6-8] and laser remelting of surface layer [9-11]. One method of surface layer modification is diffusion boronizing, which improves properties such as microhardness, wear resistance and corrosion resistance. Boronized layers are composed of two phases: FeB in subsurface, which can demonstrate increased brittleness and delamination from substrate; and Fe 2 B phase, which has a needle-like structure and closely related to substrate [9, 12]. Diffusion boronizing is carried out on iron alloys such as steel, cast iron or non-ferrous metals such as nickel, chromium, vanadium and their alloys. Subsurface brittleness can be reduced by single-phase boride layer, which is composed of only iron borides Fe 2 B [9, 12], or by modifying with elements which are introduced by various methods [13-25] such as laser modification [3, 9, 10, 11]. Laser remelting, which consists of remelting surface layer with material substrate, produces a new layer enriched in modifying elements. The new layer resulting from laser beam radiation is composed remelted 6

zone, heat affected zone and substrate. As a result the new layer has a mild microhardness gradient between layer and substrate. The appearance of a transition zone martensite heat affected zone ensures advantageous properties. 2. Research methodology The material investigated was medium carbon steel C45 and its chemical composition is given in Table 1. The ringshaped specimens were used for the study, which had the following dimensions: external diameter 20 mm, internal diameter 12 mm and height 12 mm. The complex layers was formed as a result of combined treatments: galvanic, diffusion and laser. Table 1. Chemical composition of C45 steel Tab. 1. Skład chemiczny stali C45 Chemical composition [% wt] C Mn Si P S Cr 0.42 0.71 0.18 0.008 0.032 0.11 For nickel galvanic plating Watts bath was used, which uses a combination of nickel sulphate NiSO 4 7H 2 O and nickel chloride NiCl 2 6H 2 O, along with boric acid H 3 BO 3 as well as preservatives and initiating additives. The bath temperature was 25 C at current density of 2.5 A/dm 2. Nickel coatings deposited on C45 steel had 10 µm thicknesses and their average microhardness was 450 HV0.1. Next, diffusion boronizing was performed at 950 o C for 4h using gas-contact method. The boronizing mixture used in the process contained: amorphous boron, KBF 4 as activator and carbon black as filler. Boronized and boronickelized specimens were hardened in water from 850 o C to room temperature and then tempered. Diffusion boronized and galvanic-diffusion boronickelized specimens were tempered at 150 o C for 1h, whereas the galvanic-diffusion laser modified layers were tempered at 560 o C for 1h before laser heat treatment process (LHT). The two types of tempering were important to get a more advantageous profile of microhardness. Laser heat treatment (LHT) was carried out using TRUMPF TLF 2600 Turbo CO 2 laser of nominal power of 2.6 kw, which is located in the Laboratory of Laser Technology of Department Division of Machining of Poznan University of Technology. The parameters used in the experiment were: laser beam power P = 1.04 kw, laser beam radiation density q = 33.12 kw cm -2, scanning laser beam velocity v: 0,67 m min -2, 1,12 m min -2, 2,88 m min -2, laser beam diameter d = 2 mm. Laser tracks were arranged as multiple tracks with distance f = 0.5 mm, where f was distance between axes of adjacent tracks. Laser heat treatment was carried out for laser tracks along a straight line and the helical line. On the basis of straight line laser heat treatment best parameters were selected in order to carry out multitracks for a helical line. Multitracks are important in terms of applications such as wear resistance. The scheme of boronickelized layers production using galvanic-diffusion-laser method is presented in Figure 1. The process of new layer production was composed of: galvanic treatment (Step 1), diffusion boronizing (Step 2) and laser modification (Step 3). Heat treatment was always performed after diffusion boronizing. The samples were first polished by using abrasive papers of different granularities, and, finally with Al 2 O 3. Specimens were etched in 2% HNO 3 solution. Microstructure observations were carried out on polished and etched cross-sections of specimens by using Metaval Carl Zeiss optical microscope equipped with a camera Moticam. To determine microhardness profiles a ZWICK 3212 B Vickers hardness tester was used. Indentation load of 100 G (HV0,1) and loading time 15 seconds were used in this study, based on the standard PN-EN ISO 6507-1 [26]. Adhesion tests of surface layers were conducted in accordance with the standard VDI 3198 [27], which is a comparison of Rockwell indentations [28] with scale standards appearing in Figure 2. A standard Rockwell tester as a destructive quality test for examined layers was employed in this study and damage to the layers was compared to the adhesion strength quality maps HF1-HF6 (Fig. 2). In general, the adhesion strength quality HF1-HF4 defined sufficient adhesion, whereas HF5 and HF6 represented insufficient adhesion [27]. In the study three Rockwell indentations were made for each layer. Fig. 1. Scheme of laser modifications of galvanic-diffusion layer Rys. 1. Schemat przetapiania wi zk laserow warstwy galwaniczno-dyfuzyjnej 7

