SZTUCZNE SIECI NEURONOWE METODY HEURYSTYCZNE 4 KRYTERIA ZATRZYMANIA AE KRYTERIUM ZADOWALAJĄCEGO POZIO- MU FUNKCJI PRZYSTOSOWANIA
|
|
- Sebastian Kozłowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 METODY HEURYSTYCZNE wykład 4 KRYTERIA ZATRZYMANIA AE KRYTERIUM MAKSYMALNEGO KOSZTU Algorytm kończy działanie, anie, jeśli koszt algorytmu przekroczy założon oną wartość maksymalną K max. Często przyjęta odmiana przyjęcie pewnej maksymalnej dopuszczalnej liczby pokoleń algorytmu. Φ t max t 3 Zatrzymanie działania ania gdy AE znajdzie rozwiązanie zanie o wartości funkcji przystosowania określonej przez użytkownika jako zadowalająca Φ s. Φ Φ s t 4 KRYTERIUM MIN. SZYBKOŚCI POPRAWY KRYTERIUM ZADOWALAJĄCEGO POZIO- MU FUNKCJI PRZYSTOSOWANIA Zwykle nie jest łatwo (bez dostatecznie dobrej znajo- mości funkcji przystosowa- nia) określi lić wartość zadowalającą. AE może e działać dowolnie długo (należy y dodatkowo określi lić maksymalny koszt znalezienia rozwiązania). zania). Algorytm jest zatrzymywany, jeśli w kolejnych τ oblicze- niach wartości funkcji przystosowania nie uda się poprawić wyniku o więcej niż ε. Często ε = 0 - algorytm zatrzymywany, jeśli nie uda się uzyskać lepszego rozwiązania zania w kolejnych τ pokoleniach. Φ ε τ min. szybkość poprawy t 5 SZTUCZNE SIECI NEURONOWE 6
2 HISTORIA SSN 7 Bernard Widrow i Ted Hoff (960) - neuron typu Adaline z liniową funkcją aktywacji oraz algorytm uczenia LMS (Least( Least Mean Square), zwany regułą delty lub regułą Widrowa-Hoffa Hoffa. John Hopfield (98) teoria pamięci asocjacyjnej, jako istoty działania ania sieci rekurencyjnych (sieci Hopfielda). Paul Werbos (974); David Rumelhart,, Geoffrey Hinton, Ronald Williams (986) - wsteczna propagacja błęb łędów (backpropagation) pozwala na rozwiązywanie zywanie problemów liniowo nieseparowalnych. 8 Komórki nerwowe (neurony) Synapsa - przekazuje sygnał między aksonem a dendrytem (każda komórka nerwowa posiada średnio kilka tysięcy synaps). Dendryty zbierają sygnały y z innych komórek nerwowych. Ciało o komórki agreguje sygnały y wejściowe i tworzy sygnał wyjściowy. Akson wyprowadza sygnał wyjściowy i przekazuje go dalej. 9 Chemiczno-elektryczne elektryczne przekazywanie sygnałów: Pod wpływem przychodzących cych bodźców w wydzielane sąs neuroprzekaźniki niki. Neuroprzekaźniki oddziałuj ują na błonb onę komórki zmieniając c jej potencjał elektryczny. 0 STATYSTYKA: Liczba komórek nerwowych w mózgu: m ok. 0 Połą łączeń nerwowych ok ; 0 ; Walter Pitts, Warren McCulloch (943) opraco- wanie matematyczne pojęcia sztucznego neuronu. Udowodnili też,, iżi ich wynalazek jest w stanie odzwier- ciedlić w swym działaniu aniu dowolną funkcję logiczną. Donald Olding Hebb (949) - zasada uczenia się Hebba (Hebbian learning) ) dla sztucznych sieci neuronowych (SSN). Frank Rosenblatt (958) pierwszy funkcjonujący cy model SSN (perceptron) oraz pierwszy z algorytmów uczenia SSN. Poszczególne synapsy różnir nią się wielkości cią oraz możli li- wości cią gromadzenia neuroprzekaźnik ników w pobliżu błony synaptycznej. Dlatego taki sam impuls na wejściu ciu komórki może e po- wodować inne jej pobudzenie niż dla innego wejścia. Częstotliwo stotliwość biologicznego neuronu ok. kilkaset Hz. ZALETY SSN: Nie wymagają programowania (tylko uczenie); Mają zdolność uogólniania lniania; Są wysoce odporne na szumy i zniekształcenia sygnału; Pomagają wykrywać istotne powiązania pomiędzy danymi. Stosuje się je gdy istnieje duża a złożonoz onośćść zagadnienia i trudno jest jednoznacznie określi lić formalne kryteria,, dla stworzenia programu komputerowego.
