Przykład zagadnienia wymagającego sztucznej inteligencji: Rozpoznawanie obrazów. Rozpoznawanie obrazów. Teraz trochę szczegółów
|
|
- Fabian Kwiecień
- 8 lat temu
- Przeglądów:
Transkrypt
1 Przykład zagadea wymagającego sztuczej telgecj: Rozpozawae obrazów Jaek! Aa? Rozpozawae obrazów Nawet ajwększe superkomputery pewych rzeczy e potrafą zrobć! Istota rozpozawaa polega a zamae obrazu a decyzję. Ne jest to łatwe! Isteje teora, że podczas ludzkej percepcj wzrokowej poszczególe cechy obrazu pobudzają oddzele ośrodk w mózgu Obraz cyfrowy jako zbór puktów Decyzja: To jest łabędź! Program aalzujący zbór puktów rozpozający obekt a obraze Zbór obektów lub zjawsk podlegających rozpozawau ozaczać będzemy D. Teraz trochę szczegółów Zbór D może (zależe od zastosowaa) zawerać róże elemety d D. Mogą to być a przykład obrazy rozpozawaych twarzy, sylwetek samolotów, zaków alfaumeryczych albo odcsków palca. Moża rozpozawać e tylko obrazy. Rozpozawaym obrazam (albo może lepej wzorcam ag. patter) mogą być jedak także dźwęk mowy albo hałasy geerowae przez uszkodzoą maszyę. Moża rozpozawać także móstwo ych rzeczy, a przykład stay pogody albo warygodość kredytoborców w baku. Peła lsta potecjale możlwych obszarów zastosowań (czyl zborów D) jest bardzo długa, bowem ogrome bogata jest zborowość możlwych (już odkrytych lub dopero czekających a swych odkrywców) zastosowań techk rozpozawaa. 1
2 We wszystkch dalszych rozważaach będzemy zakładal stee relacj rówoważośc K D D, mplkującej rozbce zboru D a kolekcję klas rówoważośc, odpowadających poszczególym rozpozawaym klasom obektów. Zgode z tradycją rozważaej dzedzy podlegające rozpozawau klasy azywać będzemy obrazam (albo wzorcam) ezależe od ch rzeczywstej atury. Zakładać będzemy, że elemety d D wchodzące w skład odpowedch relacj ależeć będą do pewych podzborów D zboru D charakteryzujących sę tym, że ch elemety posadają podobe wartośc pewych wybraych (ustaloych) cech. Kwesta wyboru cech, będących podstawą procesu klasyfkacj (a potem także rozpozawaa) będze dalej dosyć szczegółowo dyskutowaa, tutaj jedye ależy wskazać, że to właśe a podstawe cech tylko a podstawe cech mus być możlwe ustalee, że pomędzy określoym obektam zachodz wymagaa relacja, będąca podstawą ch klasyfkacj. Jeśl takch cech e da sę wskazać (awet hpotetycze) to rozważaych klas obektów e będze moża skutecze wydzelć, a to ozacza epowodzee całego przedsęwzęca. Podzbory D e powy sę przecać, a poadto omawaa relacja e może pozostawać żadego elemetu ze zboru D samemu sobe tz. bez przypsaa do któregoś (dokłade jedego!) podzboru D. Łatwo wykazać, że relacja porządkująca elemety d D w podzbory D speła postulaty relacj rówoważośc (jest to relacja zwrota, symetrycza przechoda). Jeśl dla jakegoś zadaa da sę zbudować w zborze D relację rówoważośc dzałającą w oparcu o dobrze zdefowae cechy, to spełoe są waruk koecze do tego, by moża było o m mówć jako o probleme rozpozawaa sesowe postawoym. Warto zauważyć, że waruek te, będąc warukem koeczym, e mus być jedocześe warukem wystarczającym. Dla skuteczego stworzea metody rozpozawaa obrazów potrzebe są bowem zwykle bowem jeszcze dalsze waruk, jako że każda metoda rozpozawaa opera sę a jakchś założeach, z którym zwązae są specyfcze dla daej metody dodatkowe wymagaa. Ozaczmy przez L lczbę klas geerowaych przez relację K, a zbór deksów (azw) tych klas ozaczmy przez I. Wówczas: D I D, p,qi D p D q = d p,d q D d p, d q K I : (d p D ) (d q D ) Z opsu relacj K zboru I wyka stee odwzorowaa A : D I o własoścach: dd A(d) = d D Odwzorowae A w peł opsuje relację K, atomast relacja K defuje odwzorowae A z dokładoścą do permutacj zboru deksowego I. Z tego powodu uważać moża, że odwzorowae A w odróżeu od stejącej obektywe (co przyjęlśmy jako koecze założee) relacj K zawera zawsze pewe arbtraly składk, zwązay z wyborem sposobu umeracj klas. 2
