TRIBOLOGIA POWŁOK WĘGLOWYCH W PODWYŻSZONEJ TEMPERATURZE



Podobne dokumenty
Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym

Politechnika Koszalińska

BADANIE ODPORNOŚCI NA PĘKANIE I ZUŻYCIE PRZEZ TARCIE POWŁOK WIELOWARSTWOWYCH

ANALIZA WŁAŚCIWOŚCI MIKROMECHANICZNYCH I TRIBOLOGICZNYCH POWŁOK NANOKOMPOZYTOWYCH nc-wc/a-c I Nc-WC/a-C:H

MODELOWANIE I BADANIA EKSPERYMENTALNE PĘKANIA CIENKICH POWŁOK CERAMICZNYCH I WĘGLOWYCH

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

PL B1. POLITECHNIKA ŁÓDZKA, Łódź, PL

Politechnika Koszalińska

ANALIZA WŁAŚCIWOŚCI MECHANICZNYCH UKŁADÓW POWŁOKA PODŁOŻE Z UŻYCIEM METODY INDENTACJI Z WYKORZYSTANIEM WGŁĘBNIKÓW O RÓŻNEJ GEOMETRII

ANALIZA WPŁYWU GRUBOŚCI WARSTW SKŁADOWYCH NA DEFORMACJE I PĘKANIE POWŁOK WIELOWARSTWOWYCH Ti/TiN

WYSOKOTEMPERATUROWE WŁASNOŚCI TRIBOLOGICZNE STOPÓW Fe-Al

ANALIZA WŁAŚCIWOŚCI NOWYCH GRUP POWŁOK STOSOWANYCH NA WYSOKO OBCIĄŻONE ELEMENTY MASZYN

WPŁYW DODATKU NA WŁASNOŚCI SMAROWE OLEJU BAZOWEGO SN-150

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska

OBCIĄŻENIE GRANICZNE POWŁOK WIELOWARSTWOWYCH TiN/CrN W STYKU TRIBOLOGICZNYM KULA TARCZA

Instytut Metalurgii i Inżynierii Materiałowej Polska Akademia Nauk

MIKROSTRUKTURALNA ANALIZA MECHANIZMÓW ZUŻYCIA POWŁOK MONO- I WIELOWARSTWOWYCH BAZUJĄCYCH NA SKŁADZIE TiN i a-c:h

Rok akademicki: 2013/2014 Kod: RBM ET-n Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne

Autoreferat. Załącznik 3. Dr inż. Marcin Kot Kraków,

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK ELEKTROLITYCZNYCH ZE STOPÓW NIKLU PO OBRÓBCE CIEPLNEJ

WŁAŚCIWOŚCI POWŁOK WIELOWARSTWOWYCH O RÓŻNEJ GRUBOŚCI WARSTW Ti/TiN

PRZECIWZUŻYCIOWE POWŁOKI CERAMICZNO-METALOWE NANOSZONE NA ELEMENT SILNIKÓW SPALINOWYCH

WŁAŚCIWOŚCI WARSTW AZOTOWANYCH JARZENIOWO, WYTWORZONYCH NA STALI 316L

Charakterystyka właściwości mechanicznych powłok z austenitu stabilizowanego węglem

WPŁYW PARAMETRÓW BADAŃ NA DEFORMACJĘ I PĘKANIE UKŁADU POWŁOKA PODŁOŻE W WYNIKU PRÓBY ZARYSOWANIA

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY POWIERZCHNIOWEJ CRN W WARUNKACH TARCIA MIESZANEGO

Politechnika Koszalińska. ska. Politechnika Koszalińska. Mechatroniki, Instytut Mechatroniki, Nanotechnologii Instytut

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH POLIAMIDU PA6 I MODARU

Politechnika Politechnika Koszalińska

WŁAŚCIWOŚCI NARZĘDZI SKRAWAJĄCYCH Z WIELOWARSTWOWYMI POWŁOKAMI TYPU CERAMIKA/CERAMIKA

ZNACZENIE POWŁOKI W INŻYNIERII POWIERZCHNI

KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH TYPU CRC+CRN WYTWARZANYCH PRZEZ POŁĄCZENIE PROCESU CHROMOWANIA PRÓŻNIOWEGO Z OBRÓBKĄ PVD

ODPORNOŚĆ STALIWA NA ZUŻYCIE EROZYJNE CZĘŚĆ II. ANALIZA WYNIKÓW BADAŃ

Rok akademicki: 2013/2014 Kod: RBM KW-s Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH TYPU CrC+(Ni-Mo)+CrN

Innowacyjne rozwiązanie materiałowe implantu stawu biodrowego Dr inż. Michał Tarnowski Prof. dr hab. inż. Tadeusz Wierzchoń

