Gravi&no dark ma-er with constraints from Higgs mass and sneutrino decays

Podobne dokumenty
Model standardowy i stabilność próżni

DARK MATTER SEARCHES WITH LONG-LIVED PARTICLES

Implication of e ± and pp cosmic ray spectra on properties of dark matter

Particles-Astrophysics-Cosmology Theory

Symmetry and Geometry of Generalized Higgs Sectors

M W M Z correlation. πα 1 M G F 2 = 2M 2 W 2 W

Vacuum decay rate in the standard model and beyond

Few-fermion thermometry

Relaxation of the Cosmological Constant

Poszukiwany: bozon Higgsa

The end of inflation. Peter Adshead University of Illinois at Urbana-Champaign

Eksperyment ATLAS na Wielkim Koliderze Hadronowym. Czyli Wielka Przygoda z Fizyką i nie tylko

Racetrack Inflation. as Pseudo-Goldstone Inflation. Zygmunt Lalak ITP Warsaw. GrahamFest 30. Sept. 2011

Bozon Higgsa & SUSY & DM

Supersymetria. Elementy fizyki czastek elementarnych. Wykład XII

Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle

Supersymetria. Elementy fizyki czastek elementarnych. Wykład XII. Założenia. Widmo czastek Przewidywania Obecne wyniki Przyszłe poszukiwania

Electronic and photonic reactive collisions in edge fusion plasma: Application to H 2, BeH, CH and N 2 systems plasma: Application to H2, BeH, CH

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

Ciemna Materia. Niewidzialna materia, oddz. tylko grawitacyjnie

Has the heat wave frequency or intensity changed in Poland since 1950?

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Lecture 18 Review for Exam 1

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Zastrzegamy sobie prawo do zmiany cen oraz asortymentu bez wcze niejszego zawiadomienia.

The τ Magnetic Dipole Moment at Future Lepton Colliders

Wykład XIII: Rozszerzenia SM, J. Gluza

PN-EN 1515 DIN 2509 DIN 2510 PN-H 74302

Poszukiwanie neutrin z anihilacji Ciemnej Materii

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Supersymetria. Elementy fizyki czastek elementarnych. Wykład XII

Fixtures LED HEDRION

THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS. Alexander Rasskazov & Bence Kocsis Eotvos University

POLISH ELEVATOR MARKET ONE YEAR AFTER JOINING EU

SHP / SHP-T Standard and Basic PLUS

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

Odkrywanie supersymetrii - przypadek ciężkich sfermionów

LHC i po co nam On. Piotr Traczyk CERN

LIGNOCELLULOSIC BIOMASS PRODUCTION AND DELIVER FOR BIOREFINERIES

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Inverse problems - Introduction - Probabilistic approach

PN-EN 1515 DIN 2509 DIN 2510 PN-H 74302

Wrażenia z sympozjum w Orsay. The High Energy Frontier. A.F.Żarnecki 24 lutego 2006

Wstęp do fizyki cząstek elementarnych: część eksperymentalna

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Marcin Słodkowski Pracownia Reakcji Ciężkich Jonów Zakład Fizyki Jądrowej Wydział Fizyki Politechniki Warszawskiej

Trend in drug use in Poland

Eksperyment CMS w oczekiwaniu na wiązki: plany poszukiwania Nowej Fizyki. Część 1

Czego już dowiedzieliśmy się dzięki Wielkiemu Zderzaczowi Hadronów LHC

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa

LED Lamp 6W MR16. A New Experience in Light

Spis treści. Cząstki elementarne Z Wikipedii. Skocz do: nawigacji, szukaj leptony. kwarki u c t d s b. ν e ν µ ν τ

Dlaczego warto szukać czegoś, co może nie istnieć?

New method for the conformal bootstrap with OPE truncations

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Revenue Maximization. Sept. 25, 2018

NEW ITEMS 2018 NOWA KOLEKCJA FA SPORTSWEAR also means modern styling, fashionable cuts and functional solutions.

HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?

