Possibility of Al-Cu composite manufacturing from fine metal fractions by recycling process

Podobne dokumenty
A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Dr inż. Łukasz Rogal zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

P/M COMPOSITES OF Al-Si-Fe-Cu ALLOY WITH SiC PARTICLES HOT-EXTRUDED AFTER PRELIMINARY COMPACTION

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /v y

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Patients price acceptance SELECTED FINDINGS

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

WPŁYW MIESZANKI EGZOTERMICZNEJ NA BAZIE Na 2 B 4 O 7 I NaNO 3 NA WYTRZYMAŁOŚĆ NA ROZCIĄGANIE STOPU AlSi7Mg

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /amm

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

LISTA PUBLIKACJI PAKIETU BADAWCZEGO KCM 1

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

WPŁYW PARAMETRÓW ODLEWANIA CIŚNIENIOWEGO NA STRUKTURĘ i WŁAŚCIWOŚCI STOPU MAGNEZU AM50

Stopy metali nieżelaznych Non-Ferrous Alloys

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

ROZPRAWY NR 128. Stanis³aw Mroziñski

The influence of the chosen welding technology on the microstructure and selected mechanical properties of welded magnesium alloy AZ91

Streszczenia / Abstracts 2 / 2014

Kształtowanie właściwości mechanicznych konsolidowanego plastycznie stopu aluminium RS442 w procesach obróbki cieplnej

p ISSN TRIBOLOGIA 1/2018 Key words: Abstract

Międzynarodowa aktywność naukowa młodej kadry Wydziału Metali Nieżelaznych AGH na przykładzie współpracy z McMaster University w Kanadzie

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /amm

ZMIANA WYTRZYMAŁOŚCI NA ROZCIĄGANIE STOPU AlSi12 PO OBRÓBCE MIESZANKĄ EGZOTERMICZNĄ ZŁOŻONĄ Z Na 2 B 4 O 7, NaNO 3 I Mg

FABRICATION OF MAGNESIUM MATRIX COMPOSITE WITH GLASSY CARBON PARTICLES BY PRESSURE DIE CASTING

FREZY PM; END MILLS PM

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

SPIEKANE KOMPOZYTY NA OSNOWIE MIEDZI ZAWIERAJĄCE FAZY MIĘDZYMETALICZNE ALUMINIOWO-śELAZOWE

OBRÓBKA CIEPLNA SILUMINU AK132

Wybrane własności mechaniczne wyciskanych i ciągnionych kompozytów Al-SiC p otrzymanych z proszków

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Streszczenie rozprawy doktorskiej

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v


THE INFLUENCE OF THE STEEL CHEMICAL COMPOSITION ONTO THE POSSIBILITIES OF USING IT IN THE PROCESS OF COLD SHAPING

WYBRANE WŁAŚCIWOŚCI KOMPOZYTÓW Al2O3-Mo W ASPEKCIE BADAŃ Al2O3 WYTRZYMAŁOŚCIOWYCH

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

Wpływ powłoki Al Si na proces wytwarzania i jakość zgrzewanych aluminiowanych rur stalowych

Mikrostruktura, struktura magnetyczna oraz właściwości magnetyczne amorficznych i częściowo skrystalizowanych stopów Fe, Co i Ni

Post low voltage insulators

Własności mechaniczne kompozytów odlewanych na osnowie stopu Al-Si zbrojonych fazami międzymetalicznymi

Conception of reuse of the waste from onshore and offshore in the aspect of

Przemysłowe zastosowania technologii generatywnych

THERMODYNAMICS OF OXYGEN IN DILUTE LIQUID SILVER-TELLURIUM ALLOYS

WPŁYW PARAMETRÓW OBRÓBKI CIEPLNEJ TAŚM ZE STALI X6CR17 NA ICH WŁAŚCIWOŚCI MECHANICZNE I STRUKTURĘ

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3 DOI: /v

Has the heat wave frequency or intensity changed in Poland since 1950?

