RATIONAL UNIFIED PROCESS. Opis metodyki i procesu produkcji oprogramowania
|
|
- Bogusław Sobolewski
- 10 lat temu
- Przeglądów:
Transkrypt
1 RATIONAL UNIFIED PROCESS Opis metodyki i procesu produkcji oprogramowania
2 RATIONAL UNIFIED PROCESS Rational Unified Process (RUP) to proces iteracyjnego wytwarzania oprogramowania opracowany przez firmę Rational Software Corporation (firma została przejęta przez IBM). Proces RUP nie jest pojedynczym, ściśle określonym procesem, ale raczej szablonem procesu. Został on zaprojektowany w celu przystosowania do charakteru konkretnej organizacji (przedsiębiorstwa), konkretnego zespołu projektowego lub nawet charakteru konkretnego projektu. Z szablonu RUP można wybrać elementy w zależności od konkretnych potrzeb. Rational Unified Process (RUP) to także nazwa oprogramowania, opracowanego przez Rational Software (obecnie dostępnego w IBM). Produkt ten zawiera hipertekstową bazę wiedzy z przykładowymi artefaktami oraz szczegółowymi opisami wielu typów czynności. Process RUP definiowany jest także w produkcie Rational Method Composer (RMC), który pozwala na tworzenie spersonalizowanych wersji RUP.
3 HISTORIA Proces Rational sięga swoimi korzeniami do oryginalnego modelu spiralnego Barrego Boehma - jeden z głównych autorów RUP, Ken Hartman, prowadził razem z Boehmem badania. Podejście Rational (Rational Approach) zostało opracowane przez Rational Software w latach osiemdziesiątych i dziewięćdziesiątych. W roku 2000 Rational przejęło szwedzką firmę Objectory AB. Zunifikowany proces Rational (Rational Unified Process) był rezultatem połączenia podejścia Rational oraz metodyki Objectory zdefiniowanej przez jej założyciela Ivara Jacobsona. Początkowo powstał proces nazwany Rational Objectory Process, który był podejściem firmy Objectory przystosowanym do narzędzia Rose. Kiedy połączenie obydwu metodyk zostało ostatecznie osiągnięte, zmieniono nazwę na obecną. Pierwsza wersja RUP 5.0 opublikowana została w 1998 roku. Głównym architektem był Philippe Kruchten.
4 BUDOWA Autorzy procesu skupili się na diagnozowaniu charakterystyk projektów, które zakończyły się fiaskiem. Postępując w ten sposób, próbowali poznać przyczyny owych niepowodzeń. Przyglądali się również ówcześnie istniejącym procesom inżynierii oprogramowania i sposobom, w jaki rozwiązywały one problemy. Lista najczęstszych błędów zawierała następujące rzeczy: 1. Zarządzanie wymaganiami Ad hoc (najczęściej brak zarządzania nimi) 2. Niejednoznaczna, nieprecyzyjna komunikacja 3. Architektura oprogramowania nieodporna na obciążenia (ang. Brittle architecture) 4. Zbytnia, niepotrzebna złożoność oprogramowania 5. Niewykryte niespójności w wymaganiach, projekcie oraz implementacji 6. Brak lub niewystarczające testowanie 7. Subiektywna ocena postępu projektu 8. Brak zarządzania ryzykiem 9. Brak automatyzacji prowadzenia projektu
5 BUDOWA Niepowodzenie projektu było spowodowane kombinacją wielu czynników, w każdym projekcie w specyficzny sposób. Rezultatem badań firmy Rational było opracowanie zbioru dobrych praktyk, które nazwane zostały właśnie Rational Unified Process. Proces RUP został opracowany z użyciem tych samych technik, których zespół Rational używał do modelowania systemów - języka UML. Język UML powstawał równolegle z RUP (również jako połączenie doświadczenia w modelowaniu firm Objectory i Rational).
6 PODSTAWY I NAJLEPSZE PRAKTYKI RUP bazuje na zbiorze zasad inżynierii programowania oraz najlepszych praktykach, na przykład: 1. Iteracyjnym wytwarzaniu oprogramowania (Iterative Development) 2. Zarządzaniu wymaganiami (Requirement Management) 3. Używaniu architektury bazującej na komponentach (Component-based architecture) 4. Graficznym projektowaniu oprogramowania 5. Kontroli jakości oprogramowania (Quality Assurance) 6. Procesu kontroli zmian w oprogramowaniu (Change Management)
7 ITERACYJNE WYTWARZANIE OPROGRAMOWANIA Wymagania podczas procesu wytwarzania oprogramowania ulegają częstym zmianom, z powodu ograniczeń architektury, zmiany potrzeb użytkownika lub lepszego zrozumienia problemu. Wytwarzanie oprogramowania w kolejnych iteracjach, pozwala skupić się w pierwszej kolejności na obszarach najbardziej ryzykownych (np. najmniej rozpoznanych). W idealnym przypadku każda iteracja kończy się stworzeniem wykonywalnego artefaktu - pomaga to zredukować ryzyko w projekcie, otrzymujemy szybciej opinie od odbiorców oprogramowania a programistom pozwalamy skupić się na węższej dziedzinie. RUP używa podejścia iteracyjnego i przyrostowego z następujących powodów: Integracja oprogramowania robiona krok po kroku podczas wytwarzania oprogramowania, ograniczając go do mniejszej liczby elementów Integracja jest prostsza i mniej kosztowna Składowe oprogramowania są projektowane oddzielnie i łatwiej poddają się reużywalności Łatwiej wykrywać zmiany wymagań i łatwiej nimi zarządzać Ryzyka identyfikowane i atakowane są wcześnie ponieważ każda iteracja pozwala wykryć kolejne ryzyka W iteracjach ulepszana jest architektura oprogramowania Projekt wykorzystujący model iteracyjny będzie posiadał jeden główny plan faz, a zarazem wiele planów iteracji. Włączenie się udziałowców (stakeholders) jest często praktykowane przy każdym kamieniu milowym. W tej sytuacji, kamienie milowe stanowią zachętę dla udziałowców oraz dostarczają informację dotyczącą spełnienia wymagań przez system oraz gotowości organizacji do jego wdrożenia.
8 ZARZĄDZANIE WYMAGANIAMI Zarządzanie wymaganiami w RUP jest skupione na zaspokojeniu oczekiwań użytkowników końcowych systemu poprzez identyfikację i specyfikację ich potrzeb oraz wykrywanie zmiany tych wymagań. Zalety zarządzania wymaganiami: Poprawnie zidentyfikowane wymagania tworzą prawidłowy produkt, potrzeby użytkownika są zaspokojone. Tworzymy istotną dla użytkowników funkcjonalność, redukując późniejsze koszty dobudowywania zapomnianej (niezidentyfikowanej podczas tworzenia) funkcjonalności.
9 ZARZĄDZANIE WYMAGANIAMI RUP sugeruje, że zarządzanie wymaganiami składa się z następujących czynności: 1. Analiza problemu - uzgodnienie problemu i stworzenie miar, które dowiodą jego istotności dla klienta. 2. Zrozumienie potrzeb udziałowców (stakeholders - są to odbiorcy i użytkownicy oprogramowania na różnych szczeblach w organizacji, w innych metodykach zarządzania projektami nazywa się ich Interesariuszami) - konsultacja problemu i jego wartości z głównymi udziałowcami (stakeholders) i rozpoznanie w jaki sposób koncepcja rozwiązania zaspokaja ich potrzeby.