43 edycja SIM Paulina Koszla

Politechnika Koszalińska

WPŁYW GRUBOŚCI WARSTWY DLC NA WŁAŚCIWOŚCI TRIBOLOGICZNE W TARCIU ŚLIZGOWYM

ZAPROSZENIE DO SKŁADANIA OFERT NA USŁUGĘ: Osadzanie sfałdowanych cienkich warstw Si-DLC i DLC na foliach PEEK i PU

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

BADANIE ZMIAN SPRĘŻYSTOŚCI I MIKROTWARDOŚCI POWŁOK NIKASILOWYCH W ASPEKCIE ZUŻYCIA TULEI SILNIKÓW SPALINOWYCH

WARSTWY WĘGLIKOWE WYTWARZANE W PROCESIE CHROMOWANIA PRÓŻNIOWEGO NA POWIERZCHNI STALI POKRYTEJ STOPAMI NIKLU Z PIERWIASTKAMI WĘGLIKOTWÓRCZYMI

WPŁYW WARUNKÓW UTWARDZANIA I GRUBOŚCI UTWARDZONEJ WARSTEWKI NA WYTRZYMAŁOŚĆ NA ROZCIĄGANIE ŻYWICY SYNTETYCZNEJ

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE

BADANIE MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ CYLINDRA W ASPEKCIE ODPORNOŚCI NA ZACIERANIE

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH BRĄZU CuSn12Ni2 W OBECNOŚCI PREPARATU EKSPLOATACYJNEGO O DZIAŁANIU CHEMICZNYM

MATERIAŁY STOSOWANE NA POWŁOKI PRZECIWZUŻYCIOWE

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

ANALIZA DEFORMACJI FALOWYCH CIENKICH POWŁOK W ŚLIZGOWYM STYKU SKONCENTROWANYM

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

WŁASNOŚCI TRIBOLOGICZNE STOPÓW Z UKŁADU Ni-Ta-Al-M O DUŻEJ ZAWARTOŚCI WĘGLA

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY WIERZCHNIEJ STALI MODYFIKOWANEJ BOREM W WARUNKACH TARCIA MIESZANEGO

OCENA WŁASNOŚCI TRIBOLOGICZNYCH NOWYCH MATERIAŁÓW NARZĘDZIOWYCH NA OSNOWIE NIKLU

Wpływ promieniowania na wybrane właściwości folii biodegradowalnych

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2

ZASTOSOWANIE OCHŁADZALNIKA W CELU ROZDROBNIENIA STRUKTURY W ODLEWIE BIMETALICZNYM

SPOSÓB WYZNACZANIA MAKSYMALNEGO PRZYROSTU TEMPERATURY W PROCESIE TARCIA METALI

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI

ZUŻYCIE TRIBOLOGICZNE POWŁOK KOMPOZYTOWYCH Ni-P-Al 2 O 3 WYTWORZONYCH METODĄ REDUKCJI CHEMICZNEJ

OCENA WŁAŚCIWOŚCI TRIBOLOGICZNYCH POWŁOK UZYSKANYCH DROGĄ METALIZACJI NATRYSKOWEJ

WŁAŚCIWOŚCI POWŁOK Si 3 N 4 FORMOWANYCH METODĄ IBAD NA AZOTOWANEJ STALI 316L

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH BRĄZU CuSn12Ni2

WPŁYW GNIOTU WZGLĘDNEGO NA WSKAŹNIK ZMNIEJSZENIA CHROPOWATOŚCI POWIERZCHNI POWŁOK Z FAZ MIĘDZYMETALICZNYCH

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK CERAMICZNYCH AL 2 O 3 NATRYSKIWANYCH PLAZMOWO

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

Pomiar twardości ciał stałych

RHEOTEST Medingen Reometr RHEOTEST RN: Zakres zastosowań Smary

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

PL B1. Uniwersytet Śląski w Katowicach,Katowice,PL BUP 20/05. Andrzej Posmyk,Katowice,PL WUP 11/09 RZECZPOSPOLITA POLSKA

TECHNIKI BADAWCZE W ANALIZIE WŁAŚCIWOŚCI MECHANICZNYCH I TRIBOLOGICZNYCH CIENKICH WARSTW I POWŁOK

ZUŻYCIE TRYBOLOGICZNE KOMPOZYTU NA OSNOWIE ZGARU STOPU AK132 UMACNIANEGO CZĄSTKAMI SiC

WPŁYW MODYFIKACJI NA STRUKTURĘ I MORFOLOGIĘ PRZEŁOMÓW SILUMINU AK132

ANTYŚCIERNE I ANTYKOROZYJNE WARSTWY NOWEJ GENERACJI WYTWARZANE W PROCESIE TYTANOWANIA PRÓŻNIOWEGO NA STALI NARZĘDZIOWEJ

CHARAKTERYSTYKI TRIBOLOGICZNE WARSTWY AL 2 O 3 MODYFIKOWANEJ GRAFITEM W SKOJARZENIU ŚLIZGOWYM Z KOMPOZYTAMI POLIMEROWYMI

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

STRUKTURA GEOMETRYCZNA POWIERZCHNI KOMPOZYTÓW ODLEWNICZYCH TYPU FeAl-Al 2 O 3 PO PRÓBACH TARCIA

PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA)