3 KLASY ZASTOSOWAŃ: PREDYKCJA ze znajomości: przewidzieć : { f ( x ), f ( x ),..., f ( x )} f ( x n+ ) n k n k+ n KLASYFIKACJA I ROZPOZNAWANIE WZORCÓW Zaszeregowanie danych wejściowych do jednej z klas: bez jawnego definiowania związku zku między danymi wejściowymi a wyjściowymi 3 np. sieć pozwala na podstawie danych bilansowych stwierdzić,, czy dane przedsiębiorstwo należy y do zwyżkuj kujących gospodarczo, czy przeżywa stagnację czy też grozi mu regres. 4 APROKSYMACJA (interpolacja, ekstrapolacja) ze znajomości: odtworzyć: { x, f ( x )} i f ( x) i STEROWANIE ASOCJACJA Podanie danego wzorca na wejście powinno powodować pojawienie się odpowiadającego mu wzorca na wyjściu. KOJARZENIE DANYCH automatyzacja procesów w wnioskowania i wykrywanie istotnych powiąza zań między danymi. 5 6 FILTRACJA SYGNAŁÓW PRZYKŁADOWE ZASTOSOWANIA: OPTYMALIZACJA statyczna i dynamiczna, optymalizacja kombinato-ryczna i zagadnienia bardzo trudne obliczeniowo. 7 8
4 NIE NADAJĄ SIĘ DO: Perceptron (Rosenblatt 958): Przetwarzania informacji symbolicznej (np. edytory tekstu); Obliczeń o wymaganej wysokiej dokładno adności (sieć pracuje jakościowo, dając c wyniki przybliżone); Rozwiązywania zywania zagadnień,, gdzie rozumowanie jest przeprowadzanie wieloetapowo (a musi być udokumentowane). Układ posiadający wiele wejść i jedno wyjście: Wejście: n stanów wejsciowych x,...,x n Wyjście: 0 (-)) lub 9 Uwaga: pod pojęciem perceptronu rozumie się też czasem siec połą łączonych jednostek (neuronów). 0 Sprzętowo: Pojedynczy perceptron pozwala na: przetwarzanie jednostkowych informacji; podejmowanie prostych decyzji; przekazywanie wyników w sąsiadom. s siadom. Dopiero w połą łączeniu z innymi węzłami w uzyskuje się zdolność podejmowania złożonych z onych decyzji. Sygnał wyjściowy y i i-tego neuronu liniowego: w ij x j N y waga dla i ij j j= 0 dla j-ego ego wejścia i-tegotego neuronu; j-tyty sygnał wejściowy ciowy; liczba wejść w i-tym N = wx tym neuronie. Sygnał wyjściowy y i i-tego neuronu (ogólnie) lnie): N yi = ϕ( e) = ϕ wijx j + B j= e łączne pobudzenie neuronu (net value); ϕ funkcja aktywacji; W B próg (bias). neuronie liniowym e jest sygnałem wyjściowym UCZENIE SIECI NEURONOWYCH Uczenie zamiast programowania. Ta sama sieć może e służyćs do rozwiązywania zywania skrajnie różnych zadań. Uczenie sieci: Wymuszanie określonego lonego reagowania sieci na zadane sygnały y wejściowe (poprzez odpowiedni dobór r wag). Uczenie sieci: uczenie z nauczycielem (nadzorowane); uczenie z krytykiem; uczenie bez nauczyciela (nienadzorowane).). 3 Uczenie z nauczycielem (supervised learning) Podawanie sieci zestawów w sygnałów w WE wraz z prawidłowym sygnałem WY. Naśladowanie nauczyciela,, jakim jest ciąg uczący cy (podejście szkolne ). Zestawy sygnałów w (zwykle) powtarza się wielokrotnie, zaś sieć modyfikuje wagi na wejściach tak, by zmini- malizować błąd. Zmiana wagi na i-tym wejściu neuronu po pokazaniu j-ego obiektu uczącego cego jest proporcjonalna do popełnianego na tym etapie błęb łędu δ ( j ). 4
5 UCZENIE PERCEPTRONU: Sieć dwuwarstwowa wielokąty wypukłe e (simpleksy( simpleksy): Pojedynczy neuron (lub warstwa neuronów) typu per- ceptronowego jest w stanie rozdzielić przestrzeń obszarów wejściowych granicą decyzyjną na obszary (półprzestrzenie). zmienne prosta; ogólnie hiperpłaszczyzna aszczyzna. Sieci trzy- i więcej warstwowa dowolne obszary (w tym wielokąty niewypukłe i obszary wielospójne). 5 6 Perceptron może e prawidłowo klasyfikować sygnały, y, jeśli są liniowo separowalne: Poprawka wartości wagi dla perceptronu w j-ym kroku (regu( reguła a delta): w =ηδ x ( j) ( j) ( j) i i δ = z y ( j) ( j) ( j) 7 z wymagana odpowiedź neuronu; y uzyskana odpowiedź neuronu; x dana wejściowa dla i-tego wejścia; η - współczynnik uczenia (learning rate). 