FOAMING EXTRUSION OF THERMOPLASTIC POLYURETHANE MODIFIED BY POSS NANOFILLERS

Podobne dokumenty
INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

Tychy, plan miasta: Skala 1: (Polish Edition)

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs


A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

WYKAZ DOROBKU NAUKOWEGO

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

SPIENIANIE ODPADOWYCH TWORZYW SZTUCZNYCH

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

ZASTOSOWANIA DSC W ANALIZIE TECHNICZNEJ

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

WŁAŚCIWOŚCI TERMOIZOLACYJNE WTÓRNEGO POLIETYLENU O STRUKTURZE KOMÓRKOWEJ

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)


SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Sargent Opens Sonairte Farmers' Market

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Macromolecular Chemistry

Stargard Szczecinski i okolice (Polish Edition)

Study of thermal properties of polyethylene and polypropylene nanocomposites with long alkyl chain-substituted POSS fillers

Has the heat wave frequency or intensity changed in Poland since 1950?

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Dr inż. Łukasz Rogal zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

THE INFLUENCE OF REMELTING PARAMETERS ON Mg ALLOY/GLASSY CARBON SUSPENSION STABILITY

Patients price acceptance SELECTED FINDINGS

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering


Wylewanie pianek miekkich i twardych - PUR. Pouring of soft and hard foams - PUR. TECHNOLOGIA POLIURETANÓW / POLYURETHANE TECHNOLOGY

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

STRUCTURE OF PHOSPHOR TIN BRONZE CuSn10P MODIFIED WITH MIXTURE OF MICROADDITIVES

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Thermooxidative stability of frying oils and quality of snack products

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Krytyczne czynniki sukcesu w zarządzaniu projektami

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

PODATNOŚĆ POLILAKTYDU NA DEGRADACJĘ W WYBRANYCH SKŁADNIKACH KOSMETYKÓW

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

The synthesis and investigation of structure properties relationship in polyoxymethylene (POM) / montmorillonite (MMT) nanocomposites.

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

PHYSICAL PROPERTIES OF POLYOXYMETHYLENE COMPOSITE WITH QUARTZ SAND AFTER UV AGEING

Auditorium classes. Lectures

Helena Boguta, klasa 8W, rok szkolny 2018/2019

ZASTOSOWANIE TECHNOLOGII REP-RAP DO WYTWARZANIA FUNKCJONALNYCH STRUKTUR Z PLA

WYŁĄCZNIK CZASOWY OUTDOOR TIMER

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

MECHANICAL AND THERMAL PROPERTIES OF PET/POSS NANOCOMPOSITES

OKREŚLENIE METODĄ KALORYMETRII SKANINGOWEJ ENTALPII PRZEMIAN FAZOWYCH W ŻELIWIE SZARYM

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Publikacje pracowników Katedry Inżynierii Materiałowej w 2010 r.

Revenue Maximization. Sept. 25, 2018

DOI: / /32/37

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Veles started in Our main goal is quality. Thanks to the methods and experience, we are making jobs as fast as it is possible.

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

Mikrostruktura, struktura magnetyczna oraz właściwości magnetyczne amorficznych i częściowo skrystalizowanych stopów Fe, Co i Ni

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Conception of reuse of the waste from onshore and offshore in the aspect of

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

OBRÓBKA CIEPLNA SILUMINU AK132

Dr inż. Paulina Indyka

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

P/M COMPOSITES OF Al-Si-Fe-Cu ALLOY WITH SiC PARTICLES HOT-EXTRUDED AFTER PRELIMINARY COMPACTION

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!