NOŚNOŚĆ POWIERZCHNI A RODZAJ JEJ OBRÓBKI

WPŁYW TWARDOŚCI I MODUŁU SPRĘŻYSTOŚCI POWŁOK KOMPOZYTOWYCH NA ICH ODPORNOŚĆ NA ZUŻYCIE

WPŁYW WIELKOŚCI I UDZIAŁU ZBROJENIA NA WŁAŚCIWOŚCI KOMPOZYTÓW AK12-WĘGIEL SZKLISTY

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

Badania tribologiczne ślizgowych węzłów obrotowych z czopami z powłoką TiB 2

BADANIA NAD MODYFIKOWANIEM WARUNKÓW PRACY ŁOŻYSK ŚLIZGOWYCH SILNIKÓW SPALINOWYCH

NISKOTARCIOWE POWŁOKI NA BAZIE MOS 2 Z PODWARSTWAMI CHROMU NA ODLEWNICZYCH STOPACH ALUMINIUM

Temat: NAROST NA OSTRZU NARZĘDZIA

Dr inż. Paulina Indyka

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH WYTWARZANYCH W PROCESACH CHROMOWANIA DYFUZYJNEGO POŁĄCZONYCH Z OBRÓBKĄ PVD

WPŁYW UKSZTAŁTOWANIA STRUKTURY GEOMETRYCZNEJ POWIERZCHNI STALI NA WSPÓŁCZYNNIK TARCIA STATYCZNEGO WSPÓŁPRACUJĄCYCH MATERIAŁÓW POLIMEROWYCH

KONTROLA STALIWA GXCrNi72-32 METODĄ ATD

Projekt kluczowy. Nowoczesne technologie materiałowe stosowane w przemyśle lotniczym. Segment nr 10

Fizyczne właściwości materiałów rolniczych

KRZEPNIĘCIE KOMPOZYTÓW HYBRYDOWYCH AlMg10/SiC+C gr

BADANIA PORÓWNAWCZE PAROPRZEPUSZCZALNOŚCI POWŁOK POLIMEROWYCH W RAMACH DOSTOSOWANIA METOD BADAŃ DO WYMAGAŃ NORM EN

MASZYNA MT-1 DO BADANIA WŁASNOŚCI TRIBOLOGICZNYCH ZE ZMIANĄ NACISKU JEDNOSTKOWEGO

Dobór materiałów konstrukcyjnych

Transkrypt:

3-2015 T R I B O L O G I A 55 Marcin KOT *, Sławomir ZIMOWSKI *, Łukasz MAJOR **, Kinga CHRONOWSKA-PRZYWARA *, Wiesław RAKOWSKI * TRIBOLOGIA POWŁOK WĘGLOWYCH W PODWYŻSZONEJ TEMPERATURZE TRIBOLOGY OF CARBON COATINGS AT ELEVATED TEMPERATURE Słowa kluczowe: powłoki węglowe, tarcie, zużycie, temperatura Key words: carbon coatings, friction, wear, temperature Streszczenie: W pracy przedstawiono wyniki badań mechanicznych i tribologicznych powłok węglowych a-c, a-c:h i a-c:n. Właściwości tribologiczne takich powłok wciąż nie są dostatecznie rozpoznane, zwłaszcza w przypadku analiz prowadzonych w podwyższonych temperaturach. W ramach pracy analizowano właściwości mechaniczne twardość i moduł sprężystości oraz właściwości tribologiczne wskaźnik zużycia i współczynnik tarcia w temperaturze 20ºC i 300ºC. Naj- * AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Mechanicznej i Robotyki, al. Mickiewicza 30, 30-065 Kraków, Polska, e-mail: kotmarcin@agh.edu.pl ** Instytut Metalurgii i Inżynierii Materiałowej PAN, ul. Reymonta 25, 30-059 Kraków, Polska.