10 ZARZĄDZANIE WYMAGANIAMI 3. Definicja systemu - tworzenie projektu funkcjonalności na podstawie potrzeb użytkowników, identyfikacja przypadków użycia - które prezentują ogólne wymagania (high-level requirements) i użyteczność modelu systemu. 4. Zarządzanie zakresem systemu (Scope Management) - modyfikowanie zakresu prac nad systemem bazując na analizie wymagań, wybór kolejności realizacji (atakowania) przypadków użycia. 5. Zawężanie definicji systemu - uszczegóławianie scenariuszy przypadków użycia razem z użytkownikami systemu w celu stworzenia dokładnej Specyfikacji wymagań (ang. Software Requirements Specification - SRS), która może służyć (i na ogół służy) jako umowa pomiędzy wykonawcą systemu a klientem. Na podstawie dokumentu SRS tworzony jest projekt systemu oraz scenariusze testów. 6. Zarządzanie zmianami wymagań - zarządzanie zmianami wymagań lub nowozidentyfikowanymi wymaganiami w czasie trwania projektu.
11 ARCHITEKTURA BAZUJĄCA NA KOMPONENTACH Użycie architektury bazującej na komponentach pozwala na stworzenie systemu, który jest łatwo rozszerzalny, intuicyjnie zrozumiały i wspomaga reużywalność. Komponentem nazywamy zbiór powiązanych obiektów (w sensie programowania obiektowego). Architektura oprogramowania zyskuje na znaczeniu w miarę jak systemy informatyczne stają się coraz większe i bardziej złożone. RUP skupia się na stworzeniu prostej architektury w początkowych iteracjach. Staje się ona prototypem dla pierwszej fazy implementacji (development). Ewoluuje ona w każdej iteracji zbliżając się do architektury finalnej. RUP zakłada reguły i ograniczenia projektowe w celu uchwycenia reguł architektury. Poprzez iteracyjne wytwarzanie oprogramowania zyskujemy możliwość stopniowej identyfikacji komponentów, które mogą być w dalszej części: zakupione, zbudowane, lub użyte ponownie. Komponenty są często budowane na bazie istniejących technologii typu CORBA, COM, JEE.
12 WIZUALNE MODELOWANIE OPROGRAMOWANIA Abstrakcja projektowania od kodu i przedstawienie koncepcji za pomocą bloków graficznych może być efektywnym sposobem aby pokazać perspektywę rozwiązania. Używając takiej reprezentacji, techniczni członkowie zespołu mają możliwość wybrania najlepszego sposobu implementacji zbioru powiązanej funkcjonalności. Reprezentacja graficzna jest także produktem pośrednim pomiędzy analizą procesu biznesowego, a implementacją. Model w tym kontekście jest formą wizualizacji oraz uproszczeniem bardziej skomplikowanego projektu. RUP specyfikuje wymagane modele i opisuje dlaczego są wymagane.
13 KONTROLA I WERYFIKACJA JAKOŚCI OPROGRAMOWANIA Ocena jakości jest najczęstszym słabym punktem projektów programistycznych ponieważ jest często planowana po fakcie budowy systemu i czasami obsługiwana przez inny zespół. RUP pomaga w planowaniu kontroli jakości i jej ocenie poprzez wbudowanie jej w cały proces i zaangażowanie w nią wszystkich członków zespołu. Nie ma pracowników przypisanych tylko do jakości - RUP zakłada, że każdy członek zespołu jest odpowiedzialny za jakość w ciągu całego procesu. Proces koncentruje się na spełnieniu wymaganego poziomu jakości i zapewnia mechanizmy (workflows) do pomiaru tego poziomu.
14 ZARZĄDZANIE ZMIANAMI W OPROGRAMOWANIU We wszystkich projektach programistycznych pojawiają się z czasem zmiany i są one nieuniknione. RUP definiuje metody śledzenia, ewidencji i kontroli zmian. Zdefiniowane są także tzw. secure workspaces (bezpieczne przestrzenie robocze), które pozwalają na zagwarantowanie, że zmiany w innych systemach nie wpłyną na system tworzony. Koncepcja ta jest ściśle powiązana z tworzeniem architektury zorientowanej komponentowo.
15 CYKL ŻYCIA PROJEKTU Cykl życia w RUP bazuje na modelu spiralnym. RUP jest dostępny jako struktura prowadzenia projektu, która może być personalizowana w celu przystosowania do specyficznych potrzeb projektowych. Cykl życia w RUP układa zadania w fazy i iteracje. Projekt został podzielony na cztery fazy: 1. Faza rozpoczęcia (Inception phase) 2. Faza opracowywania (Elaboration phase) 3. Faza konstrukcji (Construction phase) 4. Faza przekazania systemu (Transition phase)
16 FAZA ROZPOCZĘCIA W fazie tej formułowany jest problem - zagadnienie biznesowe (business case). Przy opracowaniu tego zagadnienia określa się jego kontekst (business context); czynniki wpływające na jego powodzenie (success factors) - na przykład spodziewany zwrot z inwestycji, zwiększenie udziału w rynku; oraz prognozę finansową. Dodatkowo uzupełnia się go o prosty model przypadków użycia, plan projektu, wstępną analizę ryzyka oraz opis projektu (główne wymagania, ograniczenia, główna funkcjonalność).
17 FAZA ROZPOCZĘCIA Po stworzeniu powyższych dokumentów projekt sprawdza się według następujących kryteriów: Zgoda użytkowników na oszacowany koszt/czas wykonania. Zrozumienie wymagań poprzez ocenę jakości głównych przypadków użycia. Wiarygodność szacowanych kosztów, priorytetów, ryzyka i planu procesu wytwarzania. Rozmiar stworzonego prototypu architektury. Wydatki rzeczywiste względem wydatków planowanych. Jeżeli wstępny projekt nie osiągnie kamienia milowego (ang. milestone), nazywanego Lifecycle Objective Milestone, może być albo zakończony, albo faza ta może zostać jeszce raz powtórzona (w celu ulepszenia projektu wstępnego).
18 FAZA OPRACOWANIA W tej fazie projekt systemu nabiera kształtów. Przeprowadzona jest analiza dziedziny zagadnienia (ang. Domain Analysis - nazywana też w literaturze polskiej Analizą/Modelem Domeny) i budowana podstawowa architektura systemu. Zakończenie tej fazy wiąże się z osiągnięciem kamienia milowego Lifecycle Architecture Milestone poprzez spełnienie kryteriów: 1. Stworzony został model przypadków użycia - zidentyfikowani zostali aktorzy i większość przypadków. Model jest kompletny w 80%. 2. Została opracowana architektura systemu. 3. Architektura ta pozwala realizować główne przypadki użycia. 4. Sprawdzona została zgodność zagadnienia biznesowego oraz listy ryzyk. 5. Stworzony został plan prac dla całego projektu. Jeżeli projekt nie może przejść tej fazy, ciągle mamy czas na jego zaniechanie, lub ponowne opracowanie. Przechodząc do następnej fazy przechodzimy w obszar większego ryzyka, w którym zmiana (np. wymagań) jest dużo trudniejsza i znacząca.
19 FAZA KONSTRUKCJI W fazie tej główny nacisk położony jest na budowę komponentów i innych funkcjonalności opracowywanego systemu. W tej fazie odbywa się większość prac programistycznych. W większych projektach może być wiele iteracji konstrukcji, w celu podzielenia dziedziny przypadków użycia na mniejsze, zarządzalne poddziedziny. Pozwala to także na szybsze przekazywanie części prac (lub prototypów). W tej fazie tworzona jest pierwsza wersja oprogramowania do wglądu użytkowników zewnętrznych. Zakończenie fazy wiąże się z osiągnięciem Initial Operational Capability Milestone.