WPŁYW MIESZANKI EGZOTERMICZNEJ NA BAZIE Na 2 B 4 O 7 I NaNO 3 NA WYTRZYMAŁOŚĆ NA ROZCIĄGANIE STOPU AlSi7Mg

ITIL 4 Certification

Zarządzanie sieciami telekomunikacyjnymi

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

SPIS TREŚCI / INDEX OGRÓD GARDEN WYPOSAŻENIE DOMU HOUSEHOLD PRZECHOWYWANIE WINA WINE STORAGE SKRZYNKI BOXES

Wytwarzanie nowych scyntylatorów polimerowych na bazie poliwinylotoluenu do hybrydowego tomografu J-PET/MR

PRACE INSTYTUTU ODLEWNICTWA

Wpływ wybranych parametrów technologicznych na zawartość estrów glicydylowych w tłuszczach i smażonych produktach

NEW WELTED 6" BLACK S3 REF

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

WYBRANE ASPEKTY WYTWARZANIA POWŁOK W PROCESIE PORUJĄCEGO WSPÓŁWYTŁACZANIA POWLEKAJĄCEGO. Tomasz Garbacz

EPS. Erasmus Policy Statement

HAPPY K04 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE! W5 W6 G1 T2 U1 U2 TZ1

BUILDING BUILDING. Patrol Group offers a broad spectrum of building products: building buckets and containers of various shapes and sizes.

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

Streszczenie rozprawy doktorskiej

PRACE INSTYTUTU ODLEWNICTWA TRANSACTIONS OF FOUNDRY RESEARCH INSTITUTE

MODIFICATION OF POLYURETHANE VISCOELASTIC FOAMS BY FUNCTIONALIZED POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (POSS)

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

First year of studies - Sculpture Second year of studies- Sculpture Third year of studies- Sculpture... 4

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

DHMK-0006 Half mask REF

Transkrypt:

19: 1 (2019) 23-29 ISSN: 2084-6096 ISSN (online): 2299-128X Piotr Stachak*, Edyta Hebda, Krzysztof Pielichowski Cracow University of Technology, Department of Chemistry and Technology of Polymers, ul. Warszawska 24, 31-155 Kraków, Poland *Corresponding author. E-mail: stachakpiotr@indy.chemia.pk.edu.pl Received (Otrzymano) 4.03.2019 FOAMING EXTRUSION OF THERMOPLASTIC POLYURETHANE MODIFIED BY NANOFILLERS Thermoplastic polyurethane elastomers (TPU), having mechanical properties similar to chemically crosslinked rubbers, can be processed using extrusion or injection molding techniques. Combining extrusion with a foaming process leads to the fabrication of porous lightweight materials with novel properties. These properties can be further modified by applying additives, such as polyhedral oligomeric silsesquioxanes (). are organic-inorganic hybrid nanofillers that could enhance polymer-based composites properties, e.g. mechanical properties or thermal stability. In this work, the foaming extrusion process of TPU, utilizing azodicarboxamide (ADC), sodium bicarbonate (SC) and citric acid monohydrate (CA) as blowing agents (or their mixtures) was described. TPU was modified with two kinds of nanofillers: TMP DiolIsobutyl () and trans-cyclohexanediol Isobutyl () to intensify the nucleation of the foaming process and to improve the thermal properties of the TPU matrix. A suitable processing window was determined by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The relations between the type of blowing agent mixture, nanofillers and microstructure/thermal properties of TPU porous composites were evaluated using DSC and scanning electron microscopy (SEM). The blowing agent mixtures, which produce solid residue after decomposition (ADC-CA and CA-SC), influence the nucleation process in the crystalline domains of TPU. The addition of nanofillers strengthens the abovementioned effect and additionally increases the amount of pores in the extrudates, as well as enhances their shape stability. Keywords: thermoplastic polyurethanes, chemical blowing agents, polyhedral oligosilsesquioxanes,, extrusion WYTŁACZANIE PORUJĄCE TERMOPLASTYCZNEGO POLIURETANU MODYFIKOWANEGO NANONAPEŁNIACZAMI Termoplastyczne elastomery poliuretanowe (TPU), o własnościach mechanicznych podobnych do chemicznie usieciowanych kauczuków, mogą być przetwarzane za pomocą technik wytłaczania lub formowania wtryskowego. Połączenie wytłaczania z procesem spieniania prowadzi do wytworzenia porowatych lekkich materiałów o nowych właściwościach. Te właściwości można dalej modyfikować przez zastosowanie dodatków, takich jak wielościenne oligomeryczne silseskwioksany (). są organiczno-nieorganicznymi hybrydowymi nanowypełniaczami, które mogą polepszyć właściwości kompozytów polimerowych, np. właściwości mechaniczne lub stabilność termiczną. W pracy opisano proces wytłaczania porującego TPU z użyciem azodikarboksyamidu (ADC), wodorowęglanu sodu (SC) i monohydratu kwasu cytrynowego (CA) jako środków porotwórczych (lub ich mieszanin). TPU zmodyfikowano dwoma rodzajami nanowypełniaczy : TMP DiolIsobutyl () i trans-cyclohexanediol Isobutyl () w celu zintensyfikowania procesu nukleacji podczas porowania i poprawy właściwości termicznych matrycy TPU. Wyznaczenie odpowiedniego okna przetwórczego przeprowadzono za pomocą różnicowej kalorymetrii skaningowej (DSC) i analizy termograwimetrycznej (TG). Zależność między rodzajem mieszaniny środków porotwórczych, nanowypełniaczami a właściwościami mikrostrukturalnymi/termicznymi porowatych kompozytów TPU oceniano za pomocą DSC i skaningowej mikroskopii elektronowej (SEM). Mieszaniny środków porujących, które wytwarzają stałą pozostałość po rozpadzie (ADC-CA i CA-SC), wpływają na proces nukleacji w krystalicznych domenach TPU. Dodanie nanowypełniaczy wzmacnia wyżej wspomniany efekt i dodatkowo zwiększa ilość porów w wytłoczynach, a także zwiększa ich stabilność kształtu. Słowa kluczowe: termoplastyczne poliuretany, chemiczne środki spieniające, poliedryczne oligosilseskwioksany,, wytłaczanie INTRODUCTION Thermoplastic polyurethane elastomers (TPU) combine the ability to be processed using traditional techniques for thermoplastic polymers with mechanical properties similar to chemically crosslinked rubbers. Lacking chemical networks, TPU can be repeatedly melted and processed, maintaining excellent tensility and good elastic resilience. TPU owe their unique properties to their segmented structure. The hard segments, derived from diisocyanate, act as both as physical crosslinks and reinforcing fillers, while the soft seg-