KRYSTALIZACJA ALUMINIUM ZANIECZYSZCZONEGO ŻELAZEM. M. DUDYK 1 Politechnika Łódzka, Filia w Bielsku - Białej Katedra Technologii Bezwiórowych

WPŁYW CIĘTYCH WŁÓKIEN WĘGLOWYCH NA WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTU NA OSNOWIE STOPU AlSi10Mg

DOI: / /32/37

ZASTOSOWANIE TECHNOLOGII REP-RAP DO WYTWARZANIA FUNKCJONALNYCH STRUKTUR Z PLA

Auditorium classes. Lectures

Zapytanie ofertowe dotyczące wykonania zadań w ramach projektu COMPRESS nr 4/COMPRESS/2018

PRACE INSTYTUTU ODLEWNICTWA TRANSACTIONS OF FOUNDRY RESEARCH INSTITUTE

Dr inż. Paulina Indyka

Przetwórstwo zaawansowanych materiałów otrzymanych z proszków na osnowie aluminium

Tychy, plan miasta: Skala 1: (Polish Edition)

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /v

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Krytyczne czynniki sukcesu w zarządzaniu projektami

STRUCTURE OF PHOSPHOR TIN BRONZE CuSn10P MODIFIED WITH MIXTURE OF MICROADDITIVES

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

WYBRANE WŁASNOŚCI KOMPOZYTU ALUMINIUM-CZĄSTKI WĘGLIKA KRZEMU OTRZYMANEGO PRZEZ WYCISKANIE WYPRASEK Z PROSZKU

WYSOKOTEMPERATUROWE WŁASNOŚCI TRIBOLOGICZNE STOPÓW Fe-Al

WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTÓW AlSi13Cu2- WŁÓKNA WĘGLOWE WYTWARZANYCH METODĄ ODLEWANIA CIŚNIENIOWEGO

Fixtures LED HEDRION

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

SNP SNP Business Partner Data Checker. Prezentacja produktu

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3 DOI: /amm

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AA7475/AlN COMPACTS WITH VARIED REINFORCING PARTICLES SIZE

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

WYCISKANIE NA ZIMNO METALICZNYCH MATERIAŁÓW POROWATYCH

Profil Czasopisma / The Scope of a Journal

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

APPLICATION. Journal of Machine Construction and Maintenance Problemy eksploatacji QUARTERLY ISSN /2017 (107) p

Akademia Morska w Szczecinie. Wydział Mechaniczny

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /v

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /v x

EFFECT OF SPECIFIC SURFACE FRACTION OF INTERPHASE BOUNDARIES ON MECHANICAL PROPERTIES OF CERAMIC-METAL COMPOSITES, OBTAINED BY PRESSURE INFILTRATION

SZKŁO PIANKOWE JAKO TERMOIZOLACJA PODŁOGI NA GRUNCIE USE OF FOAM GLASS AS A SLAB ON GRADE THERMAL INSULATION

Recykling wiórów aluminium metodą KOBO Recycling aluminum chips by KoBo method


WYKAZ DOROBKU NAUKOWEGO

Lecture 18 Review for Exam 1


Wpływ obróbki KOBO na właściwości plastyczne stopu magnezu AM60

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

ANALYSIS OF VOLUME CHANGES OF SELECTED CEREAL GROUND GRAIN IN RESULT OF LOADING*

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Transkrypt:

Metallurgy and Foundry Engineering Vol. 43, 2017, No. 2, pp. 117 124 http://dx.doi.org/10.7494/mafe.2017.43.2.117 Łukasz Wzorek, Mateusz Wędrychowicz, Marcel Wiewióra, Piotr Noga, Tomasz Skrzekut, Agata Wzorek, Katarzyna Łyp-Wrońska Possibility of Al-Cu composite manufacturing from fine metal fractions by recycling process Określenie możliwości wytwarzania kompozytów Al-Cu w procesie recyklingu drobnych frakcji metali Abstract Plastic consolidation of highly fragmented materials is a cost-effective way to recover aluminum alloys. In this process, metal in the form of chips, powders, or ribbons omits the melting step that is typical for conventional scrap recycling; by that, it significantly reduces both energy expenses and material losses. By reducing the number of operations, the cost of labor and expenditures on environmental protection can be decreased. In addition, the solid bonding of metals in highly dispersed forms allows us to create heterogeneous structures that could be difficult to obtain in traditional processes. In the present study, the influence of the addition of Cu powder (99.7 wt.%) on the bonding quality of aluminum powder (99.7 wt.%) during hot extrusion is being examined. The examined materials contained aluminum powder with the addition of 5 wt.% of Cu powder. The mixture of these powders were cold compacted to produce an 80-mm-long charge for the extrusion process. Plastic consolidation was conducted at three different temperatures: 300, 350, and 400 C. As a result, rods 8 mm in diameter were obtained. Mechanical tests combined with microstructure observations and electrical conductivity tests were performed for the as-extruded materials. Keywords: aluminum, copper, powder, plastic consolidation, electrical conductivity, Al-Cu composite Streszczenie Konsolidacja plastyczna silnie rozdrobnionych form materiałów jest ekonomicznie opłacalnym sposobem odzysku stopów aluminium. W procesie tym pomija się etap topienia, który jest integralną częścią recyklingu konwencjonalnego złomów metali takich jak wióry, proszki i taśmy. Umożliwia Łukasz Wzorek Ph.D. Eng., Mateusz Wędrychowicz M.Sc. Eng., Marcel Wiewióra M.Sc. Eng., Piotr Noga M.Sc. Eng., Tomasz Skrzekut Ph.D. Eng., Katarzyna Łyp-Wrońska Ph.D. Eng.: AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Materials Science and Non-Ferrous Metals Engineering, Krakow, Poland, Agata Wzorek M.Sc.: AGH University of Science and Technology, Faculty of Management, Department of Energy Management, Krakow, Poland; harry@agh.edu.pl 117