3 W praktyczym zadau rozpozawaa dąży sę do tego, aby skostruować algorytm A^ realzujący odwzorowae: A^ : D I { o } W formule tej ozaczea D oraz I są już dobrze zae, atomast jedoelemetowy zbór { o } symbolzuje w tym zapse brak odpowedz (decyzja typu e wem). Wprowadzee w odwzorowau A^ elemetu o czy praktycze zadae rozpozawaa bardzej realstyczym. W praktyce bowem często tak sę zdarza, że e moża ustalć prawdłowej decyzj z całą dokładoścą, a zacze lepej jest, jeśl algorytm A^ uza, że e potraf rozpozać określoego obektu zgłos to specjalym sygałem, ż kedy jako wyk pracy algorytmu zostae poday jakś myle rozpozay elemet. Czasem moża sę spotkać z sytuacją praktyczą, w której ajważejszym wykem pracy systemu rozpozającego jest właśe ustalee, czy odpowedzą algorytmu A^ jest elemet o czy jakkolwek y elemet I. Sytuacja taka może a przykład meć mejsce w systemach detyfkacj osób, których zadaem jest wyłącze odpowedzeć a pytae, czy day obekt ależy do jedej z klas zapamętaych w systeme czy jest obcy (a węc potecjale ebezpeczy). Budując algorytm A^ staramy sę zawsze uczyć to tak, aby pewa mara dystasu Q(A, A^ ) będąca oceą jakośc zbudowaego algorytmu rozpozawaa A^ - była mmala. Mara jakośc Q algorytmu A^ służyć może e tylko do optymalego dostrojea algorytmu A^ do abstrakcyjego dealego odwzorowaa A, ale dodatkowo mara ta może być użyta do wartoścowaa welu dających sę zbudować algorytmów A^ 1, A^ 2,..., A^ p co pozwala wybrać w określoym zadau te spośród ch, który jest ajlepszy. Ne ależy przy tym meć żadych złudzeń, że proste metody (a przykład odsetek błędych rozpozań) dostarczą tu dokładych oszacowań wskaźka Q. Naprawdę dokłade oszacowae błędów popełaych przez zbudoway algorytm rozpozawaa A^ wymaga przeprowadzea obszerych badań ustalea przyblżoej empryczej dystrybuaty błędów (a przykład techkam bootstrap owym). Jedak dla celów praktyczych zadowalamy sę ajczęścej uproszczoym wskaźkem jakośc, wążącym sę często wyłącze z procetam obektów rozpozaych błęde lub (z ą wagą) obektów erozpozaych. Ne są to jedye praktycze krytera ocey jakośc algorytmu A^, gdyż w przypadku algorytmów o tym samym procece błędych rozpozań w grę wchodzć mogą dodatkowo klasycze formatycze krytera jakośc algorytmów, takej jak czas rozpozawaa czy zajętość pamęc, gdyż to oe wyzaczają koszty dzałaa metody. Pod względem formalym zagadea mary jakośc Q algorytmu A^ staową osoby obszar problemowy zwązay z teorą optymalzacj agażujący bardzo zaawasowae dzały matematyk (a przykład aalzę fukcjoalą) Nestety, różorodość zadań rozpozawaa zwązaa z tym różorodość wymagań stawaych metodom rozpozawaa sprawa, ż emożlwe jest podae jedej uwersalej formuły dla fukcj kryteralej Q. W każdym kokretym zadau mara Q sle zależy od kokretych zastosowań celów rozpozawaa. Czasam przy defcj algorytmu A^ dopuszcza sę rozpozaa waratowe, to zaczy przyjmuje sę sytuację, w której jako rozpozae akceptuje sę dowoly podzbór zboru I. Zapropoowae uogólee odwzorowae A^ może być opsae jako A^ : D 2 I gdze ozaczee 2 I użyte jest (zgode z tradycją) do zapsu zboru wszystkch podzborów zboru I. gdze: Elemety składowe rozpozawaa: będzemy azywać recepcją (lub percepcją) ozacza oblczae wartośc tak zwaych fukcj przyależośc, zaś lub ozacza proces podejmowaa decyzj. Odwzorowae A^ jest realzowae jako założee trzech odwzorowań: A^ = F C B B : D X C : X L F : L I { o} F : L 2 I ozacza zbór lczb rzeczywstych Warto zwrócć uwagę, że w tym przypadku zbęde jest wprowadzae elemetu o, poeważ zbór 2 I zawera (z defcj) zbór pusty, czyl właśe brak rozpozaa. Odmowa rozpozaa może zresztą być przy takej kowecj wyrażoa a dwa sposoby: albo poprzez podae jako rozwązaa zboru pustego, albo poprzez podae jako rozwązaa całego zboru I, co jest możlwe, jako że I 2 I. 3