24 P. Stachak, E. Hebda, K. Pielichowski ments consisting of long flexible polyether or polyester chains account for the elastic properties of TPU. The domain structure of TPU is a consequence of the incompatibility between the hard and soft segments. Upon heating, the soft segments melt first. When the composition is further heated above the melting temperature of the hard segments, the polymer forms a homogeneous viscous melt, which can be processed by standard methods for thermoplastics [1-3]. The obvious reason for using foamed materials is to reduce the weight and amount of material used. The most widespread method to produce extruded or injection molded foamed items is to use blowing agents. Such a solution leads to cost savings, enhancement of the thermal insulation effect and improvement of the surface texture. Foamed materials are used in many industries. Blowing agents can be divided into two groups: physical blowing agents (PBAs) are incorporated into the molten polymer matrix as liquids or gases, whereas chemical blowing agents (CBAs) decompose due to chemical reactions and heat to generate gases such as carbon dioxide. The most commonly used inorganic chemical blowing agents include ammonium, sodium and potassium carbonates and bicarbonates (hydrogen carbonates). These compounds decompose yielding CO 2 and water under the action of heat and acids. Among numerous acids, the use of citric acid is particularly suitable because it gives off CO 2 and water upon its own decomposition. The physiologically harmless nature of inorganic chemical blowing agents and the products of their decomposition is their important advantage over other compounds used for this role. All the abovementioned inorganic blowing agents decompose endothermically, which leads to their gradual rather than sudden decomposition. Among organic chemical blowing agents, one of the most widely employed is azodicarbonamide (ADC or ADCA). In a complex exothermic cascade reaction, ADC decomposes liberating N 2, CO and NH 3 (in the presence of H 2 O) and leaving some solid residue [2, 4-6]. Polyhedral oligomeric silsesquioxanes (), with a chemical composition intermediate between that of silica and silicone, are an interesting class of hybrid nanofillers for modifying polymer matrices. Incorporating offers new ways to enhance polymer-based composites properties such as the mechanical properties, thermal stability, water tolerance, fire resistance and dielectric properties [7-10]. In this study, were added to intensify the nucleation of the foaming process and to improve the thermal properties of the TPU matrix. EXPERIMENTAL PROCEDURE Materials TPU, manufactured by RAVAGO KİMYA Plastik San. ve Tic. A.S., Turkey, under the trade name RAVATHANE R130A65, was used in this study. It is based on standard grade saturated polyester and has strong resilience and tear resistance, excellent abrasion resistance, higher resistance to hydrolysis failure and oxidation, as well as good stability towards solvents and light. As blowing agents, three compounds were used. Azodicarboxamide (ADC) (Fig. 1) is a solid powder, colored yellow to orange and has a molecular weight of 116.08 g/mol. Sodium bicarbonate (SC) is a solid powder, colored white and has a molecular weight of 84.01 g/mol. Citric acid monohydrate (CA) comes in the form of white, fine crystals and has a molecular weight of 210.1 g/mol. All of the abovementioned blowing agents were supplied by Sigma-Aldrich. Fig. 1. Azodicarboxamide (ADC) Rys. 1. Azodikarbonamid (ADC) - TMP DiolIsobutyl () (Fig. 2) and trans-cyclohexanediol Isobutyl (TC ) (Fig. 3), were obtained from Hybrid Plastics Inc., Hattiesburg, USA. Fig. 2. AL0104 - TMP DiolIsobutyl () Rys. 2. AL0104 - TMP DiolIsobutyl () Fig. 3. AL0125 - trans-cyclohexanediol Isobutyl () Rys. 3. AL0125 - trans-cyclohexanediol Isobutyl () Analysis methods Differential scanning calorimetry was conducted using a Mettler Toledo 822 e calorimeter, in the temperature range from 60 to 240 C, with 10 C/min heating rate in air atmosphere, using a standard aluminum sample holder and samples weighing approximately 5 mg. Thermogravimetric analysis was conducted using a Netzsch TG 209 thermal analyzer, in the temperature