56 T R I B O L O G I A 3-2015 twardszą z powłok okazała się powłoka a-c 17 GPa, a najmiększą a-c:h 7GPa. Testy tribologiczne w temperaturze pokojowej wykazały, że współczynnik tarcia jest najmniejszy dla powłoki a-c, a najwyższy dla a-c:n odpowiednio µ = 0,05 i 0,24. Najniższe wartość wskaźnika zużycia zmierzono także dla powłoki a-c. Natomiast w temperaturze 300ºC najlepszą okazała się powłoka uwodorniona a-c:h, dla której zużycie było tylko nieznacznie wyższe niż w temperaturze pokojowej, a współczynnik tarcia wynosił 0,04. Zużycie powłoki a-c:n jest 20-krotnie większe niż powłoki a-c:h, chociaż współczynnik tarcia w całym zakresie 20 000 cykli testu tribologicznego wynosił tylko 0,05. Natomiast powłoka a-c w warunkach przeprowadzanego testu została całkowicie zniszczona już po 7000 cykli. WPROWADZENIE Powłoki na bazie węgla nakładane metodami PVD i CVD cieszą się dużym zainteresowaniem od około 20 lat. Wynika to z ich bardzo dobrych właściwości tribologicznych, odporności chemicznej na kwasy i zasady oraz biozgodności. Pojęcie powłoki węglowe dotyczy bardzo szerokiej grupy materiałów o znacząco różnych właściwościach. Zależą one przede wszystkim od ilości wiązań o hybrydyzacji sp 3 typowych dla diamentu i sp 2 występujących w graficie oraz udziału innych pierwiastków jak wodór H czy azot N [L. 1, 2]. W zależności od udziału wiązań sp 3 /sp 2 oraz obecności głównie wodoru dzieli się je na kilka grup: nieuwodornione powłoki amorficzne a-c i tetraedryczne ta-c, uwodornione powłoki a-c:h, powłoki z dodatkiem głównie metali Me/a-C czy Me/a-C:H posiadające często budowę nanokompozytową. Układ potrójnej równowagi węgla z wiązaniami sp 3, sp 2 oraz wodoru wraz z wynikającymi z nich właściwościami mechanicznymi powłok przedstawiono w pracy [L. 3]. Twardość powłok węglowych wynosi od 5GPa dla powłok a-c:h o dużym udziale wiązań sp 2, do 50 GPa i więcej dla powłok ta-c. Jednak wraz ze wzrostem twardości maleje odporność na pękanie powłok węglowych, a typowe wartości krytycznego współczynnika intensywności naprężeń K 1C mieszczą się w zakresie 0,5 5 MPa m 1/2. Większe wartości parametru K 1C = 2 5 MPa m 1/2, ale mniejszą twardość posiadają powłoki uwodornione a-c:h. Wprowadzenie wodoru do powłoki powoduje także zmniejszenie naprężeń własnych ściskających z 3 5 GPa do 1 2 GPa [L. 4], co znacząco poprawia adhezję tych powłok do podłoży metalowych. Poprawę odporności na zarysowanie powłok na bazie węgla uzyskuje się przez nakładanie cienkich międzywarstw metalicznych Ti czy Cr o grubości kilkudziesięciu nanometrów. Właściwości tribologiczne powłok węglowych zależą od rodzaju powłoki, styku tribologicznego, charakteru obciążeń, atmosfery czy temperatury. Powło-