8 Waga: - dodatnia - sygnał pobudzający cy; - ujemna sygnał gaszący cy; brak połą łączenia między neuronami. FUNKCJA AKTYWACJI Wartość f. aktywacji sygnał wyjściowy neuronu. liniowa f. aktywacji; nieliniowa f. aktywacji: Sygnały y wyjściowe: 0, (funkcje unipolarne) -, (funkcje bipolarne). 9 - f. skoku jednostkowego (progowa), np.: { gdy e ϕ ( e) = 0 0 gdy e< 0 - inna, np. typu sigmoidalnego (f. logistyczna): ϕ ( e) = + exp( β e) β współczynnik sterujący nachyleniem krzywej 30
6 WYMAGANE CECHY F. AKTYWACJI: Ciągłe e przejście pomiędzy wartości cią maksymalną a minimalną. Łatwa do obliczenia i ciągła a pochodna np. dla f. sigmoidalnej: ϕ ( e) = + exp( β e) WSPÓŁCZYNNIK β beta= 0.5 beta=0.5 beta= [ ] ϕ '( e) = β ϕ( e) ϕ( e) Możliwo liwość wprowadzenia do argumentu parametru β do ustalania kształtu tu krzywej. 3 BIAS bias=0 bias=- bias= 3 Bipolarny odpowiednik f. sigmoidalnej: exp( β e) exp( β e) ϕ ( e) = = tgh( β e) exp( βe) + exp( βe) [ ] [ ] ϕ'( e) = β + ϕ( e) ϕ( e) SIEĆ NEURONOWA: - układ połą łączonych neuronów (model warstwowy) 0.5 Sieć jednowarstwowa Sieć wielowarstwowa beta= Sieć wielowarstwowa min. jedna warstwa ukryta. Zwykle: kilka warstw, połą łączenia każdy z każdym (min. liczba parametrów w do opisu). 34 RODZAJE NEURONÓW: warstwy WE (nie liczona); warstw ukrytych: efekty działania ania obserwowane pośrednio poprzez WY; pośredniczenie między WE a WY; niemożno ność dokładnego obliczenia błęb łędów; warstwy WY (rozwiązania zania stawianych zadań). Pamięć neuronu reprezentowana poprzez wagi. Sieć działa a jako całość ść. 35 Projektowanie sieci - problemy: ile warstw ukrytych? ile neuronów w w warstwach? Liczba neuronów w w warstwie WE: zależy y od liczby danych podawanych na wejście. Liczba neuronów w w warstwie WY: zależy y od liczby poszukiwanych rozwiąza zań. Sieć z warstwą ukrytą powinna nauczyć się roz- wiązywania większo kszości postawionych problemów. Zbyt wiele warstw ukrytych pogorszenie procesu uczenia (algorytm grzęźnie w szczegółach ach ). ). 36
7 Nieznane sąs problemy wymagające sieci z więcej niż 3 warstwami ukrytymi (zwykle lub ). Liczbę neuronów w w warstwie ukrytej można próbowa bować oszacować: Nu = Nwe Nwy Np Np.(L. Rutkowski, Metody i techniki sztucznej inteligencji, PWN, W-wa 006): Ciąg g uczący: cy: Wejście x 0 Oczekiwane wyjście d=f(x) [ ] y = sin( x), x 0, π π π π 7π 4π 5π 5π π 3π 5π π 7π π π Zwykle: : uczenie z początkowo małą liczbą neuronów w i stopniowe zwiększanie ich liczby. Zbyt wiele elementów w warstwy ukrytej: uczenie się na pamięć ęć Przykład: Rozpoznawanie znaków alfabetu WE - 35 (pikseli) WY -6 (liter) a co wewnątrz? Wstępnie pnie: Ostatecznie: Zwykle: : uczenie z początkowo małą liczbą neuronów i stopniowe zwiększanie ich liczby. Zbyt mało neuronów w w warstwie ukrytej sieć nie potrafi poprawnie odwzorować funkcji. UCZENIE SIECI NIELINIOWYCH Uczenie sieci minimalizacja funkcji błęb łędu. Zbyt wiele elementów w warstwy ukrytej: wydłużenie procesu uczenia; uczenie się na pamięć ęć (szczególnie, lnie, gdy liczba próbek w ciągu uczącym cym jest niewielka) - sieć poprawnie rozpoznaje tylko sygnały y zgodne z tymi w ciągu uczącym cym ( brak generalizacji przy dobrej interpolacji). 4 minimalizacja funkcji błęb łędu Zwykle gradientowe metody optymalizacji (np. metoda największego spadku). Warunek funkcja aktywacji jest ciągła. 4