Foaming extrusion of thermoplastic polyurethane modified by nanofillers 25 range from 30 to 800 C, with a 10 C/min heating rate in air atmosphere, using an open α-al 2 O 3 crucible and samples weighing approximately 5 mg. Microphotography was conducted using a Jeol JSM- under low vac- 6010LA scanning electron microscope, uum conditions. The samples were frozen in liquid ni- and sputter trogen, fractured, mounted on holders coated with Au. Composite preparation All of the obtained samples were prepared using a HAAKE Mini CTV, conical type laboratory twin screw extruder (Thermo Electron Corporation). The processing conditions and procedure for all of the samwas fed into the ples were unified: TPU granulate extruder barrel and mixed for 7 minutes at 140 C using by-pass to recycle the material, blowing agent mixtures as well as nanofillers were then added within a 4-minute period gradually increasing the temperature from 140 to 225 C, then the mixture was recycled in the extruder for another 3 minutes and then extruded. The rotation speed of the screws of 50 rpm was used. The amount of blowing agent mixture used was 0.5 wt.% in each of the samples and the amount of nanofillers used was 2 wt.%. The choice of the processing conditions was based on our previous stud- of the process. ies [6, 10], ensuring full repeatability The designations and compositions of each sample are given in Table 1. RESULTS AND DISCUSSION Determining the processing window To determine the processing window, DSC analysis of the TPU and TG analysis of the blowing agents and were performed (Figs. 4 and 5). Three require- the processing window ments should be met to choose properly. Firstly, the processing temperature must be high enough to melt the hard segments in the TPU matrix and thus enable the molten material to homogeother additives properly. nize and be mixed with the Secondly, the blowing agent mixtures must decompose, giving off volatile gases, and such phenomenon starts to occur at appropriately high temperatures. Finally, nanofillers are susceptible to thermal degradation, thus the temperatures used in the extrusion process must not exceed the onset temperatures of degradation. TABLE 1. Designations and compositions of obtained samples TABELA 1. Oznaczenia i składy otrzymanych próbek Sample designation TPU ref TPU/ADC TPU/ADC-SC TPU/CA TPU/CA-SC Description Pure TPU, after being processed as reference material TPU with azodicarboxamide TPU with azodicarboxamide and sodium bicarbonate, mixed in 3 to 7 weight ratio TPU with citric acid monohydrate TPU with citric acid monohydrate and so- dium bicarbonate, mixed in 1 to 3 mol ratio TPU with azodicarboxamide and sodium bicarbonate, mixed in 3 to 7 weight ratio, modified with AL0104 - TMP DiolIsobutyl TPU with azodicarboxamide and sodium bicarbonate, mixed in 3 to 7 weight ratio, modified with AL0125 - trans- Cyclohexanediol Isobutyl TPU with citric acid monohydrate and so- dium bicarbonate, mixed in 1 to 3 mol ratio, modified with AL0104 - TMP DiolIsobutyl TPU with citric acid monohydrate and so- dium bicarbonate, mixed in 1 to 3 mol ratio, modified with AL0125 - trans- Cyclohexanediol Isobutyl Fig. 4. DSC profile of TPU (second heating) and TG profiles of used Rys. 4. Krzywa DSC drugiego ogrzewania TPU oraz krzywe termogramixtures wimetryczne użytych Fig. 5. TG profiles of blowing agent Rys. 5. Krzywe termograwimetryczne użytych mieszanin porujących