Fig. 2. Scale of models to test cohesion [27] Rys. 2. Skala wzorców do badania kohezji [27] Wear resistance tests were carried out with tribometer MBT-01 type Amsler. A ring as specimen and sintered carbide plate S20S as counterspecimen (its hardness was equal to 1430 HV) were used to examine wear resistance (Fig. 3). transition area between the continuous zone and needle-like structure zone is porous (Fig. 6), that is why in this area is lowered microhardness can be observed (Fig. 7). Fig. 3. Scheme of friction pair Rys. 3. Schemat pary tr cej Wear resistance tests were carried out under the load F = 147 N and at specimen rotation speed of n = 250 rpm, in dry friction conditions (unlubricated sliding contact). Wear resistance was evaluated by specimen mass loss ( m [mg]) per friction surface (S [cm 2 ]) in a time unit (t [h]). Wear intensity coefficient (Iw) was determined from the equation: Iw = m (S t) -1 [mg (cm 2 h) -1 ]. 3. Results and discussion Microstructure of ferrite-pearlite C45 steel with precoat nickel thickness of 10 µm is shown in Figure 4. Microstructure of boronized layer after hardening and tempering of 150 o C is shown in Figure 5. Boronized layer had a needlelike structure and was composed of iron borides FeB and Fe 2 B. This layer was about 90 µm thick and was closely related to a martensite substrate. As a result of nickel plating and diffusion boronizing a galvanic-diffusion layer was obtained. The galvanic-diffusion layer had a dual-zone structure. The first zone was continuous and was similar to nickel plated coating, the second zone was similar to iron borides (Fig. 6). The first subsurface zone (z 1 ) was 30 µm thick, and the total thickness of the boronickelized layer (z 2 ) was about 110 µm. The first zone - continuous, has a microhardness (z 1 ) reduced to 1200 HV0.1. Than the microhardness increased and in the second zone, was similar to the microhardness of iron borides Fe 2 B (Fig. 7). Next, the increase in the distance from the surface was accompanied by a decrease in the microhardness to about 800 HV0,1 in core of steel after hardening and tempering in 150 o C. Microhardness of samples hardened and toughened at 570 o C was about 400 HV0,1. Boronickelized layer in the Fig. 4. Nickel coating on C45 steel; Ni thickness: 10 m Rys. 4. Powłoka niklowa na stali C45; grubo Ni: 10 m Fig. 5. Microstructure of boronized layer; B: 950 o C, t: 4h Rys. 5. Mikrostruktura warstwy borowanej; B: 950 o C, t: 4h Fig. 6. Microstructure of boronickelized layer before laser modification; Ni thickness: 10 m; B: 950 o C, t: 4h Rys. 6. Mikrostruktura warstwy boroniklowanej przed laserow modyfikacj ; grubo Ni: 10 m; B: 950 o C, t: 4h 8

Fig. 7. Microhardness of boronized and boronickelized layers Rys. 7. Mikrotwardo warstw borowanej i boroniklowanej The microstructure of laser heat-treated boronickelized layer formed on C45 steel is characterized by: remelted zone (MZ), heat-affected zone (HAZ) and substrate. Table 2 summarizes the parameters and properties of the boronickelized layers which were laser treated in a straight line, in relation to on the scanning speed of the laser beam at a constant laser power. It can be seen that with the increase in scanning speed the depth of melted zone, decreases as well as the overall dimension of the laser tracks, whereas the microhardness increases in the remelted zone. Figure 9 shows the microstructure of a laser modified boronickelized layer. The resulting microstructure consists of a remelted zone, where there in the axis was a complete melting of galvanic-diffusion layer with the substrate, while at the border of the laser tracks endings of unremelted borides can be seen. As shown by the authors of the study [24, 25] in the remelted zone there is boron-martensite eutectic, of microhardness lower than iron borides. It is probable that the increase compaction of tracks on the workpiece surface or increase in the laser beam power would cause uniform melting of galvanic-diffusion layer at a scanning speed v = 2.88 m / min, but