3-2015 T R I B O L O G I A 57 ki nieuwodornione a-c charakteryzują się dużymi oporami tarcia przy wysokich temperaturach i w próżni. Tłumaczy się to silnym oddziaływaniem nieobsadzonych, najsilniejszych węglowych wiązań σ i adhezyjnym sczepianiem się ich z innymi atomami, gdy są one bezpośrednio na powierzchni [L. 1, 6]. Wtedy wartość współczynnika tarcia może sięgać nawet 1. Jeżeli jednak na powierzchni nastąpi pasywacja takich wiązań przez zaadsorbowane cząsteczki gazów z atmosfery lub wilgoć, to może ona znacząco ograniczać tarcie i zużycie takich powłok. Charakterystyczne dla takich powłok jest zmniejszanie wartości współczynnika tarcia wraz ze zwiększaniem wilgotności powietrza [L. 3]. Blokowanie możliwości niepożądanego oddziaływania wiązań σ przez atomy wodoru obserwuje się w przypadku powłok a-c:h [L. 2]. Powłoki takie osadza się zazwyczaj w atmosferze metanu CH 4 lub acetylenu C 2 H 2. Typowe wartości współczynnika tarcia µ<0,05 oraz bardzo niskie wartości wskaźnika zużycia W v <10-7 obserwuje się dla nich w próżni, w atmosferze suchego powietrza czy w gazach obojętnych. Jest to efektem przenoszonej na partnera tribologicznego cienkiej, hydrofobowej tribowarstwy węglowej powodującej powstanie na powierzchni współpracujących dwóch warstw a-c:h i istnienie między nimi tylko słabych oddziaływań van der Vaals'a [L. 5]. Natomiast typowy dla powłok a-c:h jest wzrost współczynnika tarcia do µ = 0,1 0,2 w środowisku wilgotnego powietrza, kiedy to zostaje zaburzona współpraca dwóch węglowych warstw. W atmosferze powietrza świetne właściwości tribologiczne uwodornionych powłok węglowych przypisuje się procesowi grafityzacji zachodzącemu na ich powierzchni. Liu i inni [L. 7] opisali ten proces, wskazując, że możliwy jest on dzięki uwalnianiu wodoru z powierzchni, a następnie na skutek wzrostu temperatury w strefie tarcia i silnych naprężeń ścinających tworzona jest cienka warstwy grafitu ma powierzchni powłoki. Obserwuje się to także w przypadku powłok nieuwodornionych a-c. Proces ten jednak zachodzi tylko przy odpowiednich obciążeniach cieplno-mechanicznych w strefie tarcia. Małe wartości współczynnika tarcia µ<0,1 są wynikiem przenoszenia cienkiej warstwy grafitu na partnera tribologicznego. Efektem tego jest małe zużycie obydwu współpracujących powierzchni. Charakterystyczne w przebiegu współczynnika tarcia są początkowo większe wartości i stopniowe jego zmniejszanie do stałych, małych wartości po zmianie tarcia powłoki węglowej o materiał kontaktujący się elementem do tarcia grafit-grafit. Natomiast w przypadku małych obciążeń, obecności tlenu czy dużej wilgotności nie dochodzi do grafityzacji i współczynnik tarcia jest na wyższym poziomie µ = 0,2 0,5. Wprowadzenie do powłok węglowych azotu zazwyczaj zmniejsza ich twardość ze względu na zwiększenie ilości wiązań sp 2 [L. 15]. Wynikiem tego jest jednak zmniejszenie naprężeń własnych, znacząca poprawa odporności na pękanie i w wielu przypadkach równie dobre właściwości tribologiczne warstw a-c:n jak pozostałych powłok

58 T R I B O L O G I A 3-2015 węglowych [L. 12]. Podobnie jak dla powłok uwodornionych powłoki a-c:n charakteryzują się wyjątkowo niskim współczynnikiem tarcia 0,007 0,01 w atmosferze suchego azotu [L. 18]. Jednak w wilgotnym powietrzu zazwyczaj parametr ten rośnie jeszcze bardziej niż w powłokach a-c:h, a typowe wartości to 0,2 0,4. Powłoki a-c:n mogą także ulegać grafityzacji na powierzchni [L. 14]. Znaczącą zmianę właściwości obserwuje się dla węglowych powłok nanokompozytowych, w których w strukturze wprowadzone są zazwyczaj nanocząstki ceramiczne jak CrC [L. 8]. Optymalizując udział nanocząstek w osnowie węglowej, można ograniczyć ich zużycie. Natomiast współczynnik tarcia jest zazwyczaj wyższy niż dla warstw a-c:h, co powodowane jest brakiem lub ograniczeniem możliwości pozostawania w strefie tarcia grafitowych warstw ślizgowych, które usuwane sa przez twarde nanocząstki ceramiczne. Natomiast właściwości ich w odróżnieniu od powłok a-c i a-c:h praktycznie nie zależą od atmosfery. Poprawę właściwości mechanicznych w tym odporności na pękanie można osiągnąć, wprowadzając warstwy węglowe do powłok wielowarstwowych [L. 17]. Powłoki węglowe mogą także pracować w podwyższonych temperaturach. Zazwyczaj wskazuje się jednak, że graniczną temperaturą, przy której dochodzi do utleniania takich powłok jest 300 400ºC. Stąd trwają poszukiwania nowych dodatków do powłok węglowych, które zapewnią im dobre właściwości tribologiczne w jeszcze wyższej temperaturze. Autorzy pracy [L. 16], poszukując powłok do zastosowań w obróbce plastycznej na gorąco wykazali, że maksymalna temperatura pracy powłok Si-DLC wynosi 700ºC, co jest efektem formowania na powierzchni tlenku krzemu SiO 2. W literaturze podawanych jest jednak wiele sprzecznych informacji dotyczących możliwości zastosowań powłok węglowych w podwyższonych temperaturach. Jest to efektem wielu różnych rodzajów powłok, które osadzane są różnymi technikami oraz różnych parametrów stosowanych testów tribologicznych. Badania powłok węglowych umożliwiły ich aplikacje w wielu obszarach techniki, jak silniki spalinowe, magnetyczne dyski pamięci, narzędzia skrawające i chirurgiczne, implanty biomedyczne [L. 2, 11]. Jednak w tribologii takich materiałów, zwłaszcza przy oddziaływaniu podwyższonej temperatury, jest wciąż wiele zjawisk trudnych do wytłumaczenia i wymagających prowadzenia systematycznych badań. W niniejszej pracy analizowano właściwości tribologiczne powłok węglowych w temperaturze 20ºC i 300ºC. Badano powłoki amorficzne a-c, a-c:h i a-c:n, poszukując wpływu uwodornienia i uazotowienia powłok węglowych na odporność na zużycie i wartość współczynnika tarcia.