26 P. Stachak, E. Hebda, K. Pielichowski Melting of the hard TPU segments starts at 122 C and finishes around 175 C, while the temperature of decomposition, which is the lower of the two nanofillers used in this study, is 238 C (Fig. 4). The blowing agent mixtures considered in this study show differences in the course of decomposition routes as well as in the temperatures of the onset of the decomposition processes. Taking this into consideration, the temperature of 222 C (which is the onset of ADC degradation, Fig. 5) was chosen as the preferred one since it is the highest among all of the blowing agent mixtures used. Having in mind the abovementioned aspects: good TPU homogenization, proper decomposition of the blowing agents mixture and avoiding degradation, the temperature of 140 C was chosen as the start of the homogenization process for the TPU matrix, and the temperature of 225 C was selected as the temperature of mixing and extrusion of the composites. Selection of the foamed TPU for modification The most suitable foamed TPU materials to be later modified with nanofillers were determined on the basis of DSC studies as well as macroscopic observations of the obtained extrudates. For the TPU reference and TPU/ADC samples, some problems collecting the extrudates occurred. Both compositions exhibited a low melt viscosity and for the TPU/ADC sample a small number of pores was observed. Although the shape of the TPU/CA extrudate was preserved, it exhibited a small number pores, similar to the TPU/ADC sample. However, the compositions with mixed the blowing agents - TPU/ADC-SC and TPU/CA-SC, maintained their shapes after leaving the extruder and a large number small pores was observed in their structure. The results of the DSC study revealed that while the addition of blowing agents mixtures did not have a significant influence on the process of melting of obtained samples (Fig. 6, Tab. 2), observable changes occurred during the crystallization process (Fig. 7, Tab. 2). Besides the TPU/CA sample, the crystallization temperature of all the other samples increased (by around 26 C for the TPU/ADC and TPU/ADC-SC samples and around 18 C for the TPU/CA-SC sample). The presence of solid residues of the blowing agent mixtures may have contributed to this phenomenon, acting as nucleating sites during crystallization of the TPU matrix. TABLE 2. Results of DSC analysis of obtained samples TABELA 2. Wyniki badań DSC dla otrzymanych próbek Sample H c [J/g] T c [ C] H m [J/g] T m [ C] TPU ref 8.18 82.6 5.89 145.8 TPU/ADC 5.77 109.4 5.19 141.3 TPU/ADC-SC 8.13 108.8 5.01 144.7 TPU/CA 8.42 83.2 5.72 146.2 TPU/CA-SC 9.48 100.6 6.21 145.7 Bearing in mind the results of visual evaluation and the results of the DSC study, the most promising foamed TPU materials chosen to be modified with nanofillers were TPU/ADC-SC and TPU/CA-SC. Fig. 6. DSC profiles of obtained samples before modification (second heating) Rys. 6. Krzywe DSC drugiego ogrzewania dla otrzymanych próbek przed modyfikacją Fig. 7. DSC profiles of obtained samples before modification (cooling) Rys. 7. Krzywe DSC chłodzenia dla otrzymanych próbek przed modyfikacją