20 FAZA PRZEKAZANIA SYSTEMU W tej fazie produkt przekazywany jest od zespołu programistycznego do użytkowników końcowych (potocznie mówiąc: do produkcji). W tej fazie znajdują się takie czynności jak: trening użytkowników końcowych i administratorów, testy akceptacyjne (testy beta). Sprawdzana jest zgodność produktu z miarami jakości określonymi w pierwszej fazie. Spełnienie celów jest tożsame z osiągnięciem Product Release Milestone i zakończeniem cyklu wytwarzania oprogramowania.
21 FAZY PROJEKTOWANIA I PRZEKSZTAŁCANIA W METODYCE RUP
22 DYSCYPLINY I POSTĘP PRAC RUP bazuje na zbiorze klocków (building blocks, content elements). Opisują one, co ma zostać stworzone, jakie umiejętności są do tego wymagane oraz, krok po kroku, jak powinien wyglądać proces wytwarzania. Główne klocki: Rola (Roles) - Kto? Rola definiuje zbiór wymaganych umiejętności, kompetencji i odpowiedzialności. Produkt (Work Products) - Co? Produkt reprezentuje wynik zadania oraz wszystkie dokumenty i modele utworzone w czasie procesu. Zadanie (Tasks) - Jak? Zadanie opisuje jednostkę pracy przypisaną do roli.
23 DYSCYPLINY I POSTĘP PRAC W ramach każdej iteracji zadania podzielone są na dziewięć dyscyplin (disciplines): Dyscypliny inżynierskie (Engineering Disciplines): Modelowanie biznesowe (Business modeling) Wymagania (Requirements) Analiza i projekt (Analysis and design) Implementacja (Implementation) Testowanie (Test) Wdrożenie (Deployment) Dyscypliny pomocnicze (Supporting Disciplines): Zarządzanie zmianami oraz konfiguracją (Configuration and change management) Zarządzanie projektem (Project management) Środowisko (Environment)
24 MODELOWANIE BIZNESOWE Z biegiem czasu przedsiębiorstwa i inne organizacje stają się coraz bardziej zależne od systemów informatycznych. Wymusza to w sposób oczywisty na inżynierach tworzących oprogramowanie wiedzę, w jaki sposób ich systemy wpasowują się w procesy zachodzące w administracji i jakie jej wymogi adresują. Z kolei firmy inwestują na ogół w systemy informatyczne na podstawie racjonalnych przesłanek - wtedy, kiedy widzą wartość dodaną wynikającą ze stworzenia takiego systemu. Celem modelowania biznesowego jest przede wszystkim zapewnienie komunikacji i lepsze zrozumienie pomiędzy biznesem (inżynieria biznesowa) a IT (inżynieria oprogramowania). Zrozumienie biznesu oznacza, że inżynierowie oprogramowania muszą zrozumieć strukturę i dynamikę organizacji swojego klienta, jego bieżące problemy i możliwe usprawnienia. Muszą także zapewnić wspólne zrozumienie celów pomiędzy klientami, użytkownikami końcowymi a programistami. Modelowanie biznesowe tłumaczy w jaki sposób opisać wizję organizacji, w której będzie wdrożony system i jak później użyć jej do opisania procesów, ról i odpowiedzialności w organizacji.
25 WYMAGANIA Celem Wymagań jest opisanie tego, co system powinien robić. Wymagania zbierane są przez analityków, którzy odkrywają je, klasyfikują i dokumentują. Proces zbierania wymagań polega na dyskusji i uzgodnieniach pomiędzy tworzącymi system a klientem.
26 ANALIZA I PROJEKT Celem Analizy i projektu jest zobrazowanie sposobu w jaki będzie tworzony system w fazie implementacji. Ma to być system, który: Zapewnia w specyficznym środowisku realizację zadań i funkcji opisanych w przypadkach użycia. Spełnia wszystkie swoje wymagania. Jest łatwy do zmiany, gdy zmienią się wymagania funkcjonalne. Analiza i projekt tworzy model projektowy i opcjonalnie model analityczny systemu. Model projektowy zapewnia abstrakcję od kodu źródłowego - to znaczy, służy on jako wytyczne do stworzenia tego kodu. Model projektowy składa się z klas zorganizowanych w pakiety i podsystemy z dobrze określonymi interfejsami. Służy to wyodrębnieniu komponentów w fazie implementacji. Zawiera także opis, które obiekty klas współpracują w celu realizacji przypadków użycia.
27 IMPLEMENTACJA Celami implementacji są: Zdefiniowanie organizacji kodu systemu, w sensie podsystemów zorganizowanych w warstwy. Stworzenie klas i obiektów w sensie komponentów (pliki źródłowe, binaria, pliki wykonywalne i inne) Testowanie tworzonych komponentów jako jednostki (testami jednostkowymi). Integracja wyników tworzonych przez poszczególne osoby lub zespoły do pełnego systemu. Systemy realizowane są poprzez implementację swoich komponentów. Proces opisuje w jaki sposób zapewnić reużywalność istniejących komponentów albo implementować nowe komponenty ze zdefiniowaną odpowiedzialnością tworząc system łatwiejszy do utrzymania i zwiększając reużywalność.
28 TESTOWANIE Celami dyscypliny testowania są: Weryfikacja interakcji pomiędzy obiektami. Weryfikacja poprawnej integracji komponentów. Sprawdzenie, czy wszystkie wymagania zostały zaimplementowane w sposób poprawny. Identyfikacja i sprawdzenie, że defekty zostały usunięte przed wdrożeniem oprogramowania. Proces RUP proponuje podejście iteracyjne, które oznacza testowanie od początkowych faz projektu. Pozwala to na szybsze wykrywanie defektów i ograniczenie kosztów ich usunięcia. Testy są prowadzone w ramach wymiarów jakości: wiarygodności, funkcjonalności, osiągów pojedynczych aplikacji oraz systemu (performance). RUP opisuje w jaki sposób testować w każdym z tych wymiarów w czasie trwania projektu.
29 WDROŻENIE Celem wdrożenia (deployment) jest udane wytwarzanie dystrybucji produktu i dostarczanie oprogramowania końcowym użytkownikom. Pokrywa ono szeroki zbiór czynności włączając: Produkcja zewnętrznych dystrybucji oprogramowania Pakowanie oprogramowania Dystrybucja oprogramowania Instalacja oprogramowania Zapewnienie pomocy i wsparcia użytkownikom Jakkolwiek czynności wdrożenia są skoncentrowane głównie na fazie przekazania (transition), wiele z nich musi być włączone we wcześniejsze fazy w celu przygotowania do wdrożenia na końcu fazy budowy(construction). Procesy (workflows) Deployment and Environment w procesie RUP zawierają mniej szczegółów niż inne procesy.