simultaneously it would mean a reduction in microhardness in the remelted zone. The resulting microhardness in both axis and at the interface between tracks has similar values and in the remelted zone it is approximately 1100 HV0.1 (Fig. 10). Slight differences exist in the heat-affected zone, which are caused by the presence of tracks tempering reciprocally, which is inevitable in the case of larger tracks overlapping each other. Table 2. Microhardness and dimensions of the laser tracks along a straight line Tab. 2. P [kw] 1.04 v [m/min] Microhardness in MZ HV0.1 Depth of MZ [mm] Total depth of tracks (MZ + HAZ) [mm] 0.67 800-900 0.48 0.65 1.12 900-950 0.18 0.35 2.88 950-1000 0.14 0.30 Fig. 9. The microstructure of boronickelized layer after laser remelting; LHT: P 1.04 kw; v = 2.88 m/min Rys. 9. Mikrostruktura warstwy boroniklowanej po laserowym przetopieniu; LOC: P 1,04 kw; v = 2,88 m/min Based on studies of the microstructure and microhardness is selected advantageous parameters of laser heat treatment in a straight line were selected in order to further investigate laser heat treatment for helical multitracks. The selected parameters of laser heat treatment are: laser power beam P = 1.04 kw, scanning speed laser beam v = 2.88 m / min, distance between tracks f = 0.5 mm. Macroscopic view of the sample with a laser modified boronickelized layer is shown in Figure 8. Fig. 8. A sample of the surface layer after laser modification Rys. 8. Próbka z warstw powierzchniow po laserowej modyfikacji Fig. 10. Microhardness of boronickelized layer before and after laser modification Rys. 10. Mikrotwardo warstw boroniklowanej przed i po laserowej modyfikacji 9

Figures 11-13 show the results of the study surface cohesion of the layers. In each case analyzed, surface layers are formed on a scale of acceptable failures based on VDI standard 3198. Figure 11 shows an image of the surface of diffusion boronized layer with Rockwell indentation, from which micro-cracks radiate, and layer adhesion conforms to the standard in terms of HF1 and HF2 (Fig. 2). Figure 12 shows the resulting indentation on steel after the galvanicdiffusion boronickelizing process, which can be classified as standard HF4, the last of acceptable failures. Flaking at the edges can be seen in images. Figure 13 shows an image of Rockwell indentation on the surface laser modified boronickelized steel. It can be seen that an additional treatment laser heat treatment affects the layer to substrate cohesion. There are no cracks on the layer and the adge surrounding the indentation is smooth. Figure 14 shows the results of wear resistance studies of laser treated and nickel boronized layer. Wear resistance studies of galvanic-diffusaion boronickelized layer were not carried out becouse at the zone interface there were areas at reduced microhardness and increased porosity which might probably bring about increased wear coefficient. Boridies microhardness in the boronickelized layer differed in the entire zone, increasing with its depth, which is not adventageous. The application of laser remelting to boronickelized layers ensured uniform mixing of modified material with substrate, which improves wear resistance. Laser modified boronickelized layers are characterized by lower wear intensity coefficient than boronized layers (Figure 14). Fig. 11. Rockwell indentation image made on C45 steel after boronizing Rys. 11. Odcisk Rockwella na stali C45 po borowaniu Fig. 14. Wear resistance of boronized, boronickelized and laser modified boronickelized layers Rys. 14. Odporno na zu ycie przez tarcie warstwy borowanej, boroniklowanej i boroniklowanej laserowo modyfikowanej 4. Conclusions Fig. 12. Rockwell indentation image made on C45 steel after boronickelizing Rys. 12. Odcisk Rockwella na stali C45 po boroniklowaniu 1. Boronized layers have a needles-like structure, well bound to the substrate, with microhardness of up to 1800 HV0.1, but with disadvantageous microhardness gradient between the layer and the substrate. 2. Nickel modified boronized layers have a dual zone structure: at the surface there is a continuous zone of microhardness of 1200 HV0.1, and deeper lies a needlelike zone with microhardness of 1600-1800 HV0.1. 3. Boronized layers modified with nickel and laser beam are characterized by lower microhardness and milder microhardness gradient from surface to substrate compared to boronized layer. The new layer has microstructure consisting of: remelted zone (MZ), heat affected zone (HAZ) and substrate. 4. Wear resistance and cohesion of laser modified boronickelized layers is higher than in layers that were only boronized and boronickelized. 5. The obtained new layers are characterized by constant thickness and microhardness on the axis and on the interface of laser tracks. 5. References Fig. 13. Rockwell indentation image made on C45 steel after boronickelizing and laser modification Rys. 13. Odcisk Rockwella na stali C45 po boroniklowaniu i laserowej modyfikacji [1] Burakowski T., Wierzcho T: In ynieria powierzchni metali. Warszawa 1995. [2] Kula P.: In ynieria warstwy wierzchniej. Monografie. Łód 2000. 10