8 Poprawka wartości wagi: w =ηδ dϕ( e) x de ( j ) ( j) ( j) i ( j) i j numer kroku uczenia; Funkcja logiczna XOR Schemat sieci: - - Jeśli neuron nie popełnia błęb łędu wagi nie sąs zmieniane. Poprawka wagi na WE jest tym większa, im większy jest błąd d na WY. Poprawka wagi na i-tym WE jest proporcjonalna do wielkości sygnału u na tym wejściu (x( i ). 43 Ciąg uczący cy: WE WE WY Ciąg weryfikujący (np( np): WE WE Rozpoznawanie znaków w X, 0, +, - Ciąg uczący cy: Wektor WE Wektor WY Nauczona sieć rozpoznaje symbole zniekształcone: Matryca znaków Liniowe rozwinięcie i zamiana na wektor WE Schemat sieci: FILTROWANIE SYGNAŁÓW WE - wzorce sygnałów zaszumionych; WY sygnały y czyste np. sinus : WE WY Okolice zera mała a wartość sygnału u (trudno( trudności). Rozwiązanie zanie przesunięcie sygnału: Z: R. Tadeusiewicz: Elementarne wprowadzenie do techniki sieci neuronowych...,, PLJ, Warszawa, 998! 47 Z: R. Tadeusiewicz: Elementarne wprowadzenie do techniki sieci neuronowych...,, PLJ, Warszawa,
9 WSPÓŁCZYNNIK UCZENIA η learning rate Wartości: w przedziale (typowo ) METODA MOMENTUM (ang. pęd) p Nadanie uczeniu pewnej bezwładno adności; Zwiększenie szybkości uczenia bez zaburzenia stabilności algorytmu; bez wsp. momentum zbyt mały powolne uczenie sieci; zbyt duży gwałtowne zmiany parametrów w sieci. 49 wsp. momentum = Dodatkowy składnik: zmiany wag zależą od błęb łędów aktualnych i poprzednich. JAK DŁUGO D UCZYĆ SIEĆ? η dϕ ( e) w = ηδ x + η w de ( j) ( j) ( j) ( j ) i ( j ) i i wartości w przedziale 0 0 (cz( często 0.9 ). Wagi: wartości początkowe zwykle losowo, często z zakresu -0., 0. (najlepiej bez zera). Liczba prezentacji ciągu uczącego cego konieczna do nauczenia sieci: prognozowanie finansowe: 0 9 synteza mowy: rozpoznawanie mowy lub pisma odręcznego: 0 rozpoznawanie znaków Kanji: Uważa a się,, iżi czas uczenia sieci rośnie wykład ad- niczo wraz ze wzrostem liczby elementów w sieci. Korzystne jest pokazywanie elementów w ciągu uczącego cego w różnej r kolejności ci. Zbyt długie d uczenie również może e skutkować utratą zdolności uogólniania: Malenie błęb łędu jest różne r dla różnie r wylosowanych wag początkowych (dla( tej samej sieci): 53 Ghaboussi, CISM
10 UCZENIE WARSTW UKRYTYCH Bezpośrednie wyznaczenie błęb łędów nie jest możliwe (sygnałów w WY z warstwy ukrytej nie ma z czym porówna wnać). Metoda wstecznej propagacji błęb łędów (backpropagation): Zmiana wagi jak przy sieci jednowarstwowej; Obliczanie δ sumowanie błęb łędów w z następnej warstwy Błędy w warstwach ukrytych sąs wyznaczane w sposób b przybliżony. 55 δ n ( j ) ( k) ( j) ( j ) m = w m δ k k = m numer neuronu w warstwie ukrytej n liczba neuronów w w warstwie następnej k; j numer kroku uczenia; ( j ) δ m ( j ) δ k błąd d popełniany przez neuron m; błąd d popełniany przez neuron w warstwie k ( j ) k k k 3 k n kn m δ ( j ) m δ ( kn )( j) w m znane nieznane obliczanie błęb łędów w warstwie WY; obliczanie błęb łędów w warstwie poprzedniej; itd. aża do warstwy pierwszej. 56 Uczenie z krytykiem (reinforcement learning): Odmiana uczenia nadzorowanego. Nauczyciel nie dysponuje pełną wiedzą na temat wszystkich prawidłowych odpowiedzi. Zamiast informacji o pożą żądanym WY, sieć dysponuje jedynie oceną efektu swego działania ania w ramach dwóch prostych kategorii. Ocena wzmocnienie (pozytywne lub negatywne) odpowiednie zmiany wag. 57 Uczenie z krytykiem (reinforcement learning): Optymalizacja zysków w na dłuższą metę. Np.: gry z przeciwnikiem, krytyką jest przegrana lub wygrana na końcu partii. Uczenie z krytykiem lub z wzmocnieniem pożą żądanych zachowań po dłuższym d okresie. Uczenie dojrzałe (nabieranie mądrości ). Bardziej uniwersalne w zastosowaniu podejście do problemu. Praktyczna realizacja jest bardziej skomplikowana. 