30 ZARZĄDZANIE ZMIANĄ I KONFIGURACJĄ Dyscyplina zarządzania zmianą (change management) w RUP dotyka trzech obszarów: Zarządzania konfiguracją (configuration management) - jest odpowiedzialne za systematyczne strukturalizowanie produktów. Artefakty takie jak dokumenty i modele muszą być wersjonowane (version control) a zmiany muszą być widoczne. W skład zarządzania konfiguracją wchodzi także utrzymywanie rejestru zależności pomiędzy artefaktami, tak, aby wszystkie powiązane części były uaktualniane wraz ze zmianami. Zarządzanie zleceniami zmian(change request management) - w czasie opracowywania oprogramowania istnieje wiele artefaktów z różnymi wersjami. Zarządzanie polega na trzymaniu rejestru propozycji lub zleceń zmian. Zarządzanie stanem i miarami (Status and measurement management) - zlecenia zmian (change requests) mają stany takie jak nowy, zalogowany, zatwierdzony, przypisany i zakończony. Zlecenia zmian mają także atrybuty takie jak przyczyna (root cause) oraz natura (jak defekt lub rozszerzenie), priorytet itp. Te stany i atrybuty powinny być przechowywane w bazie danych, tak aby umożliwić tworzenie użytecznych raportów na temat postępów prac. Firma Rational posiada produkt, który umożliwia utrzymywanie takiego rejestru ClearQuest. Czynność ta wiąże się procedurami, które trzeba wykonywać. z
31 ZARZĄDZANIE PROJEKTEM Planowanie projektu w RUP występuje na dwóch poziomach - zgrubnym (coarse-grained) zwanym planem faz, który opisuje cały projekt oraz serii szczegółowych planów iteracji, które opisują iteracje. Ta dyscyplina skupia się głównie na ważnych aspektach iteracyjnego procesu wytwarzania oprogramowania. Nie próbuje objąć natomiast wszystkich aspektów zarządzania projektami, na przykład: Zarządzania zespołem: zatrudniania, szkoleń, opieki (coaching) Zarządzania budżetem: definiowania, alokowania itp. Zarządzania umowami ze sprzedawcami i klientami Główne obszary dyscypliny: Zarządzanie ryzykiem Planowanie projektu iteracyjnego, w ramach całego cyklu i pojedynczych iteracji Monitorowanie postępu projektu iteracyjnego, miary
32 ZARZĄDZANIE PROJEKTEM Dyscyplina zarządzania projektem zawiera również inne Plany i Artefakty, które są używane do kontrolowania projektu i monitorowania jego postępu. Do planów należą: Plan faz (The Software Development Plan) Plan iteracji Plan faz Każda faza traktowana jest jako projekt, kontrolowany i mierzony poprzez Software Development Plan pogrupowany w podzbiór planów kontrolnych: Plan miar (Measurement Plan) - definiuje cele pomiarów, skojarzone miary, i proste miary, które będą gromadzone w projekcie w celu monitorowania jego postępu. Plan zarządzania ryzykiem (Risk Management Plan) - uszczegóławia w jaki sposób zarządzać ryzykami związanymi z projektem. Wymaga uszczegółowienia zadań zarządzania ryzykami, które będą wykonywane, przypisania do nich odpowiedzialności oraz dodatkowych wymaganych zasobów. W projektach mniejszej skali plan może być powiązany z Software Development Plan. Lista ryzyk (Risk list) - posortowana lista znanych i otwartych ryzyk posortowanych według ważności i skojarzonych z akcjami minimalizacji oraz planami awaryjnymi (mitigation and contingency actions).
33 OPINIE RUP jest często błędnie postrzegany jako ciężki i kosztowny proces. Tymczasem RUP nie był opracowany, pozycjonowany i promowany jako gotowy proces "prosto z pudełka". Na przystosowywanie procesu do własnych potrzeb pozwala produkt Rational Method Composer. W chwili obecnej jest on rozwijany na bazie produktu Eclipse Process Framework powstającego w ramach Eclipse. W ramach tego projektu udostępniona została za darmo wersja Open Unified Process.
34 OPINIE Doświadczenia programistów z użytkowania metodyki RUP są pozytywne i negatywne. Poniżej wypowiedzi programistów, którzy mieli styczność z tą właśnie metodyką programowania: "Moje doświadczenie z RUP jest takie, że jego nieograniczona dostosowywalność stwarza problemy. Napotykałem przypadki użycia RUP od modelu kaskadowego z iteracjami analitycznymi, do pełnego procesu Agile. Uderzyło mnie to, że promowanie RUP jako pojedynczego procesu doprowadziło do tego, że ludzie mogą zrobić wszystko i nazwać to RUP - co prowadzi do tego, że RUP staje się nic nie znaczącym słowem. "Moje doświadczenie natomiast jest takie, że muszą istnieć pewne wzorce w kierunku których prace mają podążać. Problem różnej interpretacji RUP, de facto, jest jego zaletą. Negatywne skutki, które zauważamy w aktualnych projektach, wywodzą się z "cięcia kosztów" nie w tym miejscu organizacji projektu - co potrzeba. Brakuje w nim najczęściej zapomnianej roli "Inżyniera procesu wytwórczego". Być może ktoś nazwałby go kierownikiem projektu(ale zwykle kierownika projektu postrzega się inaczej i ocenia inne kompetencje projektu)."
35 BIBLIOGRAFIA
36 RATIONAL UNIFIED PROCESS Koniec Łukasz Kluk
Opis metodyki i procesu produkcji oprogramowania
Opis metodyki i procesu produkcji oprogramowania Rational Unified Process Rational Unified Process (RUP) to iteracyjny proces wytwarzania oprogramowania opracowany przez firmę Rational Software, a obecnie
Błędy procesu tworzenia oprogramowania (Badania firmy Rational Software Corporation)
Błędy procesu tworzenia oprogramowania (Badania firmy Rational Software Corporation) Zarządzanie wymaganiami Ad hoc (najczęściej brak zarządzania nimi) Niejednoznaczna, nieprecyzyjna komunikacja Architektura
Rational Unified Process. Dokładny opis metodyki i procesu produkcji oprogramowania
Rational Unified Process Dokładny opis metodyki i procesu produkcji oprogramowania Rational Unified Process (RUP). RUP jest iteracyjnym procesem rozwoju oprogramowania. Definiuje szkielet postępowania,
RUP. Rational Unified Process
RUP Rational Unified Process Agenda RUP wprowadzenie Struktura RUP Przepływy prac w RUP Fazy RUP RUP wprowadzenie RUP (Rational Unified Process) jest : Iteracyjną i przyrostową metodyka W pełni konfigurowalną
Projektowanie systemów informatycznych. wykład 6
Projektowanie systemów informatycznych wykład 6 Iteracyjno-przyrostowy proces projektowania systemów Metodyka (ang. methodology) tworzenia systemów informatycznych (TSI) stanowi spójny, logicznie uporządkowany
In ż ynieria oprogramowania wykład II Modele i fazy cyklu życia oprogramowania
In ż ynieria oprogramowania wykład II Modele i fazy cyklu życia oprogramowania prowadzący: dr inż. Krzysztof Bartecki www.k.bartecki.po.opole.pl Proces tworzenia oprogramowania jest zbiorem czynności i
Etapy życia oprogramowania. Modele cyklu życia projektu. Etapy życia oprogramowania. Etapy życia oprogramowania
Etapy życia oprogramowania Modele cyklu życia projektu informatycznego Organizacja i Zarządzanie Projektem Informatycznym Jarosław Francik marzec 23 Określenie wymagań Testowanie Pielęgnacja Faza strategiczna
Etapy życia oprogramowania
Modele cyklu życia projektu informatycznego Organizacja i Zarządzanie Projektem Informatycznym Jarosław Francik marzec 23 w prezentacji wykorzystano również materiały przygotowane przez Michała Kolano
Analityk i współczesna analiza
Analityk i współczesna analiza 1. Motywacje 2. Analitycy w IBM RUP 3. Kompetencje analityka według IIBA BABOK Materiały pomocnicze do wykładu z Modelowania i Analizy Systemów na Wydziale ETI PG. Ich lektura
Cykle życia systemu informatycznego
Cykle życia systemu informatycznego Cykl życia systemu informatycznego - obejmuję on okres od zgłoszenia przez użytkownika potrzeby istnienia systemu aż do wycofania go z eksploatacji. Składa się z etapów
Rozpoczęcie, inicjacja (ang. inception
Wydział Informatyki PB Analogia do budowanego domu Inżynieria oprogramowania II Wykład 2: Proces tworzenia oprogramowania (na podstawie Unified Process) Marek Krętowski pokój 206 e-mail: mkret@ii.pb.bialystok.pl
MSF. Microsoft Solution Framework
MSF Microsoft Solution Framework MSF a PMI PMI - metodyka podobna dla każdego rodzaju projektów MSF metodyka przeznaczona dla projektów informatycznych mająca cechy PMI MSF metodyka utworzona na podstawie
Inżynieria oprogramowania II
Wymagania funkcjonalne, przypadki użycia Inżynieria oprogramowania II Problem i cel Tworzenie projektów bez konkretnego celu nie jest dobre Praktycznie każdy projekt informatyczny powstaje z uwagi na jakiś
Inżynieria oprogramowania (Software Engineering)
Inżynieria oprogramowania (Software Engineering) Wykład 2 Proces produkcji oprogramowania Proces produkcji oprogramowania (Software Process) Podstawowe założenia: Dobre procesy prowadzą do dobrego oprogramowania
Wstęp do zarządzania projektami
Wstęp do zarządzania projektami Definicja projektu Projekt to tymczasowe przedsięwzięcie podejmowane w celu wytworzenia unikalnego wyrobu, dostarczenia unikalnej usługi lub uzyskania unikalnego rezultatu.