Foaming extrusion of thermoplastic polyurethane modified by nanofillers 27 Determining influence on foamed TPU composites After modification with, the obtained com- posites were examined by DSC. The results are prein Tables 3 and 4. sented in Figures 8 and 9 as well as The results of the DSC study of the -modified samples show similar trends to those presented by the compositions modified solely by the blowing agent mixtures. The process of melting the obtained samples does not undergo significant changes, while the process of crystallization starts to occur at even higher tem- type of peratures. The influence of a particular nanofillers shows the same trend in the case of both blowing agent mixtures: the particles cause a greater increase in the crystallization temperature, while the particles also cause a significant rise in the crystallization temperature. Yet, the effect of the increase in the crystallization temperature is exhibited to a greater extent by the sample with the CA-SC blowing agent mixture. Fig. 9. DSC curves of obtained samples after modification (cool- próbek po modyfikacji ing) Rys. 9. Krzywe DSC chłodzenia dla otrzymanych TABLE 3. Results of DSC analysis of samples with ADC-SC blowing agent mixture after modification TABELA 3. Wyniki badań DSC dla próbek z mieszaniną poru- jącą ADC-SC po modyfikacji Sample H c [J/g] T c [ C] H m [J/g] T m [ C] TPU ref 8.18 82.6 5.89 145.8 TPU/ADC-SC 8.13 108.8 5.01 144.7 8.94 117.6 4.02 146.6 10.51 112.1 4.77 143.1 TABLE 4. Results of DSC analysis of samples with CA-SC blowing agent mixture after modification TABELA 4. Wyniki badań DSC dla próbek z mieszaniną poru- jącą CA-SC po modyfikacji Fig. 8. DSC curves of obtained samples after modification (second heating) Rys. 8. Krzywe DSC drugiego ogrzewania dla otrzymanych próbek po modyfikacji Sample H c [J/g] T c [ C] H m [J/g] T m [ C] TPU ref 8.18 82.6 5.89 145.8 TPU/CA-SC 9.48 100.6 6.21 145.7 7.81 114.2 4.98 145.9 8.11 108.6 5.71 145.8

28 P. Stachak, E. Hebda, K. Pielichowski As for visual evaluation of the modified samples, it was observed that the addition of both types of nanofillers (TMP and TC) improved the shape stability of the obtained extrudates for both of the blowing agent mixtures used (ADC-SC and CA-SC) - all of the samples preserved their shape after leaving the extruder, yet for the compositions modified with the TC nanofiller, the extrudate exhibited some degree of expansion in comparison to the sample modified with the nanofiller, as well as the samples without any nanoadditive. The amount of pores present in all of the obtained composites was also observed to be significantly greater than for the samples without added nanofillers. For the samples modified with moieties, SEM analysis was performed. The results are presented in Figures 10-15 (the TPU/ADC-SC and TPU/CA-SC samples were used as references). Fig. 13. SEM micrograph of sample Rys. 13. Mikrofotografia SEM próbki Fig. 14. SEM micrograph of sample Rys. 14. Mikrofotografia SEM próbki Fig. 10. SEM micrograph of TPU/ADC-SC sample Rys. 10. Mikrofotografia SEM próbki TPU/ADC-SC Fig. 15. SEM micrograph of sample Rys. 15. Mikrofotografia SEM próbki Fig. 11. SEM micrograph of TPU/CA-SC sample Rys. 11. Mikrofotografia SEM próbki TPU/CA-SC Fig. 12. SEM micrograph of sample Rys. 12. Mikrofotografia SEM próbki The results that can be seen on the SEM micrographs are in accordance with the visual observations. While the pore formation effect is less profound for the materials with the ADC-SC blowing agent mixture, the effect of modification is exhibited to a great extent in the samples with the CA-SC blowing agent mixture. The number of pores present in the extrudates increased significantly with the addition of the TMP nanofiller and the appearance of even more pores was observed with the addition of the nanofiller. It confirms that the cage-like structure of silsesquioxanes and their organic functionalities facilitate pore formation during the foaming extrusion of thermoplastic polyurethane elastomers in the presence of traditional blowing agents.