58 Uczenie bez nauczyciela (unsupervisedupervised learning) Pożą żądana odpowiedź nie jest znana. Sieć uczy się poprzez analizę reakcji na pobudzenia; samoorganizacja struktury wszelkie regularności ci, linie podziału i inne charakterystyki danych wejściowych sieć musi wykryć sama. Zdolności do wykrywania skupisk obrazów wejścio cio-wych są wykorzystywane do ich klasyfikacji,, gdy klasy nie sąs z góry g ustalone. 59 Uczenie bez nauczyciela (unsupervisedupervised learning) Sieci pokazuje się kolejne przykłady bez określenia enia,, co trzeba z nimi zrobić. Donald Hebb (fizjolog i psycholog) w umyśle za- chodzą procesy wzmacniania połą łączeń między neuro- nami,, jeśli i zostały y one pobudzone jednocześnie. nie. Różne pobudzenie różnych r neu- ronów - połą łączenia między źródłami silnych sygnałów a neuronami, które na nie reagują są wzmacniane. W sieci stopniowo powstają wzorce poszczególnych typów sygnałów w rozpoznawane przez pewną część neuronów. Uczenie spontaniczne,, odkrywanie ciekawych struktur w przestrzeni danych, korelacja zachowań systemu ze zmianą tych struktur dominuje w okresie niemowlęcym cym. 60
11 Uczenie bez nauczyciela - wady SAMOUCZENIE SIECI Zwykle powolniejsze. Nie wiadomo, który neuron będzie b rozpoznawał jaki sygnał. Część sygnałów w może e być rozpoznawana przez więcej niż jeden neuron. Cała a wiedza, jaką sieć może e zdobyć jest zawarta w obiektach pokazywanych (muszą zawierać klasy podobieństwa stwa). Nie mogą to być obiekty całkiem przypadkowe, ale tworzyć skupiska wokół pewnych ośrodko rodków. Proces samouczenia utrwala i pogłę łębia wrodzone zdolności neuronów. 6 6 SAMOUCZENIE SIECI: Ciąg g uczący: cy: { () () ( N ) U = X, X,... X } X (j ) n-wymiarowy wektor danych wejściowych w j-ym kroku uczenia N liczba posiadanych pokazów. Reguła a uczenia dla m-tego neuronu w j-ym kroku: gdzie: w = w + ηx y ( m)( j+ ) ( m)( j) ( m) ( j) i i i m n ( j) ( m)( j) ( j) m = i i i= y w x 63 w = w + ηx y ( m)( j+ ) ( m)( j) ( m) ( j) i i i m n ( j) ( m)( j) ( j) m = i i i= y w x Część sygnałów w może nie być rozpoznawana przez ża- den neuron (sieć musi być większa niż przy nauczycielu zwykle przynajmniej 3 razy). Wielkość zmiany wagi liczona na podstawie iloczynu sygnału u na odpowiednim wejściu przez sygnał wyjściowy neuronu. Uczenie to zwie się też korelacyjnym zmierza do ta- kiego dopasowania wag, by uzyskać najlepszą kore- lację między sygnałami ami WE a zapamiętanym (w formie wag) wzorcem sygnału, na który dany neuron ma reagować. 64 KONKURENCJA W SIECIACH SAMOUCZĄCYCH CYCH WTA (Winner Takes All) - zwycięzca zca bierze wszystko: Najlepszy neuron niezerowa wartość sygnału u WY (zwykle ); Pozostałe e wyjścia sąs zerowane; Tylko najlepszy neuron jest uczony. Zasada WTA daje jednoznaczną odpowiedź sieci (co niekoniecznie musi być zaletą). Wszystkie sygnały y mniejsze niż ustalony próg brak rozpoznania. 65 Efekty: Neuron, który raz wygrał przy pokazaniu danego wzorca dalej będzie b wygrywał. Samouczenie jest skuteczniejsze i efektywniejsze (każdy neuron rozpoznaje jeden obiekt, pozostałe e neurony pozostają niezagospodarowane). Wysoce prawdopodobne jest, iż: i - nie będzie b grup neuronów w rozpoznających ten sam wzorzec; - nie będzie b klas nierozpoznanych przez żaden neuron. Niezagospodarowane neurony sąs gotowe rozpoznawać nowe wzorce. Po wykorzystaniu wszystkich neuronów w i pojawieniu się nowego wzorca przeciąganie którego regoś z neuronów w w jego stronę: 66