Iteracyjno-rozwojowy proces tworzenia oprogramowania Wykład 3 część 1
Iteracyjno-rozwojowy proces tworzenia oprogramowania Wykład 3 część 1 Zofia Kruczkiewicz 1 Zunifikowany iteracyjno- przyrostowy proces tworzenia oprogramowania kiedy? Przepływ działań Modelowanie przedsiębiorstwa
Wykład 1 Inżynieria Oprogramowania
Wykład 1 Inżynieria Oprogramowania Wstęp do inżynierii oprogramowania. Cykle rozwoju oprogramowaniaiteracyjno-rozwojowy cykl oprogramowania Autor: Zofia Kruczkiewicz System Informacyjny =Techniczny SI
Wytwarzanie oprogramowania
AiPA 6 Wytwarzanie oprogramowania Proces tworzenia oprogramowania jest procesem przekształcenia wymagań w oprogramowanie zgodnie z metodyką, która określa KTO CO robi JAK i KIEDY. - Wymagania Proces tworzenia
PYTANIA PRÓBNE DO EGZAMINU NA CERTYFIKAT ZAAWANSOWANY REQB KLUCZ ODPOWIEDZI. Część DODATEK
KLUCZ ODPOWIEDZI Część DODATEK 8.1 9.4 PYTANIA PRÓBNE DO EGZAMINU NA CERTYFIKAT ZAAWANSOWANY REQB Na podstawie: Syllabus REQB Certified Professional for Requirements Engineering, Advanced Level, Requirements
Praktyczne aspekty stosowania metody punktów funkcyjnych COSMIC. Jarosław Świerczek
Praktyczne aspekty stosowania metody punktów funkcyjnych COSMIC Jarosław Świerczek Punkty funkcyjne Punkt funkcyjny to metryka złożoności oprogramowania wyznaczana w oparciu o określające to oprogramowanie
Zarządzanie i realizacja projektów systemu Microsoft SharePoint 2010
Zarządzanie i realizacja projektów systemu Microsoft SharePoint 2010 Geoff Evelyn Przekład: Natalia Chounlamany APN Promise Warszawa 2011 Spis treści Podziękowania......................................................
Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32
Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:
METODYKA RUP JAKO NAJLEPSZE DOPEŁNIENIE ZARZĄDZANIA PROJEKTAMI INFORMATYCZNYMI
Tomasz SOBESTIAŃCZYK * ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH METODYKA RUP JAKO NAJLEPSZE DOPEŁNIENIE ZARZĄDZANIA PROJEKTAMI INFORMATYCZNYMI Zarys treści: Ta publikacja opisuje metodykę RUP jej zalety
Wstęp do zarządzania projektami
Wstęp do zarządzania projektami Definicja projektu Projekt to tymczasowe przedsięwzięcie podejmowane w celu wytworzenia unikalnego wyrobu, dostarczenia unikalnej usługi lub uzyskania unikalnego rezultatu.
Zakres wykładu. Podstawy InŜynierii Oprogramowania
Zakres wykładu Pojęcia podstawowe InŜynierii Oprogramowania Proces wytwarzania oprogramowania Artefakty procesu wytwarzania i ich modele Jakość oprogramowania Literatura: [1] Sacha K., InŜynieria oprogramowania,
1. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
KARTA PRZEDMIOTU przedmiotu Stopień studiów i forma Rodzaj przedmiotu Grupa kursów Zaawansowane techniki analizy systemowej oparte na modelowaniu warsztaty Studia podyplomowe Obowiązkowy NIE Wykład Ćwiczenia
Feature Driven Development
Feature Driven Development lekka metodyka tworzenia oprogramowania Kasprzyk Andrzej IS II Wstęp Feature Driven Development (FDD) to metodyka tworzenia oprogramowania, która wspomaga zarządzanie fazami
Konfiguracja modelowania w procesie wytwarzania oprogramowania
Konfiguracja modelowania w procesie wytwarzania oprogramowania Anna Bobkowska Materiały pomocnicze do wykładu z Modelowania i Analizy Systemów na Wydziale ETI PG. Ich lektura nie zastępuje obecności na
Projektowanie systemów informatycznych. Roman Simiński programowanie.siminskionline.pl. Cykl życia systemu informatycznego
systemów informatycznych Roman Simiński roman.siminski@us.edu.pl programowanie.siminskionline.pl Cykl życia systemu informatycznego Trochę wprowadzenia... engineering co to oznacza? Oprogramowanie w sensie
Karta opisu przedmiotu Zaawansowane techniki analizy systemowej oparte o modelowanie warsztaty
Karta opisu przedmiotu Zaawansowane techniki analizy systemowej oparte o modelowanie warsztaty przedmiotu Stopień studiów i forma: Rodzaj przedmiotu Kod przedmiotu Grupa kursów Zaawansowane techniki analizy
Wstęp do zarządzania projektami
Wstęp do zarządzania projektami Definicja projektu Projekt to tymczasowe przedsięwzięcie podejmowane w celu wytworzenia unikalnego wyrobu, dostarczenia unikalnej usługi lub uzyskania unikalnego rezultatu.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE I ANALIZA SYSTEMÓW INFORMATYCZNYCH Modeling and analysis of computer systems Kierunek: Informatyka Forma studiów: Stacjonarne Rodzaj przedmiotu: Poziom kwalifikacji: obowiązkowy
Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki
WPROWADZENIE DO UML-a
WPROWADZENIE DO UML-a Maciej Patan Instytut Sterowania i Systemów Informatycznych Dlaczego modelujemy... tworzenie metodologii rozwiązywania problemów, eksploracja różnorakich rozwiązań na drodze eksperymentalnej,
Narzędzia CASE dla.net. Łukasz Popiel
Narzędzia CASE dla.net Autor: Łukasz Popiel 2 Czym jest CASE? - definicja CASE (ang. Computer-Aided Software/Systems Engineering) g) oprogramowanie używane do komputerowego wspomagania projektowania oprogramowania
Jarosław Kuchta Dokumentacja i Jakość Oprogramowania. Wymagania jakości w Agile Programming
Jarosław Kuchta Wymagania jakości w Agile Programming Wady klasycznych metod zapewnienia jakości Duży narzut na dokumentowanie Późne uzyskiwanie konkretnych rezultatów Trudność w odpowiednio wczesnym definiowaniu
Modelowanie i analiza systemów informatycznych
Modelowanie i analiza systemów informatycznych MBSE/SysML Wykład 11 SYSMOD Wykorzystane materiały Budapest University of Technology and Economics, Department of Measurement and InformaJon Systems: The
REQB POZIOM PODSTAWOWY PRZYKŁADOWY EGZAMIN