to znaczącą redukcję nakładów energetycznych oraz strat materiału. W wyniku zmniejszenia liczby operacji, koszty pracy oraz wydatki na ochronę środowiska mogą zostać znacznie zmniejszone. Dodatkowo konsolidacja plastyczna metali w stanie silnie rozproszonym pozwala uzyskać heterogeniczną strukturę, która może być trudna do otrzymania w tradycyjnych procesach. W niniejszej pracy badano jakość połączenia proszku Al z proszkiem Cu podczas wyciskania na gorąco (proszek Al i 5 wag.% proszku Cu). Wstępnie zagęszczony na zimno wsad o długości 80 mm wyciśnięto w trzech temperaturach: 350 C, 400 C, 450 C. W wyniku konsolidacji plastycznej otrzymano pręty o średnicy 8 mm. Dokonano obserwacji ich mikrostruktury, określono własności mechaniczne z próby jednoosiowego rozciągania oraz przeprowadzono pomiar przewodności elektrycznej. Słowa kluczowe: aluminium, miedź, proszek, konsolidacja plastyczna, przewodność elektryczna, kompozyty Al-Cu 1. Introduction Nowadays, composites are one of the fastest-developing groups of materials in the world. By joining different materials (e.g., metallic), it is possible to obtain products that possess the combined properties of its base components [1 7]. On the aluminum scrap market, waste in the form of foils, blisters, and different kinds of metal dust represents a significant share. Conventional recycling of this kind of scrap generates a high amount of material losses (e.g., drosses, risers, shrink holes), which may reach as much as 70% of the initial charge weight in some cases. By applying alternative processes such as plastic consolidation, it is possible to significantly reduce material losses to a few percent, along with the simultaneous lowering of energy consumption [8 10]. An additional advantage of the solid bonding technology is the manufacturing of final and semi-final products in just one operation. In the literature, a series of articles can be found concerning the solid bonding of materials like powders, chips, and Al-Cu composites by sintering [3], cold rolling [4, 5], or extrusion [6 10]. According to many publications, Al matrix composites with the addition of Cu powder are characterized not only by low density but also increased heat conduction and good corrosion resistance [1, 9 11]. However, Al-Cu composites manufactured by hot-extrusion induce the formation of intermetallic phases [e.g., Al 2 Cu (θ), Al 2 Cu 3 (δ), Al 4 Cu 9 (γ)], which have a negative influence both on the plasticity and electrical conductivity of the material [3, 11, 12]. Additional material defects that may occur during consolidation (such as porosities or cracks) may induce a further increase in resistivity. 2. Experimental procedure Materials used for the extrusion process were commercial powders of aluminum (99.7 wt.% Al, mean grain size 45 µm) and copper (99.7 wt.% Cu, mean grain size 63 µm). According to the producer, powdered aluminum was obtained by air atomization. The globular shape of this powder is presented in Figure 1a. At the same time, copper powder is characterized by a dendritic structure, which is typical for materials obtained by the 118