1945 (96,1%) backlinks currently link back (74,4%) links bear full SEO value. 0 links are set up using embedded object

SPITSBERGEN HORNSUND

Dynamics of the Warsaw Stock Exchange index as analysed by the Mittag-Leffler function

Macromolecular Chemistry

Our mission. Nasza misja

Bozon Higgsa oraz SUSY

Recent Developments in Poland: Higher Education Reform Qualifications Frameworks Environmental Studies

WYKŁAD V Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW. Hadrony i struny gluonowe. Model Standardowy AD 2010

Cystatin C as potential marker of Acute Kidney Injury in patients after Abdominal Aortic Aneurysms Surgery preliminary study

Arkusz zmian. Mechatroniczny układ napędowy MOVIGEAR -DBC-B, -DAC-B, -DSC-B, -SNI-B * _0315*

Wszechświata. Piotr Traczyk. IPJ Warszawa

LHC: program fizyczny

Model Standardowy. Spis treści. Z Wikipedii. Skocz do: nawigacji, szukaj

Final LCP TWG meeting, Sewilla

Zajęcia z języka angielskiego TELC Gimnazjum Scenariusz lekcji Prowadzący: Jarosław Gołębiewski Temat: Czas Present Perfect - wprowadzenie

Autoreferat. Paweł Malecki Instytut Fizyki Jądrowej im. H. Niewodniczańskiego Polskiej Akademii Nauk w Krakowie. 3 kwietnia 2019 r.

The Lorenz System and Chaos in Nonlinear DEs

Oddziaływania podstawowe

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Radiologiczna ocena progresji zmian próchnicowych po zastosowaniu infiltracji. żywicą o niskiej lepkości (Icon). Badania in vivo.

S U WA K I K R Z Y W K O W E

CATALOGUE CARD LEO S L XL / BMS KARTA KATALOGOWA LEO S L XL / BMS


The impact of the global gravity field models on the orbit determination of LAGEOS satellites

WYKŁAD

Zastosowanie Internetu w małych i średnich przedsiębiorstwach

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie - nabycie lub zbycie znacznego pakietu akcji

Antymateria Lustrzane odbicie Wszechświata?


LG Quick-Release Pins

Fizyka Cząstek II, Wykład 14 (17.I.2013) Ciemna Materia. Piotr Mijakowski. Narodowe Centrum Badań Jądrowych

EVA. Opisy piktogramów: Description of pictograms: Obuwie deszczowe. Rain boots.

PRZEKAŹNIKI PÓŁPRZEWODNIKOWE SSR SOLID-STATE RELAYS

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Auditorium classes. Lectures

TABLE OF CONTENS 03 - BATHROOM SCALES 13 - KITCHEN SCALES

Fizyka na LHC - Higgs

Dualities and 5-brane webs for 5d rank 2 SCFTs

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Transkrypt:

Adapted from 1974 drawings by K. Dobrowolski illustra=ng a popular ar=cle on par=cle physics by G. Białkowski +? Gravi&no dark ma-er with constraints from Higgs mass and sneutrino decays Krzysztof Turzyński (Faculty of Physics, University of Warsaw) with: L. Roszkowski, S. Trojanowski & K. Jedamzik, 1212.5587, JHEP 1303 (2013) 013; earlier with: L. Covi, Z. Lalak, M. Olechowski, S. Pokorski, J. Wells 2008-11, JHEP 0810 (2008) 016, 0912 (2009) 026, 1101 (2011) 033

WIMP O(100) GeV weakly interaczng massive parzcle - (the lightest) neutralino: neutral fermionic partner of a gauge/higgs boson in MSSM - very constraining in (already) constrained models EWIMP an extremely weakly interaczng massive parzcle - gravizno: spin 3/2 neutral fermion prese in supergravity embedding of supersymmetric theories

WIMP vs EWIMP dark maaer generazon of reheazng of the Universe baryon asymmetry 9 10 GeV inflazon LHC 103 GeV nucleosynthesis (BBN) 10 5 GeV Zme

WIMP vs EWIMP dark maaer generazon of reheazng of the Universe baryon asymmetry 9 10 GeV inflazon LHC 103 GeV nucleosynthesis (BBN) 10 5 GeV Zme