REQB POZIOM PODSTAWOWY PRZYKŁADOWY EGZAMIN Podziękowania REQB Poziom Podstawowy Przykładowy Egzamin Dokument ten został stworzony przez główny zespół Grupy Roboczej REQB dla Poziomu Podstawowego. Tłumaczenie
Procesowa specyfikacja systemów IT
Procesowa specyfikacja systemów IT BOC Group BOC Information Technologies Consulting Sp. z o.o. e-mail: boc@boc-pl.com Tel.: (+48 22) 628 00 15, 696 69 26 Fax: (+48 22) 621 66 88 BOC Management Office
Cechy charakterystyczne tworzenia oprogramowania w Inżynierii Biomedycznej. Wykładowca Dr inż. Zofia Kruczkiewicz
Cechy charakterystyczne tworzenia oprogramowania w Inżynierii Biomedycznej. Wykładowca Dr inż. Zofia Kruczkiewicz Zofia Kruczkiewicz Wyklad_INP002017_3 1 CMMI (Capability Maturity Model Integration ) -
Nazwa przedmiotu: MODELOWANIE I ANALIZA SYSTEMÓW INFORMATYCZNYCH. Modeling and analysis of computer systems Forma studiów: Stacjonarne
Nazwa przedmiotu: MODELOWANIE I ANALIZA SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Modeling and analysis of computer systems Forma studiów: Stacjonarne Rodzaj przedmiotu: obowiązkowy w ramach specjalności:
Metodyki programowania. Tomasz Kaszuba 2015 kaszubat@pjwstk.edu.pl
Metodyki programowania Tomasz Kaszuba 2015 kaszubat@pjwstk.edu.pl Wybrane metodyki zwinne TRADYCYJNE: RUP (Rational Unified Process) spiralny, rozbudowany PRINCE2 (Projects In Controlled Environments)
Testowanie oprogramowania w środowisku IBM Rational Software Architect
Testowanie oprogramowania w środowisku IBM Rational Software Architect Software Development 2008 Michał Wolski m.wolski@modesto.pl szkolenia: inżynierii oprogramowania zarządzania projektami usługi doradcze
Projektowanie interakcji
Projektowanie interakcji K2 User Experience www.k2.pl/ux Tytuł dokumentu: k2-projektowanie_ux-oferta.pdf Data: 21 sierpnia 2009 Przygotowany przez: Maciej Lipiec Maciej Lipiec User Experience Director
Dr Katarzyna Grzesiak-Koped
Dr Katarzyna Grzesiak-Koped 2 Tworzenie oprogramowania Najlepsze praktyki IO Inżynieria wymagao Technologia obiektowa i język UML Techniki IO Metodyki zwinne Refaktoryzacja Mierzenie oprogramowania Jakośd
ZARZĄDZANIE WYMAGANIAMI ARCHITEKTONICZNYMI
ZARZĄDZANIE WYMAGANIAMI ARCHITEKTONICZNYMI XVIII Forum Teleinformatyki mgr inż. Michał BIJATA, doktorant, Wydział Cybernetyki WAT Michal.Bijata@WAT.edu.pl, Michal@Bijata.com 28 września 2012 AGENDA Architektura
Podstawy programowania III WYKŁAD 4
Podstawy programowania III WYKŁAD 4 Jan Kazimirski 1 Podstawy UML-a 2 UML UML Unified Modeling Language formalny język modelowania systemu informatycznego. Aktualna wersja 2.3 Stosuje paradygmat obiektowy.
Zasady organizacji projektów informatycznych
Zasady organizacji projektów informatycznych Systemy informatyczne w zarządzaniu dr hab. inż. Joanna Józefowska, prof. PP Plan Definicja projektu informatycznego Fazy realizacji projektów informatycznych
Narzędzia informatyczne wspierające przedsięwzięcia e-commerce
Narzędzia informatyczne wspierające przedsięwzięcia e-commerce Zarządzanie projektami e-commerce, Meblini.pl, UE we Wrocławiu Wrocław, 11-03-2018 1. Cykl życia projektu 2. Pomysł / Planowanie 3. Analiza
Zarządzanie projektami. Porównanie podstawowych metodyk
Zarządzanie projektami Porównanie podstawowych metodyk Porównanie podstawowych metodyk w zarządzaniu projektami PRINCE 2 PMBOK TENSTEP AGILE METODYKA PRINCE 2 Istota metodyki PRINCE 2 Project IN Controlled
Programowanie zespołowe
Programowanie zespołowe Laboratorium 4 - modele tworzenia oprogramowania, manifest Agile i wstęp do Scruma mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 14 marca 2017 1 / 21 mgr inż. Krzysztof
Zofia Kruczkiewicz - Modelowanie i analiza systemów informatycznych 2
Modelowanie i analiza systemów informatycznych 1. Warstwowa budowa systemów informatycznych 2. Model procesu wytwarzania oprogramowania - model cyklu życia oprogramowania 3. Wstęp do modelowania systemów
Zagadnienia (1/3) Data-flow diagramy przepływów danych ERD diagramy związków encji Diagramy obiektowe w UML (ang. Unified Modeling Language)
Zagadnienia (1/3) Rola modelu systemu w procesie analizy wymagań (inżynierii wymagań) Prezentacja różnego rodzaju informacji o systemie w zależności od rodzaju modelu. Budowanie pełnego obrazu systemu
In ż ynieria oprogramowania wykład II Modele i fazy cyklu życia oprogramowania
In ż ynieria oprogramowania wykład II Modele i fazy cyklu życia oprogramowania prowadzący: dr hab. inż. Krzysztof Bartecki, prof. PO www.k.bartecki.po.opole.pl Egzamin: część teoretyczna Test jednokrotnego
MODELE CYKLU ŻYCIA OPROGRAMOWANIA (1) Model kaskadowy (często stosowany w praktyce do projektów o niewielkiej złożonoś
OPROGRAMOWANIA (1) Model kaskadowy (często stosowany w praktyce do projektów o niewielkiej złożonoś (często stosowany w praktyce do projektów o niewielkiej złożoności) wymagania specyfikowanie kodowanie
UPEDU: Testowanie (ang. Testing discipline)
Wydział Informatyki PB Wprowadzenie Inżynieria oprogramowania II Marek Krętowski e-mail: mkret@wi.pb.edu.pl http://aragorn.pb.bialystok.pl/~mkret Wykład 9: UPEDU: Testowanie (ang. Testing discipline) Dwa
Informatyzacja przedsiębiorstw WYKŁAD
Informatyzacja przedsiębiorstw WYKŁAD dr inż. Piotr Zabawa IBM/Rational Certified Consultant pzabawa@pk.edu.pl wersja 0.1.0 07.10.2010 Wykład 1 Modelowanie procesów biznesowych Przypomnienie rodzajów narzędzi
Zwinna współpraca programistów i testerów z wykorzystaniem BDD i. by Example (JBehave/Spock/SpecFlow)
Program szkolenia: Zwinna współpraca programistów i testerów z wykorzystaniem BDD i Spec Informacje: Nazwa: Kod: Kategoria: Grupa docelowa: Czas trwania: Forma: Zwinna współpraca programistów i testerów