electrolytic method (Fig. 1b). In the first step of the experiment, both powders were mixed for 40 min in a shaker (with a proportion of 95 wt.% of Al and 5 wt.% of Cu). Subsequently, the mixture was subjected to pre-compacting under a pressure of 240 MPa. As a result, cylindrical billets 40 mm in diameter and 10 mm in height were produced. The as-compressed billets were then extruded at three different temperatures: 300, 350, and 400 C. As a reference material, a rod extruded at 400 C from a solid aluminum block was used. Each of the obtained rods had a diameter of 8 mm. The extrusion ratio was 25. Samples for further analysis were ground on sandpapers of gradations from 320 to 4000 and polished with a use of a STRUERS diamond suspension. The microstructure observation of a longitudinal cross-section was performed with the use of a HITACHI SU-70 electron microscope. In addition, an analysis of the chemical composition of the obtained intermetallic phases was performed with the use of EDS (Energy Dispersive Spectroscopy). Microstructure observations were performed on a longitudinal cross-section with the use of the HITACHI SU-70 scanning electron microscope. A chemical-composition analysis of the mentioned intermetallic phases was conducted with the use of Energy Dispersive Spectroscopy (EDS). A series of tensile test samples with a diameter of 6 mm and gauge length of 30 mm were machined from the as-extruded rods. Uniaxial tensile tests were carried out at room temperature at a constant strain rate of 8 10 3 s 1 using a Zwick Z050 testing machine. Measurements of electrical conductivity was performed using a Thomson bridge on a 50-cm-length section of the as-extruded rods. a) b) Fig. 1. Powder morphology of: a) aluminum; b) cooper powders 3. Results and discussion 3.1. Microstructure observation In Figure 2, microstructure images of longitudinal cross-sections of the as-extruded rods have been presented. All profiles were characterized by the fibrous structure typical for the extrusion process. Higher magnifications also revealed the presence of discontinuities 119

in the form of pores, whose sizes reached 1 μm in the case of the rod extruded at 300 C. As can be observed, increasing the extrusion temperature led to a distinct decrease in the maximum size of these voids. At 400 C, pores occur rarely, and their maximum diameter did not exceed 0.1 μm. The higher temperature also induced partial recrystallization in the samples. The examined microstructure did not reveal any form of delamination or piping defects. a) b) c) d) e) f) Fig. 2. Microstructure of AlCu 5 composite extruded at temperatures of: (a, b) 300 C; (c, d) 350 C; (e, f) 400 C 120

In Figure 3, changes in the chemical composition across the Al/Cu interface is presented. Due to the mutual diffusion of both elements, an intermetallic border around the white copper regions arose. Depending on the cooper content, intermetallic phases have a lighter or darker shade of gray. According to literature revision, lighter areas can be assigned to intermetallic Al 4 Cu 9, while the darker region can be subjected to Al 2 Cu [3, 11 15] a) b) 5 mm 5 mm 2950 54310 12050 64047 c) 5 mm 13666 63584 Fig. 3. Changes in chemical composition on cross-section of Al/Cu interface region: a) 300 C; b) 350 C; c) 400 C 3.2. Mechanical properties The influence of temperature on the mechanical properties of the AlCu 5 composite are presented in Figure 4. The highest tensile strength can be found in the material extruded at a temperature of 300 C with UTS at a level of 189 MPA and a YS of 130 MPa. This gives 121

a 75% increase in the ultimate tensile strength and 80% in the yield strength as compared to the profile extruded from solid material (Tab. 1). A further increase in temperature induce a decrease in UTS and YS to the respective levels of 174 MPa and 103 MPa (at 350 C) and 164 MPa and 85 MPa (at 400 C), respectively. The percentage of changes in the mechanical properties are listed in Table 1. A visible lowering of the mechanical properties can be attributed to the dynamic recrystallization processes occurring during extrusion. Simultaneously, grain growth leads to an increase in plastic properties. As can be observed, increasing the temperature by 100 C leads to a more than twofold increase in plasticity (with a slight decrease in the mechanical properties). UTS, YS, MPa 200 180 160 140 120 100 80 60 40 20 0 UTS YS ε AlCu5 PM 300 C AlCu5 PM 350 C AlCu5 PM 400 CAl 1070 IM 400 C 70 60 50 40 30 20 10 0 ε, % Fig. 4. Mechanical properties of all extruded AlCu5 composites as compared to reference Al material Table 1. Overall changes in properties of solid bonded profiles as compared to reference material Al 1070 extruded at 400 C Extrusion temperature of AlCu5 composite UTS YS ε 300 C 75% 80% 69% 350 C 61% 43% 56% 400 C 51% 18% 25% 3.3. Electrical conductivity The next stage of the research was the measurement of electrical conductivity. The presented bar graph in Figure 5 shows the electrical conductivity of aluminum (purity 99.99 wt.% [16]) and three rods of AlCu5 extruded under different temperature 122