WIMP vs EWIMP dark maaer generazon of reheazng of the Universe baryon asymmetry 9 10 GeV inflazon LHC 103 GeV nucleosynthesis (BBN) 10 7 GeV Zme

WIMP vs EWIMP dark maaer generazon of reheazng of the Universe baryon asymmetry 9 10 GeV WIMP inflazon LHC 103 GeV nucleosynthesis (BBN) 10 5 produczon DM+DMç è SM+SM DM+DMç è SM+SM of (MS)SM states (incl. WIMP DM) GeV Zme

WIMP vs EWIMP dark maaer generazon of reheazng of the Universe baryon asymmetry 9 10 GeV LHC 103 GeV gravi&no EWIMP WIMP inflazon nucleosynthesis (BBN) 10 5 GeV Zme produczon DM+DMç è SM+SM DM+DMç è SM+SM of (MS)SM states (incl. WIMP DM) produczon of (MS)SM states SM+SMè DM+DM (excl. EWIMP DM) SMè SM+DM SM+nucleiè!!! lightest susy parzcle (with R- parity) BBN bounds

WIMP vs EWIMP dark maaer generazon of reheazng of the Universe baryon asymmetry 9 10 GeV LHC 103 GeV inflazon 10 5 GeV Zme gravi&no EWIMP WIMP produczon DM+DMç è SM+SM DM+DMç è SM+SM of (MS)SM states (incl. WIMP DM) TP h2 r nucleosynthesis (BBN) produczon of (MS)SM states SM+SMè DM+DM (excl. EWIMP DM) thermal produczon TR 108 GeV O(1) 1 GeV m3/2 X r r Mr 103 GeV 2 Bolz, Brandenburger, Buchmueller 2001, Pradler, Steffen 2006, Rychkov, Strumia 2007 SMè SM+DM nonthermal produczon m 2 103 GeV 5 3/2! G + SM) = 5.9 10 sec (SM 100 GeV msm 3 NTP h2 = m3/2 2 SM h msm

WIMP vs EWIMP dark maaer generazon of reheazng baryon asymmetry of the Universe SMè SM+DM 9 10 GeV LHC 103 GeV nucleosynthesis 10 7 inflazon GeV Zme ± gravi&no EWIMP WIMP q, g, `,, produczon DM+DMç è SM+SM DM+DMç è SM+SM of (MS)SM states charged or neutral? (incl. WIMP DM) produczon of (MS)SM states (excl. WIMP DM) SM+SMè DM+DM SMè SM+DM nonthermal produczon

Ideal candidate for NLSP companion of EWIMP dark maaer?

Ideal candidate for NLSP companion of EWIMP dark maaer? n neutral (no bound-state enhancement of 6 Li production; mostly neutral decay products)

Ideal candidate for NLSP companion of EWIMP dark maaer? n neutral (no bound-state enhancement of 6 Li production; mostly neutral decay products) n colorless (little colored particles among decay products suppresses hadrodissociation)

Ideal candidate for NLSP companion of EWIMP dark maaer? n neutral (no bound-state enhancement of 6 Li production; mostly neutral decay products) n colorless (little colored particles among decay products suppresses hadrodissociation) n low freeze-out abundance (few energetic particles from decays)

Ideal candidate for NLSP companion of EWIMP dark maaer? n neutral (no bound-state enhancement of 6 Li production; mostly neutral decay products) n colorless (little colored particles among decay products suppresses hadrodissociation) n low freeze-out abundance (few energetic particles from decays) n realistic (found in known models of supersymmetry breaking)

Ideal candidate for NLSP companion of EWIMP dark maaer? n neutral (no bound-state enhancement of 6 Li production; mostly neutral decay products) n colorless (little colored particles among decay products suppresses hadrodissociation) n low freeze-out abundance (few energetic particles from decays) n realistic (found in known models of supersymmetry breaking) sneutrino!