Foaming extrusion of thermoplastic polyurethane modified by nanofillers 29 CONCLUSIONS In this work, the foaming extrusion of TPU with different blowing agents was presented. The influence of the type of blowing agent mixture used, as well as the type of nanofiller on the microstructure and thermal properties of TPU porous composites was evaluated. When choosing the processing window, three aspects have to be taken into account: suitable homogenization of the polymer matrix, proper decomposition of the blowing agent mixtures and avoiding the degradation of other additives (fillers). The use of blowing agent mixtures, which leave solid residues after their degradation has been completed, improves the nucleation process in the crystalline domains of thermoplastic polyurethane. The addition of nanofillers further increases the temperature of crystallization, strengthening the abovementioned effect. The number of pores in the extrudates increases with the addition of nanofillers and at the same time their shape stability improves, which can be effectively evaluated by SEM. REFERENCES [1] Frick A., Rochman A., Characterization of TPU-elastomers by thermal analysis (DSC), Polymer Testing 2004, 23, 413-417. [2] Ge G., Wang S., Zheng W., Zhai W., Preparation of microcellular thermoplastic polyurethane (TPU) foam and its tensile property, Polymer Engineering & Science 2017, 158-166. [3] Nema A.K., Deshmukh A.V., Palanivelu K., Sharma S.K., Malik T., Effect of exo- and endothermic blowing and wetting agents on morphology, density and hardness of thermoplastic polyurethanes foams, Journal of Cellular Plastics 2008, 44, 277-292. [4] Stehr J., Chemical blowing agents in the rubber industry. Past - present - and future? International Polymer Science and Technology 2016, 43, 1-10. [5] Sadik T., Pillon C., Carrot C., Ruiz J-A.R., Dsc studies on the decomposition of chemical blowing agents based on citric acid and sodium bicarbonate, Thermochimica Acta 2018, 659, 74-81. [6] Stafin K., Leszczyńska A., Pielichowski K., Effect of silicon-based nanofillers on the foaming extrusion of thermoplastic polyurethane, Przemysł Chemiczny 2016, 95/10, 2054-2058. [7] Lach R., Michler G.H., Grellmann W., Microstructure and indentation behaviour of polyhedral oligomeric silsesquioxanes - modified thermoplastic polyurethane nanocomposites, Macromolecular Materials and Engineering 2010, 295, 484-491. [8] Pielichowski K., Njuguna J., Janowski B., Pielichowski J., Polyhedral oligomeric silsesquioxanes ()-containing nanohybrid polymers, Advances in Polymer Science 2006, 201, 225-296. [9] Hebda E., Pielichowski K., Polyurethane/ Hybrid Materials, Polymer/ Nanocomposites and Hybrid Materials, Kalia S., Pielichowski K. (Eds.), Springer Nature Switzerland AG, 2018. [10] Stafin K., Leszczyńska A., Pielichowski K., Structure-property relationships in thermoplastic polyurethane nanocomposites containing molecules, Modern Polymeric Materials for Environmental Applications 2016, 6, 325-333.