Model referencyjny doboru narzędzi Open Source dla zarządzania wymaganiami
Politechnika Gdańska Wydział Zarządzania i Ekonomii Katedra Zastosowań Informatyki w Zarządzaniu Zakład Zarządzania Technologiami Informatycznymi Model referencyjny Open Source dla dr hab. inż. Cezary
Część I - Załącznik nr 7 do SIWZ. Warszawa. 2011r. (dane Wykonawcy) WYKAZ OSÓB, KTÓRYMI BĘDZIE DYSPONOWAŁ WYKONAWCA DO REALIZACJI ZAMÓWIENIA
CSIOZ-WZP.65.48.20 Część I - Załącznik nr 7 do SIWZ Warszawa. 20r. (dane Wykonawcy) WYKAZ OSÓB, KTÓRYMI BĘDZIE DYSPONOWAŁ WYKONAWCA DO REALIZACJI ZAMÓWIENIA Wykonawca oświadcza, że do realizacji zamówienia
Rozdział 5: Zarządzanie testowaniem. Pytanie 1
Pytanie 1 Dlaczego niezależne testowanie jest ważne: A) Niezależne testowanie jest w zasadzie tańsze niż testowanie własnej pracy B) Niezależne testowanie jest bardziej efektywne w znajdywaniu defektów
Maciej Oleksy Zenon Matuszyk
Maciej Oleksy Zenon Matuszyk Jest to proces związany z wytwarzaniem oprogramowania. Jest on jednym z procesów kontroli jakości oprogramowania. Weryfikacja oprogramowania - testowanie zgodności systemu
Ogólne określenie wymagań. Ogólny projekt. Budowa systemu. Ocena systemu. Nie. Tak. System poprawny. Wdrożenie. Określenie.
Inżynieria I Andrzej Jaszkiewicz Kontakt Andrzej Jaszkiewicz p. 8, CW Berdychowo tel. 66 52 933 ajaszkiewicz@cs.put.poznan.pl Rynek 2008 Świat 304 miliardy $ (451 miliardów 2013F) Bez wytwarzanego na własne
Kurs programowania. Wykład 12. Wojciech Macyna. 7 czerwca 2017
Wykład 12 7 czerwca 2017 Czym jest UML? UML składa się z dwóch podstawowych elementów: notacja: elementy graficzne, składnia języka modelowania, metamodel: definicje pojęć języka i powiazania pomiędzy
Projektowanie Modeli Usług dla rozwiązań typu SOA
Projektowanie Modeli Usług dla rozwiązań typu SOA Service Oriented Modeling and Architecture (SOMA ) IBM Global Business Services, zdefiniował zestaw usług konsultingowych oraz narzędzi pomagających organizacjom
Jakość w procesie wytwarzania oprogramowania
Jarosław Kuchta Jakość Oprogramowania http://www.eti.pg.gda.pl/katedry/kask/pracownicy/jaroslaw.kuchta/jakosc/ J.Kuchta@eti.pg.gda.pl Względny koszt wprowadzania zmian w zależności od fazy realizacji projektu
Architektura oprogramowania w praktyce. Wydanie II.
Architektura oprogramowania w praktyce. Wydanie II. Autorzy: Len Bass, Paul Clements, Rick Kazman Twórz doskonałe projekty architektoniczne oprogramowania! Czym charakteryzuje się dobra architektura oprogramowania?
Zarządzanie projektami. Wykład 2 Zarządzanie projektem
Zarządzanie projektami Wykład 2 Zarządzanie projektem Plan wykładu Definicja zarzadzania projektami Typy podejść do zarządzania projektami Cykl życia projektu/cykl zarządzania projektem Grupy procesów
Architektura Systemu. Architektura systemu umożliwia kontrolowanie iteracyjnego i przyrostowego procesu tworzenia systemu.
Architektura Systemu Architektura systemu umożliwia kontrolowanie iteracyjnego i przyrostowego procesu tworzenia systemu. Architektura jest zbiorem decyzji dotyczących: organizacji systemu komputerowego,
Jak opisać wymagania zamawiającego wybrane elementy
Jak opisać wymagania zamawiającego wybrane elementy Adam Rzeźnicki, Grzegorz Sobolewski PIIT Listopad, 2012 Agenda Kontekst ma znaczenie - na przykładzie cyklu wytwórczego systemu aplikacyjnego Rodzaje
Program szkolenia: Wprowadzenie do Domain Driven Design dla biznesu (część 0)
Program szkolenia: Wprowadzenie do Domain Driven Design dla biznesu (część 0) Informacje: Nazwa: Wprowadzenie do Domain Driven Design dla biznesu (część 0) Kod: Kategoria: Grupa docelowa: Czas trwania:
Co to jest jest oprogramowanie? 8. Co to jest inżynieria oprogramowania? 9. Jaka jest różnica pomiędzy inżynierią oprogramowania a informatyką?
ROZDZIAŁ1 Podstawy inżynierii oprogramowania: - Cele 2 - Zawartość 3 - Inżynieria oprogramowania 4 - Koszty oprogramowania 5 - FAQ o inżynierii oprogramowania: Co to jest jest oprogramowanie? 8 Co to jest
Luki w bezpieczeństwie aplikacji istotnym zagrożeniem dla infrastruktury krytycznej
Luki w bezpieczeństwie aplikacji istotnym zagrożeniem dla infrastruktury krytycznej Michał Kurek, Partner KPMG, Cyber Security Forum Bezpieczeństwo Sieci Technologicznych Konstancin-Jeziorna, 21 listopada
Wytwórstwo oprogramowania. michał możdżonek
Wytwórstwo oprogramowania michał możdżonek 01.2008 Plan wykładu 1. Proces tworzenie oprogramowania 2. Zarządzanie projektami 3. Wymagania 4. Projektowanie 5. Testowanie 6. Szacowanie złożoności i kosztu
Procesy wytwarzania oprogramowania Specyfikacja i projektowanie oprogramowania
Procesy wytwarzania oprogramowania Specyfikacja i projektowanie oprogramowania dr inż. Marcin Szlenk Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Wprowadzenie O mnie dr inż. Marcin
UPEDU: Rozpoznanie wymagań (ang. requirements discipline)
Inżynieria oprogramowania II Marek Krętowski e-mail: mkret@wi.pb.edu.pl http://aragorn.pb.bialystok.pl/~mkret Wykład 5: UPEDU: Rozpoznanie wymagań (ang. requirements discipline) Na podstawie podręcznika:
Zarządzanie projektami a zarządzanie ryzykiem
Ewa Szczepańska Zarządzanie projektami a zarządzanie ryzykiem Warszawa, dnia 9 kwietnia 2013 r. Agenda Definicje Wytyczne dla zarządzania projektami Wytyczne dla zarządzania ryzykiem Miejsce ryzyka w zarządzaniu
Agile Project Management
Charles G. Cobb, pmp Zrozumieć Agile Project Management Równowaga kontroli i elastyczności przekład: Witold Sikorski APN Promise Warszawa 2012 Spis treści Wstęp...vii Kto powinien przeczytać tę książkę?...