12 SIECI SAMOORGANIZUJĄCE SIĘ (Teuvo Kohonen) 67 Analiza skupień w analizy ekonomicznej (np. podobieństwo przedsiębiorstw rentowność ść). Kolektywność to co rozpoznaje neuron zależy w dużej mierze od tego, co rozpoznają inne neurony. Sąsiedztwo znaczenie ma wzajemne położenie neuronów w w warstwach. Zwykle sąsiedztwo s siedztwo -wymiarowe neurony w węzłach w regularnej siatki (ka( każdy neuron ma min. 4 sąsiads siadów). 68 Przykładowe sąsiedztwa: s siedztwa: Rozszerzone sąsiedztwo: siedztwo: Rozbudowane sąsiedztwo: siedztwo: Jednowymiarowe sąsiedztwo: siedztwo: Gdy w procesie uczenia który ryś neuron zwycięż ęża: uczy się też (w w mniejszym stopniu) ) jego sąsiads siadów (niezależnie od ich wag początkowych! tkowych!). Neurony sąsiadujs siadujące rozpoznają sygnały z sąsiadujs siadujących podobszarów: 7 Tworzą odwzorowania sygnałów w WE w sygnały y WY, spełniaj niające pewne ogólne kryteria (nie zdeterminowa- ne przez twórc rcę ani użytkownika u sieci) samoorganizacja sieci. Inny (wy( wyższy) ) sposób samouczenia,, wprowadzający efekty koherencji i kolektywności. Koherencja (słown.. spójno jność,, spoistość ść, łączno czność) - sieć grupuje dane wejściowe wg wzajemnego podobień- stwa wykrywa automatycznie obiekty podobne do siebie nawzajem i inne od innych grup obiektów. Skutek: Sygnały y równomiernie r rozmieszczone w pewnym obsza- rze neurony zostają tak nauczone, by każdy podobszar sygnałów w był rozpoznawany przez inny neuron. 7
13 Po wytrenowaniu każdej praktycznej sytuacji odpowiada neuron, który jąj reprezentuje. Sąsiedztwo powoduje wykrywanie sytuacji podobnych do prezentowanych. W sieci powstaje wewnętrzny obraz świata zewnętrznego trznego. Sygnały y blisko siebie będąb wykrywane przez leżą żące blisko siebie neurony. Przykładowe zastosowania: robot dostosowujący zachowanie do zmiennego środowiska; systemy bankowe stworzenie modelu wiarygodnego kredytobiorcy. 73 SIECI REKURENCYJNE Zawierają sprzęż ężenia zwrotne: Po jednorazowym podaniu sygnału u WE długotrwały proces zmiany sygnału u WY, w efekcie stan równowagir wnowagi. 74 Waga sprzęż ężenia dodatnia sygnał zmienia się jednokierunkowo (aperiodycznie); Waga sprzęż ężenia ujemna sygnał zmienia się oscylacyjnie; Przy neuronach nieliniowych możliwe chaotyczne błądzenie sygnałów; Zachowania: stabilne (zbieganie( się sygnałów w do określonej wartości ci); niestabilne (warto( wartości sygnału u coraz większe ksze). Zastosowania: zadania optymalizacji (stany( stany równowagi r odpowiadają rozwiązaniom zaniom zadań); pamięci skojarzeniowe (drobny( drobny fragment informacji pozwala odtworzyć całą informację). 75 SIECI HOPFIELDA Każdy neuron jest związany zany z każdym innym na zasadzie obustronnego sprzęż ężenia zwrotnego. Zabroniono sprzęż ężeń zwrotnych obejmujących pojedynczy neuron. w Symetria współczynnik czynników w wagowych: xy =w yx X Y Skutek: zachodzące ce procesy sąs zawsze stabilne. w yx w xy 76
METODY INTELIGENCJI OBLICZENIOWEJ wykład 5
METODY INTELIGENCJI OBLICZENIOWEJ wykład 5 1 2 SZTUCZNE SIECI NEURONOWE cd 3 UCZENIE PERCEPTRONU: Pojedynczy neuron (lub 1 warstwa neuronów) typu percep- tronowego jest w stanie rozdzielić przestrzeń obsza-
METODY HEURYSTYCZNE 4
METODY HEURYSTYCZNE wykład 4 1 OCENA DZIAŁANIA ANIA AE 2 LOSOWOŚĆ W AE Różne zachowanie algorytmu w niezależnych nych uruchomieniach przy jednakowych ustawieniach parametrów w i identycznych populacjach
SZTUCZNE SIECI NEURONOWE
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek
METODY INTELIGENCJI OBLICZENIOWEJ wykład 4
METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 1 2 SZTUCZNE SIECI NEURONOWE HISTORIA SSN 3 Walter Pitts, Warren McCulloch (1943) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich
SZTUCZNE SIECI NEURONOWE
METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek
OCENA DZIAŁANIA AE. METODY HEURYSTYCZNE wykład 4 LOSOWOŚĆ W AE KRZYWE ZBIEŻNOŚCI ANALIZA STATYSTYCZNA:
METODY HEURYSTYCZNE wykład 4 OCENA DZIAŁANIA AE 1 2 LOSOWOŚĆ W AE Różne zachowanie algorytmuw poszczególnych uruchomieniach przy jednakowych ustawieniach parametrów i identycznych populacjach początkowych.