4 oczy blsko - daleko oczy blsko - daleko Zadaem recepcj B : D X jest określee dla każdego obektu d D wektora wartośc jego cech x X Po wybrau właścwych cech każdemu rzeczywstemu obektow d D odpowadać będze pukt w przestrze cech X Zakładać będzemy, że elemetam przestrze cech X są wektory - elemetowe x * = x 1, x 2,, x X Składowe x j tych wektorów chęte będzemy traktowal jako lczby rzeczywste x j Przestrzeń cech sposób jej tworzea Zborowość rozpozawaych obektów Pukt w przestrze cech reprezetuje obekt Obekt twarz wąska - szeroka twarz wąska - szeroka Obrazy reprezetowae przez pukty w przestrze cech Przykładowa struktura przestrze cech dla rozpozawaa: przypadek cech loścowych 4
5 Przypadek, kedy przestrzeń X traktowaa będze jako -wymarowa przestrzeń eukldesowa (X ) jest ajwygodejszy, ale e jest to przypadek jedyy możlwy. Przykładowa struktura przestrze cech dla rozpozawaa: przypadek cech jakoścowych barych Rodzaj własośc wybraej przestrze cech bardzo sle wpływają a dalszy tok procesu rozpozawaa. Jest to zupełe zrozumałe: obekty d D mają potecjale eskończee wele cech. Odwzorowae B prowadzące do -wymarowej ( << ) przestrze cech X zwązae jest zawsze z utratą częśc formacj, zatem jeśl utracoa zostae formacja stota z puktu wdzea celów rozpozawaa, a w przestrze cech uwzględ sę wyłącze cechy mało waże - to straty tej e da sę zrekompesować żadym późejszym wysłkam. Przykładowa struktura przestrze cech dla rozpozawaa: przypadek cech jakoścowych welowartoścowych Przykłady skupsk wzorców w przestrze cech oraz sposób klasyfkacj owego elemetu Dae, które sę edobrze separuję w przestrze o małej wymarowośc mogą sę dobrze rozdzelać w przestrze welowymarowej 5
6 W przyjętej przestrze cech obekty ależące do jedej klasy powy sę grupować razem separować od obektów ych klas Istota rzeczy polega a tym, żeby w przestrze cech rozdzelć odpowede obszary Zależe od sposobu rozmeszczea w przestrze cech puktów reprezetujących obekty ależące do różych klas rozpozawae może być łatwejsze lub trudejsze Czasem dla podjęca poprawej decyzj potrzebe są dodatkowe formacje Kokrety przykład zadaa średo trudego Kokrety przykład zadaa bardzo trudego 6
7 Ilustracja problemów przy rozpozwau twarzy: różc ośwetlea (a), pozy (b) wyrazu twarzy (c) Reguła podejmowaa decyzj w przypadku algorytmu NN zakłada, że ezay obekt zostae zaklasyfkoway do tej klasy, do której ależy obekt cągu uczącego, położoy ajblżej ego w przestrze cech Przy Decyzję dobrze o przyależośc dobraym zborze owego cech (ezaego) poszczególe obektu klasy obektów do jedej tworzą z wcześej w przestrze zaych cech (zapamętaych) wyraźe wyróżale klas... zbory.... po wyzaczeu jego cech... Typowae ajblższych sąsadów dla puktu podlegającego rozpozawau moża podjąć a podstawe tożsamośc ajblższego zaego obektu? Uzupełae daych geerowaych w trakce uczea Prosta metoda rozpozawaa a podstawe ajblższego sąsada może sę okazać zawoda. 7
8 O rozpozau e decyduje jede sąsad (awet ajblższy), ale pewa zborowość Stablejsze rozpozawae zapewają metody odwołujące sę do welu sąsadów. Reguła -NN z sumą rag ( = 6). Przykład użyca reguły -NN dla =3 Obekt x zostae przypsay do klasy czerwoej Wybór wartośc mus być wykem kompromsu Przykłady kokretych wyków rozpozawaa w zależośc od parametru (a os pozomej) w zadau rozpozawaa foemów dla różych metryk. 8