SYSTEMY INFORMATYCZNE ćwiczenia praktyczne
SYSTEMY INFORMATYCZNE ćwiczenia praktyczne 12.03.2019 Piotr Łukasik p. 373 email: plukasik@agh.edu.pl / lukasik.pio@gmail.com www.lukasikpiotr.com Zakres tematyczny implementacji projektu informatycznego
Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa
Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Inżynieria 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia koordynator
Tematy seminariów wg Roger S. Pressman, Praktyczne podejście do oprogramowania, WNT, Zofia Kruczkiewicz
Tematy seminariów wg Roger S. Pressman, Praktyczne podejście do oprogramowania, WNT, 2004 Zofia Kruczkiewicz 1. Przedstaw znaczenie oprogramowania we współczesnym świecie x 1 2. Jaki wpływ na ludzi, komunikację
SVN. 10 października 2011. Instalacja. Wchodzimy na stronę http://tortoisesvn.tigris.org/ i pobieramy aplikację. Rysunek 1: Instalacja - krok 1
SVN 10 października 2011 Instalacja Wchodzimy na stronę http://tortoisesvn.tigris.org/ i pobieramy aplikację uruchamiany ponownie komputer Rysunek 1: Instalacja - krok 1 Rysunek 2: Instalacja - krok 2
Inżynieria oprogramowania (Software Engineering)
Inżynieria oprogramowania (Software Engineering) Wykład 3 Studium wykonalności Definicja wymagań Studium wykonalności (feasibility study) Prowadzone przed rozpoczęciem projektu, krótkie, niekosztowne badanie
Warsztaty FRAME. Sygnatura warsztatu: W1 (W3) Czas trwania: 3 dni
Sygnatura warsztatu: W1 (W3) Czas trwania: 3 dni Warsztaty FRAME I. Cel Zapoznanie uczestników z możliwościami wykorzystania Europejskiej Ramowej Architektury ITS FRAME (zwanej dalej FRAME ) oraz jej narzędzi
Faza strategiczna. Synteza. Analiza. Instalacja. Faza strategiczna. Dokumentacja. kodowanie implementacja. produkt konserwacja
Faza strategiczna określenie wymagań specyfikowanie projektowanie kodowanie implementacja testowanie produkt konserwacja Faza strategiczna Analiza Synteza Dokumentacja Instalacja Faza strategiczna (ang.
Zarządzanie testowaniem wspierane narzędziem HP Quality Center
Zarządzanie testowaniem wspierane narzędziem HP Quality Center studium przypadku Mirek Piotr Szydłowski Ślęzak Warszawa, 17.05.2011 2008.09.25 WWW.CORRSE.COM Firma CORRSE Nasze zainteresowania zawodowe
Wprowadzenie, podstawowe pojęcia, projekt a produkt Wykład1
Wprowadzenie, podstawowe pojęcia, projekt a produkt Wykład1 Zofia Kruczkiewicz 1 Literatura 1. Roger S. Pressman, Praktyczne podejście do oprogramowania, WNT, 2004 2. Stephen H. Kan, Metryki i modele w
METODYKA. Metodyka Budowy Internetowej Platformy Handlowej. Data: 20.04.2012r. Wersja 1.0. Dokument przygotowany przez zespół DC S.A.
METODYKA Metodyka Budowy Internetowej Platformy Handlowej Data: 20.04.2012r. Wersja 1.0 Dokument przygotowany przez zespół DC S.A. Odbiorca Klient Biznesowy 1 METODYKA REALIZACJI WDROŻENIA Standardowa
Przedsięwzięcia Informatyczne w Zarządzaniu
Przedsięwzięcia Informatyczne w Zarządzaniu 2005/06 dr inż. Grażyna Hołodnik-Janczura GHJ 1 LITERATURA 1. Praca zbiorowa p.r. Górski J., Inżynieria oprogramowania, MIKOM, W-wa, 2000 2. Jaszkiewicz A.,
Zarządzanie zadaniami w projektach informatycznych na przykładzie systemu Trac. Integracja z Eclipse.
Zarządzanie zadaniami w projektach informatycznych na przykładzie systemu Trac. Integracja z Eclipse. Adam Szarecki, Przemysław Wesołek Instytut Informatyki Politechnika Poznańska 2008 Podstawowe problemy
Wykaz osób w postępowaniu o udzielenie zamówienia publicznego nr 32-CPI-WZP-2244/13. Podstawa do dysponowania osobą
Załącznik nr 8 do SIWZ Wykaz osób w postępowaniu o udzielenie zamówienia publicznego nr 3-CPI-WZP-44/13 Lp. Zakres wykonywanych czynności Liczba osób Imiona i nazwiska osób, którymi dysponuje wykonawca
Cel wykładu. Literatura. Wyższa Szkoła Menedżerska w Legnicy. Modelowanie wymagań Wykład 2
Wyższa Szkoła Menedżerska w Legnicy Systemy informatyczne w przedsiębiorstwach Zarządzanie, ZIP, sem. 6 (JG) Modelowanie wymagań Wykład 2 Grzegorz Bazydło Cel wykładu Celem wykładu jest przekazanie wiedzy
Metody wytwarzania oprogramowania. Metody wytwarzania oprogramowania 1/31
Metody wytwarzania oprogramowania Metody wytwarzania oprogramowania 1/31 Metody wytwarzania oprogramowania 2/31 Wprowadzenie Syndrom LOOP Late Późno Over budget Przekroczono budżet Overtime nadgodziny
ZARZĄDZANIU. Wykład VI. dr Jan Kazimirski
INFORMATYKA W ZARZĄDZANIU Wykład VI dr Jan Kazimirski jankazim@mac.edu.pl http://www.mac.edu.pl/jankazim MODELOWANIE SYSTEMÓW UML Literatura Joseph Schmuller UML dla każdego, Helion 2001 Perdita Stevens
Metodyki zwinne wytwarzania oprogramowania
Metodyki zwinne wytwarzania oprogramowania Wykład 1 Marcin Młotkowski 7 października 2014 Plan wykładu Sprawy organizacyjne Organizacja pracowni 1 Sprawy organizacyjne Organizacja pracowni 2 3 Marcin Młotkowski
Spring Framework - wprowadzenie i zagadnienia zaawansowane
Program szkolenia: Spring Framework - wprowadzenie i zagadnienia zaawansowane Informacje ogólne Nazwa: Kod: Kategoria: Grupa docelowa: Czas trwania: Forma: Spring Framework - wprowadzenie i zagadnienia
Testowanie oprogramowania
Testowanie oprogramowania 1/17 Testowanie oprogramowania Wykład 01 dr inż. Grzegorz Michalski 13 października 2015 Testowanie oprogramowania 2/17 Dane kontaktowe: Kontakt dr inż. Grzegorz Michalski pokój
SCRUM niełatwe wdrażanie metodyki w praktyce. Adam Krosny
SCRUM niełatwe wdrażanie metodyki w praktyce Adam Krosny 1 Czym się zajmujemy Realizujemy projekty informatyczne średniej wielkości Ilość osób w projekcie 10-50 Architektura SOA, EBA Wiele komponentów