METODY HEURYSTYCZNE 5
METODY HEURYSTYCZNE wykład 5 1 SSN cd. 2 KLASY ZASTOSOWAŃ: PREDYKCJA ze znajomości: przewidzieć : { f ( x ), f ( x ),..., f ( x )} f ( x ) n+ 1 n k n k+ 1 n bez jawnego definiowania związku zku między
METODY HEURYSTYCZNE wykład 5
METODY HEURYSTYCZNE wykład 5 1 KLASY ZASTOSOWAŃ: PREDYKCJA ze znajomości: przewidzieć : bez jawnego definiowania związku między danymi wejściowymi a wyjściowymi 2 KLASYFIKACJA I ROZPOZNAWANIE WZORCÓW Zaszeregowanie
METODY HEURYSTYCZNE wykład 5
METODY HEURYSTYCZNE wykład 5 1 KLASY ZASTOSOWAŃ: PREDYKCJA ze znajomości: przewidzieć : { f ( x ), f ( x ),..., f ( x )} f ( x ) n+ 1 n k n k + 1 n bez jawnego definiowania związku między danymi wejściowymi
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.
Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I
Obliczenia Naturalne - Sztuczne sieci neuronowe
Literatura Wprowadzenie Obliczenia Naturalne - Sztuczne sieci neuronowe Paweł Paduch Politechnika Świętokrzyska 13 marca 2014 Paweł Paduch Obliczenia Naturalne - Sztuczne sieci neuronowe 1 z 43 Plan wykładu
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Sztuczne sieci neuronowe
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe Sztuczne sieci neuronowe Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Typy sieci 2 Wprowadzenie Zainteresowanie
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Wstęp do sztucznych sieci neuronowych
Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna
Podstawy sztucznej inteligencji
wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU
Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA JOANNA GRABSKA-CHRZĄSTOWSKA
SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA SAMOUCZENIE SIECI metoda Hebba W mózgu
Inteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
Sztuczna inteligencja
Sztuczna inteligencja Wykład 7. Architektury sztucznych sieci neuronowych. Metody uczenia sieci. źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Podstawowe architektury
Sztuczne sieci neuronowe (SNN)
Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe
ELEMENTY SZTUCZNEJ INTELIGENCJI. Sztuczne sieci neuronowe
ELEMENTY SZTUCZNEJ INTELIGENCJI Sztuczne sieci neuronowe Plan 2 Wzorce biologiczne. Idea SSN - model sztucznego neuronu. Perceptron prosty i jego uczenie regułą delta Perceptron wielowarstwowy i jego uczenie
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;
Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie
Temat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD X: Sztuczny neuron Koneksjonizm: wprowadzenie 1943: Warren McCulloch, Walter Pitts: ogólna teoria przetwarzania informacji oparta na sieciach binarnych
Inteligentne systemy informacyjne
Inteligentne systemy informacyjne Moduł 10 Mieczysław Muraszkiewicz www.icie.com.pl/lect_pw.htm M. Muraszkiewicz strona 1 Sieci neuronowe szkic Moduł 10 M. Muraszkiewicz strona 2 Dwa nurty M. Muraszkiewicz
SIECI REKURENCYJNE SIECI HOPFIELDA
SIECI REKURENCYJNE SIECI HOPFIELDA Joanna Grabska- Chrząstowska Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA SPRZĘŻENIE ZWROTNE W NEURONIE LINIOWYM sygnał
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej
Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.
Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE INSTYTUT TECHNOLOGII MECHANICZNEJ Metody Sztucznej Inteligencji Sztuczne Sieci Neuronowe Wstęp Sieci neuronowe są sztucznymi strukturami, których
Oprogramowanie Systemów Obrazowania SIECI NEURONOWE
SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,
Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek
Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 8. SZTUCZNE SIECI NEURONOWE INNE ARCHITEKTURY Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SIEĆ O RADIALNYCH FUNKCJACH BAZOWYCH
wiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Sztuczne sieci neuronowe
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Systemy wspomagania decyzji Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Uczenie sieci Typy sieci Zastosowania 2 Wprowadzenie
Widzenie komputerowe
Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Wykład 1: Wprowadzenie do sieci neuronowych
Wykład 1: Wprowadzenie do sieci neuronowych Historia badań nad sieciami neuronowymi. - początki: badanie komórek ośrodkowego układu nerwowego zwierząt i człowieka, czyli neuronów; próby wyjaśnienia i matematycznego
ĆWICZENIE 5: Sztuczne sieci neuronowe
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 5: Sztuczne sieci neuronowe opracował: dr inż. Witold
Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.
Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego
Wstęp do teorii sztucznej inteligencji
Wstęp do teorii sztucznej inteligencji Wykład IV SSN = Architektura + Algorytm Uczenie sztucznych neuronów. Przypomnienie. Uczenie z nauczycielem. Wagi i wejścia dla sieci neuronuowej: reprezentacja macierzowa
2.4. Algorytmy uczenia sieci neuronowych
2.4. Algorytmy uczenia sieci neuronowych Prosta struktura sieci jednokierunkowych sprawia, że są najchętniej stosowane. Ponadto metody uczenia ich należą również do popularnych i łatwych w realizacji.
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY SZTUCZNE SIECI NEURONOWE MLP Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM
ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega
1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2013/2014
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2013/2014 Sieci neuronowe Sieci neuronowe W XIX wieku sformułowano teorię opisującą podstawowe
Uczenie Wielowarstwowych Sieci Neuronów o
Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
Metody sztucznej inteligencji
Metody sztucznej inteligencji sztuczne sieci neuronowe - wstęp dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz Metody sztucznej
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe. Krzysztof Regulski, WIMiIP, KISiM, B5, pok. 408
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe Krzysztof Regulski, WIMiIP, KISiM, regulski@aghedupl B5, pok 408 Inteligencja Czy inteligencja jest jakąś jedną dziedziną, czy też jest to nazwa
SIECI RBF (RADIAL BASIS FUNCTIONS)
SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Rozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak
2 Rozdział 1 Sztuczne sieci neuronowe. 3 Sztuczna sieć neuronowa jest zbiorem prostych elementów pracujących równolegle, których zasada działania inspirowana jest biologicznym systemem nerwowym. Sztuczną
6. Perceptron Rosenblatta
6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:
ESI: Perceptrony proste i liniowe
ESI: Perceptrony proste i liniowe [Matlab 1.1] Matlab2015b i nowsze 1 kwietnia 2019 1. Cel ćwiczeń: Celem ćwiczeń jest zapoznanie się studentów z podstawami zagadnieniami z zakresu sztucznych sieci neuronowych.
Sztuczne sieci neuronowe. Uczenie, zastosowania
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe. Uczenie, zastosowania Inteligencja Sztuczne sieci neuronowe Metody uczenia Budowa modelu Algorytm wstecznej propagacji błędu
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman
Seminarium magisterskie Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Plan wystąpienia Ogólnie o sztucznych sieciach neuronowych Temat pracy magisterskiej
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład VII: Modelowanie uczenia się w sieciach neuronowych Uczenie się sieci i trening nienaruszona struktura sieci (z pewnym ale ) nienaruszone
Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
I EKSPLORACJA DANYCH
I EKSPLORACJA DANYCH Zadania eksploracji danych: przewidywanie Przewidywanie jest podobne do klasyfikacji i szacowania, z wyjątkiem faktu, że w przewidywaniu wynik dotyczy przyszłości. Typowe zadania przewidywania
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja
SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH. Jakub Karbowski Gimnazjum nr 17 w Krakowie
SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH Jakub Karbowski Gimnazjum nr 17 w Krakowie KRAKÓW 2017 1. Spis treści 2. WSTĘP 2 3. SIECI NEURONOWE 2 3.1. Co to są sieci neuronowe... 2
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW
Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XI: Sztuczne sieci neuronowe [pattern associator], PA struktura: Sieci kojarzące wzorce programowanie: wyjście jednostki = aktywacji sieciowej (N)
Wstęp do teorii sztucznej inteligencji
Wstęp do teorii sztucznej inteligencji Wykład V Algorytmy uczenia SSN Modele sieci neuronowych. SSN = Architektura + Algorytm Wagi i wejścia dla sieci neuronuowej: reprezentacja macierzowa δ i = z i y