3-2015 T R I B O L O G I A 59 MATERIAŁY ORAZ METODYKA BADAWCZA Badano trzy powłoki węglowe osadzane metodą rozpylania magnetronowego na blaszkach ze stali austenitycznej X5CrNi18-10 o grubości 1,5 mm i wymiarach 20 20 mm. Podłoża przed osadzaniem powłok były myte w przemysłowej myjce (Miele, Guetersloh, Niemcy), suszone, montowane na w uchwycie w komorze próżniowej (Leybold Vakuum, Cologne, Germany) i trawione jonowo. Osadzanie prowadzono przy ciśnieniu 2 mpa bez podgrzewania podłoża. Rozpylanie prowadzono z użyciem dwóch usytuowanych naprzeciwko, prostokątnych magnetronów. Powłokę a-c osadzano w atmosferze argonu, stosując rozpylanie tarczy grafitowej. Powłokę a-c:n osadzano w atmosferze będącej mieszaniną argonu Ar i azotu N, a powłokę a-c:h w atmosferze acetylenu C 2 H 2 i Ar. Dla każdej z powłok stosowano międzywarstwę tytanową 100 nm, a grubość wszystkich powłok węglowych wynosiła 1 µm. Twardość powłok badano metodą instrumentalnej indentacji przy obciążeniu 2 mn, stosując wgłębnik diamentowy o geometrii Berkovicha i nanoindentor CSM Instruments. Obciążenie to powodowało wciskanie wgłębnika na głębokość 80 120 nm, co pozwalało uniknąć wpływu podłoża na uzyskiwane wyniki badań [L. 9]. Krzywe indentacyjne analizowano według procedury podanej przez Olivera-Pharra, stosując się do zaleceń normy [10]. Właściwości tribologiczne wyznaczano w styku kula tarcza, wykorzystując kulę Al 2 O 3 o średnicy 6 mm. Stosowano obciążenie 1 N, promień tarcia wynosił 3 6 mm, a liczba cykli 20 000. Testy prowadzono w temperaturze 20 i 300ºC z użyciem tribometru wysokotemperaturowego T11 produkowanego przez ITeE w Radomiu. W trakcie testu mierzono siłę tarcia i na tej podstawie obliczano współczynnik tarcia, a zużycie określano, mierząc po teście profil toru tarcia i obliczając wskaźnik zużycia objętościowego z zależności W V = V/(F N s), gdzie V to objętość usuniętego materiału, F N siła normalna, s to całkowita droga tarcia. WYNIKI I ICH ANALIZA Wyniki pomiarów indentacyjnych przedstawiono na Rysunku 1. Potwierdzają one tendencje przedstawiane w literaturze wskazujące, że wprowadzenie do powłok węglowych wodoru H i azotu N zmniejsza ilość wiązań sp 3, zmniejszając naprężenia własne i twardość uwodornionych a-c:h (H = 7 GPa) i uazotowionych a-c:n (H = 11 GPa) powłok w stosunku do powłok a-c (H = 17 GPa). Zmniejsza się przy tym także moduł sprężystości powłok ze 180 GPa dla powłoki a-c do 106 i 95 GPa odpowiednio dla powłok a-c:n i a-c:h. Testy tribologiczne prowadzone w temperaturze pokojowej i wilgotności 40% wykazały, że najmniejszą wartością współczynnika tarcia µ = 0,05 w tych warunkach charakteryzuje się powłoka a-c (Rys. 2).

60 T R I B O L O G I A 3-2015 a) b) Rys. 1. Wyniki testów indentacyjnych badanych powłok węglowych: a) twardość, b) moduł sprężystości Fig. 1. Indentation test results of tested carbon coatings: a) hardness, b) elasticity modulus Parametr ten osiągnięty został po około 7000 cykli, co jest efektem tworzenia grafitowej warstwy ślizgowej na powierzchni. Obserwacje mikroskopowe kuli Al 2 O 3 po teście wykazały, że warstwa ta przenosi się także na powierzchnię kuli. Natomiast powłoki a-c:h i a-c:n mają znacząco wyższe opory tarcia, a współczynnik tarcia na końcu testu wynosi odpowiednio 0,14 i 0,24, co prezentowano także w innych pracach [L. 2, 14]. Większy współczynnik tarcia może być także tłumaczony mniejszą twardością tych powłok, a więc większą głębokością penetracji podczas tarcia i większą składową deformacyjną. Wartości wskaźnika zużycia badanych powłok zestawiono na Rysunku 4. Rys. 2. Zmiany współczynnika tarcia badanych powłok podczas testu tribologicznego w temperaturze 20ºC Fig. 2. Changes of coefficient of friction of tested carbon coatings during the tribological test performed at 20ºC temperature

