Core partner LPQI-VES is co-financed by KOMPUTEROWE METODY OBLICZANIA PRZEPIĘĆ I STANÓW NIEUSTALONYCH LPQI is part of Jarosław Wiater Wydział Elektryczny Politechnika Białostocka jaroslawwiater@vela.bp.bialystok.pl Szkolenie LPQIVES Białystok 2-3 grudnia 2005
Alternative Transients Program http://www.emtp.org
EMTP - Symetryczne i niesymetryczne zakłócenia w układach elektrycznych (przepięcia łączeniowe, atmosferyczne, zwarcia, stany nieustalone) - Modelowanie rozbudowanego systemu elektroenergetycznego - - Tworzenie własnych modeli
EMTP ATPDraw Graphical Preprocessor to ATP ATP Control Center PlotXY Plotting program Watcom ATP for Windows
EMTP
Models Rzeczywista charakterystyka przejściowa warystora nn
Models Algorytm warystora zaimplementowany do ATP/EMTP
EMTP Stacja elektroenergetyczna SN/nN zasilająca linią napowietrzną obiekt budowlany
EMTP Analizowana stacja elektroenergetyczna SN/nN zamodelowana w ATP/EMTP
EMTP Przebieg napięcia na obciążeniu w analizowanym obiekcie budowlanym
EMTP RV
EMTP RV
EMTP RV A B C D E F G H I J K L Insulation Coordination of a 765 kv GIS 1 Simulation 1 options 200 ka 3/100 us Lightning Stroke - Backflashover Case - Impulse Footing Resistance of the stricken Tower may be represented by Ri = f(i) - Usage of ZnO model based on IEEE SPD WG - Frequency-Dependant Line modeling 2 2 MPLOT foudre_30km_ex2.lin I/O FILES foudre_300m_ex1.lin LIGHTNING_STROKE model in: LINE DATA foudre_30km_ex2_rv.pun model in: LINE DATA foudre_300m_ex1_rv.pun Network 765 kv Line Tower_top VM?v Air-Insulated Substation Gas-Insulated Substation Air-Insulated Substation?v VM Trans_c SOURCE_NETWORK?v 3 BUS_NET VM 3 Trans_b 735kV /_0 a b c?v 30 km 300 m 300 m cond_c VM Open Circuit-Breaker 4 4 L 2? i a b c?v/?v/?v VM bushing?v CB_a VM?v CB_b VM?v CB_c VM 25 m 1M 1M 1M a b c L 1 0? i? i?v VM Trans_a To eliminate undesirable reflexions TOWER1 Part=TOWER_model15_1 TOWER2 Part=TOWER_model15_f TOWER3 Part=TOWER_model1ohm C1 C2 C3 L 1? i L 3? i 48 m 52 m 48 52 L 1 1 L 1 2? i 4nF 5 0.1nF 5 CVT 588 kv Zno Gas-filled Bushing 0.1nF 0.1nF Inductive VT Gas-filled Bushing 588 kv Zno 4nF 4nF Power Transformer A B C D E F G H I J K L
P Q VM Z Dist 1 2? 1 2 CP 3 1 2 1 2 2 1 P Q CP 1 2 3 1 2 VM 1 2 1 2 Np, Nq Kp, Kq VM Np, Nq Kp, Kq 1 2 Np, Nq Kp, Kq Z Dist P Q Z Dist? C L EMTP RV A B /- 30 MVARS STATCOM C D E F 40 M W G 1 1 520 M W SM 5 SM7 13.8k V SM 6 13.8kV Q_Stat_30 13.8k V 550M VA 200MVA AVR_Gov_10 SqCage_1 scope 50MVA 60 Hz only 2 1 m _69k V_wind 4 x (10 X 2 MW) 132 M W ASM S 0.1,0.5Ohm?v /?v/?v 69/3.3 induc. machine Pt_windGen 13.8/230 13.8/230 13.8/230 Va,Vb,Vc scope DEV1 2 1 pf 0.85 ASM S Qt_WindGen R4 scope 9000 M W 2 0.04,0.2Ohm BUS9 SM 10 69/3.3 M W,M X,PF 2 BUS7 BUS5 50 YgYg_np4 DEV3 45 M W 230k V 2 1 2 1 RL1 P Q 12000M VA ASM S p6 77 M W WIND IM GENERATION (Constant speed) 0.25uF C8 0.25uF C12 230/26.4 2 1 96.5 60 ASM S 1E15/1E15/0 69/3.3 0.1,0.5Ohm Q_Var_s peed 1E15/1E15/0 scope SqCage_4 1E15/1E15/0 scope M W,M X,PF 144.8 P_Var_s peed 