conditions. It can be noticed that the electrical conductivity of the AlCu5 rods extruded at 350 and 400 C are on a comparable level. However, the material extruded at 300 C revealed a slight drop in conductivity (to a value of 26.79 MS/m). By comparing the composites with analytically pure aluminum (Al-99.99 wt.%), electrical conductivity lowered by ~30%. This is due to the presence of intermetallic phases in the examined materials [12]. A slight increase in conductivity with temperature can be attributed to a higher consolidation level (lack of porosities) and lower amount of grain boundaries resulting from recrystallization. Fig. 5. Electrical conductivity of AlCu5 composite extruded at 300 C, 350 C, and 400 C 4. Conclusions 1. Plastic consolidation allows us to manufacture Al/Cu composites directly from powders 2. A lowering of mechanical properties extruded at higher temperatures arise from microstructure renewal. 3. The AlCu5 composite extruded at 400 C poses a more than twofold increase in plasticity (ε = 48%) as compared to the material extruded at 300 C (ε = 20%) while preserving its mechanical properties at a similar level. 4. Despite the increase in diffusion regions in the profiles extruded at higher temperatures, a slight increase in electrical conductivity is observed. This can be attributed to structure renewal and a lowering of the porosity level. 123

Acknowledgement The financial support of the State Committee for Scientific Research of Poland under grant number 11.11.180.653 is acknowledged. References [1] Kazanowski P., Epler M.E., Misiolek W.Z.: Bi-metal rod extrusion-process and product optimization. Materials Science Engineering A, 369, 1 2 (2004), 170 180 [2] Hutchins C.R.: Consolidation of copper and aluminum micro and nanoparticles via equal channel angular extrusion. MSc Thesis, Texas, USA, 2007 [3] Hug E., Bellido N.: Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires. Materials Science Engineering A, 528, 22 23 (2011), 7103 7106 [4] Abbasi M., Karimi Taheri A., Salehi M.T.: Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process. Journal of Alloys and Compounds, 319, 1 2 (2001), 233 241 [5] Berski S., Dyja H., Banaszek G., Janik M.: Theoretical analysis of bimetallic rods extrusion process in double reduction die. Journal of Materials Processing Technology, 153 154, 1 3 (2004), 583 588 [6] Braunović M., Alexandrov N.: Intermetallic Compounds at Aluminum-To-Copper Electrical Interfaces: Effect of Temperature and Electric Current. IEEE Transactions Components Packag. Manufactoring Technology Part A, 17, 1 (1994), 78 85 [7] Eivani A.R., Karimi Taheri A.: A new method for producing bimetallic rods. Materials Letters, 61, 19 20 (2007), 4110 4113 [8] Wiewiora M., Wedrychowicz M., Wzorek L.: Mechanical Properties of Solid State Recycled 6060 Aluminum Alloy Chip. METAL 2015: 24 th international conference on metallurgy and materials, 1674 1679, Brno, Czech republic, 2015 [9] Wzorek Ł., Wędrychowicz M., Skrzekut T., Noga P., Wiewióra M., Wiewióra J., Sajdak W., Richert M.: Selection of optimal conditions for solid bonding of the AlSi11 aluminium alloy. Metallurgy and Foundry Engineering, 42, 2 (2016), 117 125 [10] Wzorek Ł., Wiewióra M., Wędrychowicz M., Skrzekut T.: Effect of rapid solidification aluminum alloys with different Si contents on mechanical properties and microstructure. Metallurgy and Foundry Engineering, 42, 3 (2016), 179 186 [11] Lee K.S., Kwon Y.N.: Solid-state bonding between Al and Cu by vacuum hot pressing. Transactions of Nonferrous Metals Society of China (English Ed.), 23, 2 (2013), 341 346 [12] Lee T.H., Lee Y.J., Park K.T., Jeong H.G., Lee J.H.: Mechanical and asymmetrical thermal properties of Al/Cu composite fabricated by repeated hydrostatic extrusion process. Metals and Materials International, 21, 2 (2015), 402 407 [13] Lee W.B., Bang K.S., Jung S.B.: Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing. Journal of Alloys Compounds, 390, 1 2 (2005), 212 219 [14] Sheng L.Y., Yang F., Xi T.F., Lai C., Ye H.Q.: Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling. Composites Part B: Engineering, 42, 6 (2011), 1468 1473 [15] Tavassoli S., Abbasi M., Tahavvori R.: Controlling of IMCs layers formation sequence, bond strength and electrical resistance in Al-Cu bimetal compound casting process. Materials & Design, 108 (2016), 343 353 [16] Dobrzański L.A.: Podstawy nauki o materiałach i metaloznawstwo. Wydawnictwo WNT, Warszawa 2002