3-2015 T R I B O L O G I A 61 Rys. 3. Zmiany współczynnika tarcia badanych powłok podczas testu tribologicznego w temperaturze 300ºC Fig. 3. Changes of coefficient of friction of tested carbon coatings during the tribological test performed at 300ºC temperature W temperaturze pokojowej najniższą wartość Wv = 0,14 10 6 mm 3 /Nm wyznaczono dla powłoki a-c. Należy jednak podkreślić, że choć pozostałe powłoki a-c:h i a-c:n charakteryzują się większym zużyciem W v = 0,37 i 0,62 10 6 mm 3 /Nm to wartości te są niewielkie w porównaniu do innych powłok przeciwzużyciowych np. ceramicznych. Badania tribologiczne wykazały, że najlepsza powłoka a-c w temperaturze 20ºC, jest najgorsza w temperaturze 300ºC. Powłoka ta ulegała całkowitemu przetarciu po około 7000 cykli. Skutkowało to nagłym wzrostem wartości współczynnika tarcia widocznym na Rysunku 3. Jednak nawet w zakresie liczby cykli przed zniszczeniem wartość µ rosła stopniowo od 0,1 do 0,2. To zwiększone tarcie skutkuje także ponad 450 razy większym zużyciem niż w temperaturze 20ºC. Podobnie dla powłoki a-c:n zużycie jest 16-krotnie większe temperaturze 300ºC. Należy jednak podkreślić, że nie została ona w zakresie 20 000 cykli całkowicie przetarta, a współczynnik tarcia był na niskim poziomie 0,04 0,06. Badania wykazały, że najlepszą odporność na zużycie w podwyższonej temperaturze posiada powłoka uwodornionego węgla a-c:h.

62 T R I B O L O G I A 3-2015 Rys. 4. Wskaźnik zużycia badanych powłok w temperaturze 20ºC i 300ºC Fig. 4. Wear index of tested coatings at 20ºC and 300ºC temperatures WNIOSKI Powłoki węglowe mogą charakteryzować się znacząco różnymi właściwościami mechanicznymi w zależności od udziału wiązań sp 2 do sp 3 oraz obecności w strukturze atomów takich jak wodór czy azot. W ramach pracy porównano właściwości mechaniczne i tribologiczne powłok a-c, a-c:h i a-c:n. Testy nanoindentacyjne potwierdziły prezentowane w literaturze obserwacje znaczącego spadku twardości powłok węglowych po wprowadzeniu do nich atomów H i N. Dodatkowym efektem uwodornienia i uazotowienia powłok węglowych są niższe wartości naprężeń własnych [L. 4, 18], co może prowadzić do poprawy ich odporności na pękanie i zwiększać adhezję do podłoży. Przedstawione wyniki badań mechanicznych i tribologicznych wykazały, że amorficzne powłoki węglowe różnie mogą się zachowywać w temperaturze pokojowej i podwyższonej do 300ºC. Powłoka a-c ma najlepszą odporność na zużycie przez tarcie w 20ºC oraz najmniejszy współczynnik tarcia. Natomiast jest ona najgorsza spośród badanych powłok w temperaturze 300ºC. Analiza literatury pozwala wskazywać jako przyczynę zwiększonych oporów ruchu w podwyższonych temperaturach silne oddziaływania adhezyjne wolnych wiązań σ, które w temperaturze pokojowej są rozdzielone przez adsorbowane na powierzchni cząsteczki gazów i wilgoci. Natomiast w powłokach a-c:h wiązania σ łączą węgiel z wodorem, co zabezpiecza te powłoki przed szczepieniami adhezyjnymi kontaktujących się powierzchni. Przeniesiony na powierzchnię partnera tribologicznego cienki film węglowy prowadzi do tarcia bezpośrednio dwóch powierzchni materiałów węglowych o małym powinowactwie chemicznym. Efektem tego jest mały współczynnik tarcia powłok a-c:h. Łatwiejsza grafityzacja w podwyższonej temperaturze 300ºC skutkuje bardzo niskim współczynnikiem tarcia 0,04. Podobne efekty osiągane są w powłokach a-c:n,