Ideal candidate for NLSP companion of EWIMP dark maaer? S. Trojanowski, MSc Thesis, 2011 l l V Full computazon of sneutrino relic density CalculaZons within Non- Universal Higgs Model and General Gauge MediaZon G l q Full computazon a) of this and 3 similar diagrams. q n neutral (no bound-state enhancement of 6 Li production; mostly neutral decay products) n colorless (little colored particles among decay products suppresses hadrodissociation) n low freeze-out abundance (few energetic particles from decays) Covi, Olechowski, Pokorski, KT, Wells, 2011 n realistic (found in known models of supersymmetry breaking) Jeliński, Pawełczyk, KT, 2012 (F theory) sneutrino!

SUSY masses: NUHM LOSP: Lightest Supersymmetric Ordinary ParZcle, i.e. not gravizno DM gluino heavier than ~2TeV, squarks also heavy, LHC limits n low-energy constraints m 1ê2 @GeVD 1500 1400 1300 1200 1100 200 125 n é LOSP 300 ``` 400 600 126 500 B é LOSP 1000 900 Higgs mass HGeVL 124 LOSP mass HGeVL 123 122121 NUHM m Hu =0.5 TeV, m Hd =4 TeV A 0 =-3 TeV, tanb=10, m>0 t é LOSP 800 0 100 200 300 400 500 m 0 @GeVD

NLSP: BBN bounds Parameter scaling: h 2 / m 2 / m 2 3/2 /m5 DM h 2 / T R m 2 /m 3/2 h 2 /0.027 10 10 m n éy n é @GeVD 5. 3. 2. 1. 0.7 0.5 0.3 1 10 2 10 4 10 6 10 8 10 10 10 12 excl. DêH no n é 3. excl. LOSP 2. 6Liê 7 Li 1. mg é =2.5 GeV mg é =20 GeV m G é =250 GeV n é LOSP 0.7 0.5 0.3 0.2 0.2 1 10 2 10 4 10 6 10 8 10 10 10 12 t n é @sd 5.

NLSP: BBN bounds Parameter scaling: h 2 / m 2 / m 2 3/2 /m5 DM h 2 / T R m 2 /m 3/2 BBN safe, but too low reheazng temperature h 2 /0.027 10 10 m n éy n é @GeVD 5. 3. 2. 1. 0.7 0.5 0.3 1 10 2 10 4 10 6 10 8 10 10 10 12 excl. DêH no n é 3. excl. LOSP 2. 6Liê 7 Li 1. mg é =2.5 GeV mg é =20 GeV m G é =250 GeV n é LOSP 0.7 0.5 0.3 0.2 0.2 1 10 2 10 4 10 6 10 8 10 10 10 12 t n é @sd 5.

NLSP: BBN bounds Parameter scaling: h 2 / m 2 / m 2 3/2 /m5 DM h 2 / T R m 2 /m 3/2 BBN safe, but too low reheazng temperature gravizno/sneutrino approx. mass degeneracy, sneutrino lifezme phase- space suppressed, max. reheazng temp. h 2 /0.027 10 10 m n éy n é @GeVD 5. 3. 2. 1. 0.7 0.5 0.3 1 10 2 10 4 10 6 10 8 10 10 10 12 excl. DêH no n é 3. excl. LOSP 2. 6Liê 7 Li 1. mg é =2.5 GeV mg é =20 GeV m G é =250 GeV n é LOSP 0.7 0.5 0.3 0.2 0.2 1 10 2 10 4 10 6 10 8 10 10 10 12 t n é @sd 5.

NLSP: BBN bounds Parameter scaling: h 2 / m 2 / m 2 3/2 /m5 DM h 2 / T R m 2 /m 3/2 BBN safe, but too low reheazng temperature gravizno/sneutrino approx. mass degeneracy, sneutrino lifezme phase- space suppressed, max. reheazng temp. but late- Zme injeczon of warm dark ma-er (Jedamzik, Lemoine, Moultaka 05) h 2 /0.027 10 10 m n éy n é @GeVD 5. 3. 2. 1. 0.7 0.5 0.3 1 10 2 10 4 10 6 10 8 10 10 10 12 excl. DêH no n é 3. excl. LOSP 2. 6Liê 7 Li 1. mg é =2.5 GeV mg é =20 GeV m G é =250 GeV n é LOSP 0.7 0.5 0.3 0.2 0.2 1 10 2 10 4 10 6 10 8 10 10 10 12 t n é @sd 5.