[3] Kusi ski J.: Lasery w in ynierii materiałowej. Wydawnictwo Akapit, Kraków 2000. [4] Napadłek W., Przetakiewicz W.: Struktura stali 40H hartowanej laserowo. Konferencja Naukowo-Techniczna Nowe materiały nowe technologie materiałowe w przemy le okr towym i maszynowym, 1998, 169-176. [5] Steen W.M.: Laser material processing-an overview. J. Opt. A: Pure Appl. Opt. 5, 2003, S3-S7. [6] Morimoto J., Ozaki T., Kubohori T., Morimoto S., Abe N., Tsukamoto M.: Some properties of boronized layers on steels with direct diode laser. Vacuum, 83, 2009, 185-189. [7] Paczkowska M., Ratuszek W., Waligóra W.: Microstructure of laser boronized nodular iron. Surface & Coatings Technology 205, 2010, 2542-2545. [8] Safonov A. N.: Special features of boronizing iron and steel using a continuous-wave CO 2 laser. Metal Science and Heat Treatment, 1998, 40, 1-2, 6-10. [9] Pertek A.: Kształtowanie struktury i wła ciwo ci warstw borków elaza otrzymanych w procesie borowania gazowego. Wyd. Politechniki Pozna skiej, Pozna 2001. [10] Kulka M.: The gradient Boride Layers Formed by Borocarborizing and Laser Surface Modification. Rozprawy nr 428. Wydawnictwo Politechniki Pozna skiej, Pozna 2009. [11] Bartkowska A., Pertek A., Jankowiak M., Jó wiak K.: Borided layers modyfied by chromium and laser treatment on C45 steel. Archives of Metallurgy and Materials, 2012, vol. 57, nr 1, 211-214. [12] Przybyłowicz K.: Teoria i praktyka borowania stali. Wyd. Politechniki wi tokrzyskiej, Kielce 2000. [13] Balandin Yu. A.: Termochemical treatment in fluidized bed. Surface hardening of die steel by diffusion boronizing, borocopperizing and borochromizing in fluidized bed. Metal Science and Heat Treatment, 2005, vol. 47, 3-4, 103-106. [14] Bartkowska A., Pertek A.: Wpływ powłoki niklu na efekty borowania dyfuzyjnego stali konstrukcyjnej C 45. In ynieria Powierzchni, 2009, 2, 89-92. [15] Grachev S.V., Mal tseva L.A., Mal tseva T.V., Kolpakovf A.S., Dmitriev M.Yu: Boronizing and borochromizing in a vibrofluidized bed. Materials Science and Heat Treatment, 1999, vol. 41, 11-12, 465-468. [16] Kolesnikov, Yu.V., Anan'evskii, V.A., Govorov, I.V.: Formation of coatings resistant to contact impact loading by various borochromizing methods. Soviet Materials Science, 1989, vol. 25, 1, 91-94. [17] Maragoudakis N.E., Stergioudis G., Omar H., Pavlidou E., Tsipas D.N.: Boro-nitriding of steel US 37-1, Materials Letters 2002, 57, 949-952. [18] Młynarczak A., Piasecki A.: Budowa i wła ciwo ci dyfuzyjnych warstw chromoborowanych wytwarzanych na stalach narz dziowych. Archiwum technologii Maszyn i Automatyzacji, 2004, vol. 24, 2, 173-184. [19] Özbek I., Akbulut H., Zeytin S., Bindal C., Ucisik A. H.: The characterization of borided 99.5% purity nickel. Surface and Coatings Technology, 2000, 126, 166-170. [20] Pertek A., Jó wiak K.: Efect of silicon on the structure and properties of iron boride layers. VI Miedzynarodowa Konferencja, nt. W gliki, azotki, borki. Kołobrzeg, 1993, 53-57. [21] Przybyłowicz K., Konieczny M., Depczy ski W.: Borowanie w pastach z dodatkiem modyfikatorów: siarki, miedzi lub niklu In ynieria Materiałowa, 1999, 3, 264-266. [22] Sen S., Sen U.: The effect of boronizing and boro-chromizing on tribological performance of AISI 52100 bearing steels. Industrial Labrication and Tribology, 2009, vol. 61, 3, 146-153. [23] Wierzcho T., Bieli ski P., Sikorski K.: Formation and propierties of multicomponent and composite borided layers on steel. Surface and Coatings Technology, 1995, vol. 73, 121-124. [24] Bartkowska A., Pertek A., Jankowiak M., Jó wiak K., Klimek L.: Mikrostruktura, skład fazowy i mikrotwardo warstw boroniklowanych modyfikowanych wi zk laserow. In ynieria Materiałowa, 2012, vol. 185, 1, 32-36. [25] Bartkowska A., Pertek A., Popławski M.: Wpływ modyfikacji laserowej na struktur i mikrotwardo warstw boroniklowanych i borochromowanych. In ynieria Materiałowa, 2012, vol. 189, 5, 452-455. [26] PN-EN ISO 6507 1, Metale, Pomiar twardo ci sposobem Vickersa. Cz 1: Metoda bada. Warszawa, czerwiec 2007. [27] Verein Deutscher Ingenieure Normen, VDI 3198, 1991. [28] PN-EN ISO 6508 1, Metale, Pomiar twardo ci sposobem Rockwella. Cz 1: Metoda bada (skale A, B, C, D, E, F, G, H, K, N, T). Warszawa, sierpie 2007. 11