3-2015 T R I B O L O G I A 63 chociaż wyniki przedstawione w pracy wskazują na ich znacząco większe zużycie niż powłok uwodornionych. Autorzy dziękują dr. hab. Jurgenowi Lacknerowi z Joanneum Research; Laserzentrum Leoben, Austria za nałożenie powłok. LITERATURA 1. Erdemir A.: Genesis of superlow friction and wear in diamondlike carbon films. Tribology International 37 (2004) 1005 1012. 2. Hauert R., Müller U.: An overview on tailored tribological and biological behavior of diamond-like carbon. Diamond and Related Materials 12 (2003) 171 177. 3. Sedlaček M., Podgornik B., Vižintin J.: Tribological properties of DLC coatings and comparison with test results: Development of a database. Materials Characterization 59 (2008) 151 161. 4. Wang P., Wang X., Xu T., Liu W., Zhang J.: Comparing internal stress in diamond-like carbon films with different structure. Thin Solid Films 515 (2007) 6899 6903. 5. Konca E., Cheng Y-T., Weiner A.M., Dasch J.M., Alpas A.T.: Elevated temperature tribological behavior of non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy, Surface & Coatings Technology 200 (2006) 3996 4005. 6. Robertson J.: Diamond-like amorphous carbon. Materials Science and Engineering R37 (2002) 129 281. 7. Liu Y., Meletis E.I.: Evidence of graphitization of diamond-like carbon films during sliding wear. Journal of Materials Science 32 (1997) 3491 3495. 8. Kot M., Przywara-Chronowska K., Rakowski W., Lackner J., Waldhauser W., Major Ł.: The advantages of incorporating Cr x C nanograins into an a-c:h matrix in tribological coatings. Materials and Design, 56 (2014) 981 989. 9. Kot M., Lacki P.: Contact mechanics of coating-substrate systems: I Methods of analysis and FEM modeling of nanoindentation tests. Journal of the Balkan Tribological Association, 18 (2012) 598 614. 10. ISO 14577-4:2007 Metale. Instrumentalna próba wciskania wgłębnika do określania twardości i innych własności materiałów. Część 1: Metoda badania. 11. Vandevelde T.C.S., Vandierendonck K., Van Stappen M., Du Mong W., Perremans P.: Cutting applications of DLC, hard carbon and diamond films. Surface and Coatings Technology 113 (1999) 80 85. 12. Charitidis C.A.: Nanomechanical and nanotribological properties of carbon-based thin films - A review. Int. Journal of Refractory Metals and Hard Materials 28 (2010) 51 70. 13. Sánchez-López J.C., Belin M., Donnet C., Quirós C., Elizalde E.: Friction mechanisms of amorphous carbon nitride films under variable environments: a triboscopic study. Surface and Coatings Technology 160 (2002) 138 144.

64 T R I B O L O G I A 3-2015 14. Qi J., Chana C.Y., Bello I., Lee C.S., Lee S.T., Luo J.B., Wen S.Z.: Film thickness effects on mechanical and tribological properties of nitrogenated diamond-like carbon films. Surface and Coatings Technology 145 (2001) 38 43. 15. Yamamoto S., Kawana A., Ichimura H., Masuda Ch.: Relationship between tribological properties and sp3/sp2 structure of nitrogenated diamond-like carbon deposited by plasma CVD. Surface and Coatings Technology 210 (2012) 1 9. 16. Reisel G., Steinhäuser S., Wielage B.: The behaviour of DLC under high mechanical and thermal load. Diamond and Related Materials 13 (2004) 1516 1520. 17. Kot M., Major Ł., Lackner J.: The tribological phenomena of a new type of TiN/a-C:H multilayer coatings. Materials and Design, 51(2013) 280 286. 18. Zhang S., Xie H., Zeng X., Hing P.: Residual stress characterization of diamond-like carbon coatings by an X-ray diffraction method. Surface and Coatings Technology, 122 (1999) 219 224. Summary The paper presents the results of the mechanical and tribological coatings of carbon a-c, a-c:h and a-c:n coatings. The hardest coatings H = 17 GPa is a non-hydrogenated a-c coating, while the softest one is a-c:h - 7 GPa. Tribological tests performed at 20 C exhibited the lowest coefficient of friction 0.05 for the a-c coating. In a case of this coating, the lowest value of wear index was also measured. The hydrogenated and nitrogenated coatings have higher friction µ = 0.14 and 0.24 respectively. However, the wear of these coatings was higher than for a-c, but it was still at low level comparing to typical ceramic coatings. In contrast, the hydrogenated a-c:h coating exhibited the best wear resistance at 300 C. The wear index was only 50% higher than at room temperature and the friction coefficient varied within the range of 0.03-0.05. The nitrogenated coating a-c:n has 20 times higher wear than the a-c:h coating, although the friction coefficient was only 0.05 over the whole test duration 20000 cycles. The best coating (a-c) at in room temperature was the worst at elevated temperatures. This coating was completely destroyed after 7000 cycles.