13.8kV AVR&Gov 3 200M VA (pu) 3 80 1 IN Va,Vb,Vc R3 80 1?i SM v 2 Np, Nq Kp, Kq?m 240 M W Out YgYg_np5 DEV4 SM9 13.8/230 AVR_Gov_9 60 Hz only 5/5.1/0 5/5.1/0 290 BUS1 1E15/1e15/0 3 x 1M W Doubly-fed with PWM controller (Variable speed) 69/3.3 DEV6 0.2,1Ohm 69/0.69 p4 p7 P Q?i 4 MW,M X,PF 4 13.8kV AVR&Gov 5 125M VA 5 (pu) IN 1 2 SM 500/230/50?m 500/230/50 Out SM 8 13.8/230 AVR_Gov _8 1300 M W v 230/71 0.13 2.2Ohm AVR&Gov (pu) IN SM CP2?m Out -1/1E15/0 SW6-1/1E15/0 76 M W 180 M W 13.8k V scope Qt AVR_Gov _1 400M VA Q_Ex c h Out?m m _Load_230k V scope 6 500/13.8/13.8 200 M W SM 500/230/50 6 2 280 km 40% 2?v scope IN 1 220 km 1 15uF P_Ex c h AVR&Gov SM 1 (pu) Out -1/1E15/0?m 3 Ser_C_1 3 AVR_Gov _2 SM In1 Out1 96uF In1 Out1 IN Subs tation_c Substati on_a Substation_B SM 2 AVR_Gov_3 AVR&Gov (pu) In2 Out2 Out In2 Out2?m 230/26.4 140 km 140 km 40% 2 220 km 1600 M W 2 0.013 SM 1 0.22Ohm 1 IN SM 3 240 M X AVR&Gov 7 7 (pu) 1E15/1E15/0 Ser_C_2 3 Out?m 3 1E15/1E15/0 500/230/50 96uF AVR_Gov _4 SM 1E15/1E15/0 P_Load IN 2000uF AVR&Gov SM 4 scope Q_Load p3 (pu) scope 0.3uF 0.05uF pf=88% 1 R1?i AVR_Gov _7 60 Hz only DEV2 Np, Nq Kp, Kq Va,Vb,Vc Z Dist 69/225 M W,M X,PF AVR&Gov (pu) IN 50 CP 1 2 48uF SM CP?m Out AVR_Gov _6 p1 H 193.1 CP AVR&Gov (pu) IN 48uF SM?m Out AVR_Gov _5 scope Pt I 162 M W m _Subs _B_230kV?v/?v /?v 2 x 240 M W /- 400 M vars STATCOM in Substation B av r_governor_pu M W,MX,PF Z Dist Va,Vb,Vc Np, Nq Kp, Kq 60 Hz only J K L Large Gen.-Load Center 8250 M W DEV5 900 M W Va,Vb,Vc 60 Hz only CP2 110 AVR&Gov (pu) IN CP2 p2 P Q CP2 SM?m Out SVC_1 M 1 R5 /- 150 M X SVC 8 8 I/O FILES 25.5/12 25.5/6.6 M W,M X,PF M W,M X,PF M W,M X,PF Fluo_light 9 Sm al l_i nd Incan_light Col or_tv R2 9 Large_ind 15% 30% 20% 10% 5% 20% A B Sim ul ati on options C D E F G H I 1410.uF J ASM S 12kV 385.MVA?m 3700uF?m ASM S 1560 M W Res.-Com.-Ind. Load K 6.6kV 770.M VA Va,Vb,Vc 60 Hz only Va,Vb,Vc L Np, Nq Kp, Kq 60 Hz only Va,Vb,Vc Np, Nq Kp, Kq 60 Hz only 2.263 M
EMTP RV A B C D E F Windmill Power Generation In a weak Power System - Realistic Wind Data; - Realistic DFIG Modeling; - Realistic Network & Load Models - Realistic Harmonic Distorsions & Dynamic Performances 1 1 2 2 15 MW Np,Nq 69/0.69 Kp,Kq 2 YgD_4 11 MW VLOADg1 Va,Vb,Vc LL-g 6 cycles fault 1 8 MW 3 SW1 3 WIND1 Z Dist?i 69kV /_0 4 0.4k 32Ohm 1uF Weak Local 69 kv Network (150 MVA) P_netw scope Q_netw scope P Q p1 2?v MPLOT 4 1 4 69/6.6 YgD_1 6.5 MW 50/60 Hz 1 69/13.8 YgD_2?m SM SM1 12 x 2 MVA Doubly-fed with PWM controller (Variable Speed) WIND2 v MW,MX,PF 40nF 13.8kV 10MVA!h Delay 100 1 40nF 8 MW DFIG_2 5/5.1/0 2 P_Gr2 5/5.1/0 1E15/1E15/0 20 MW P Q p3 0.1 1Ohm scope Q_Gr_2 scope m1 VM 30 MW,MX,PF 5nF C4 69/0.69 YgD_3 1 2 5nF Q_Gr1 p2 C3 5 x 2 MVA Doubly-fed with PWM controller (Variable Speed) P_Gr1 Q P scope scope DFIG_1 v out in Va,Vb,Vc AVR VLOAD2 AVR_SM1 170uF 5 Np,Nq 5 Kp,Kq ASM S ASM1 A B C 6.6kV 5000hp?m Small Industrial load D 50/60 Hz E F I/O FILES
EMTP RV
CDEGS
CDEGS
CDEGS
CDEGS
CDEGS
EMTP KONIEC