but late- Zme injeczon of warm dark ma-er (Jedamzik, Lemoine, Moultaka 05) NLSP: BBN vs LSS bounds 1600 NUHM BBN limits m G ~ = 250 GeV 1600 NUHM m G ~ = 250 GeV 1500 excl. by 6 Li/ 7 Li 1500 excl. by LSS excl. by BBN 1400 1300 1200 1100 ~ LOSP m G ~ > m ~ ~ = 1 10 6 s ~ = 3 10 6 s ~ = 1 10 7 s ~ = 1 10 8 s ~ not LOSP allowed m 1/2 [GeV] 1400 1300 1200 1100 ~ LOSP ~ not LOSP m G ~ > m ~ T R = 4 10 8 GeV 5 10 8 GeV allowed 6 10 8 GeV 1000 900 unphys. 1000 900 unphys. 7 10 8 GeV 800 0 100 200 300 400 500 m 0 [GeV] 800 0 100 200 300 400 500 m 0 [GeV]

NLSP: BBN and 4- body phase space l l V G l q (A) q q a) pair carries 1/3 of available energy (B) Full computazon of this and 3 similar diagrams. q m 1/2 [GeV] 1600 1500 1400 1300 1200 1100 1000 900 NUHM D/H constraint m G ~ = 20 GeV ~! LOSP 600 GeV 300 GeV m! ~ = 200 GeV unphys. 500 GeV 400 GeV allowed simple E had A full E had B ~! not LOSP 800 0 100 200 300 400 500 m 0 [GeV]

NLSP: BBN, LSS and Higgs mass bounds NUHM max T R with constraints 600 500 1 10 7 GeV m h (max T R ) = 126 GeV excl. by BBN excl. by LSS 5 10 8 GeV 7 10 8 GeV sneutrino m ~ mass [GeV] [GeV] 400 300 125 GeV 122 GeV 120 GeV 3 10 8 GeV 9 10 8 GeV m~ gravizno not G > DM m~ max T R = 1 10 9 GeV 200 1 10 8 GeV 110 GeV 100 0 100 200 300 400 500 gravizno m~ G mass [GeV] [GeV]

sneutrino m ~ mass [GeV] [GeV] 600 500 400 300 200 NLSP: BBN, LSS and Higgs mass bounds NUHM max T R with constraints 1 10 7 GeV 1 10 8 GeV m h (max T R ) = 126 GeV excl. by BBN 125 GeV 122 GeV 120 GeV 3 10 8 GeV 110 GeV excl. by LSS 5 10 8 GeV Region I: Large Higgs boson mass, but low reheazng temperature` 9 10 8 GeV m~ gravizno not G > DM m~ 7 10 8 GeV max T R = 1 10 9 GeV 100 0 100 200 300 400 500 gravizno m~ G mass [GeV] [GeV]

sneutrino m ~ mass [GeV] [GeV] 600 500 400 300 200 NLSP: BBN, LSS and Higgs mass bounds NUHM max T R with constraints 1 10 7 GeV 1 10 8 GeV m h (max T R ) = 126 GeV excl. by BBN 125 GeV 122 GeV 120 GeV 3 10 8 GeV 110 GeV excl. by LSS 5 10 8 GeV Region I: Large Higgs boson mass, but low reheazng temperature` 9 10 8 GeV 7 10 8 GeV max T R = 1 10 9 GeV Region II: m~ gravizno not G > DM m~ Lower Higgs boson mass, but higher reheazng temperature` 100 0 100 200 300 400 500 gravizno m~ G mass [GeV] [GeV]

Conclusions GraviZno DM with sneutrino LOSP least constrained the gravizno problem: nucleosythesis: u short LOSP lifetimes u small gravitino masses u low reheating temperatures leptogenesis: u high reheating temperatures u large gravitino masses u long LOSP lifetimes but with the 126 GeV Higgs boson discovery, such a scenario looks disfavored.