9 Pukty wzajeme ajblższe Zależość warygodośc decyzj od stopa separowalośc klas Wyzaczee puktów wzajeme ajblższych pozwala wyodrębć obszary, w których warygodość decyzj jest mała Mary odległośc jako czyk determujący sposób dzałaa mmaloodległoścowych metod rozpozawaa obrazów Ią popularą marą odległośc jest mara Mahalaobsa: Modelowa mara odległośc: metryka Mkowskego Gdy Σ jest macerzą kowaracj zborowośc wektorów X Y, to mara ta wyzacza odległośc we współrzędych uzyskaych metodą składowych główych. Ne jest to jedak jedya możlwa terpretacja tej metryk. Mara eukldesowa metryka mejska (zaa róweż jako Mahatta są oczywśce specjalym przypadkam mary Mkowskego odpowedo dla α = 2 α = 1. W charakterze mary moża użyć bardzej ogólej formy kwadratowej z dowolą dodato określoą macerzą Q ustaloą dla daego problemu: W ektórych zastosowaach ajkorzystejsza jest mara Czebyszewa: W ych przypadkach użytecza okazuje sę fukcja Caberra: Różego rodzaju czyk korelacyje są róweż pożądae jako półfabrykat do stworzea przydatej mary odległośc (która jest jedak wtedy odwrote proporcjoala do korelacj). Najpopularejsza jest klasycza korelacja Pearsoa: czy też odległość χ 2 : Z kole fukcję korelacyją ragową Kedalla defuje poższe wyrażee: gdze sum jest sumą wszystkch wartośc cechy ze zboru treującego, a sze x szey są sumam wszystkch wartośc wektorów x y. Należy zapewć aby wartośc sum, sze x sze y były róże od zera. 9
10 W przypadku cech rozpozawaych obektów o charakterze daych jakoścowych (omalych) popularość zyskała mara VDM (ag. Value Dfferece Metrc) Odległość VDM pomędzy dwoma N wymarowym wektoram x, y ze składowym (cecham) o wartoścach dyskretych, opsywaych azwam symbolczym, przyjmującym wartośc ze zboru C dyskretych detyfkatorów (e koecze uszeregowaych według jakegoś porządku) wyraża sę wzorem: Mary odległośc wektorów barych Rozważae są odległośc wektorów barych - elemetowych: X, Y 0, 1 Typowym arzędzem wykorzystywaym do merzea odległośc takch wektorów jest metryka Hammga We wzorze tym N (x j ) ozacza lczbę wystąpeń -tej dyskretej wartośc cechy j-tej w wektorze X, a N(x j ) ozacza lczbę wystąpeń j-tej cechy w wektorze X. Aalogcze ozaczea dotyczą także wektora Y. d H X Y 1 Metryka Hammga e zawsze wystarcza, dlatego rozważae są także e mary odległośc Przy wyzaczau potrzebych mar odległośc przydate będą pomoccze wartośc: 1, X Y 1 a, 1 0, otherwse. 1, X 1, Y 0 b, 1 0, otherwse. 1, X 0, Y 1 c, 1 0, otherwse. 1, X Y 0 d, 1 0, otherwse. Łatwo zauważyć, że a, b, c d są w stoce zlczeam lczby zgodych ezgodych btów w obu łańcuchach. Na podstawe wartośc a, b, c d moża wyzaczyć mary odległośc: Russel ad Rao: a f a b c d Jaccard ad Needham: a f a b c Kulzsk: a f b c 1 a Sokal ad Mcheer: a d a d f a b c d Rogers ad Tamoto: a d f a d 2( b c) Yule: ad bc f ad bc W przypadku, kedy zarówo rozpozaway obekt, jak wzorzec, z którym sę go porówuje, e są pojedyczym puktam w przestrze cech, możlwe jest zastosowae (do ocey odległośc zboru od zboru) - metryk Hausdorffa. 10
11 Jeśl zamy defcję odległośc puktu x od puktu y ozaczoą jako d(x,y) jeśl A B są zwartym zboram puktów, to odległość puktu x od zboru B daa jest wzorem: d( x, B) m d( x, y) yb Rozważmy dwa ozaczea pomoccze d( A, B) max d( x, B) oraz d( B, A) max d( y, A) xa yb Metryka Hausdorffa określoa jest astępującym wzorem: h( A, B) max{ d( A, B), d( B, A)} 11
Podejście klasyczne: Metody rozpoznawania obrazów. Podejście nieklasyczne: Robot ogląda rozpoznawany obiekt
Metody rozpozawaa obrazów Isteje teora, że podczas ludzkej percepcj wzrokowej poszczególe cechy obrazu pobudzają oddzele ośrodk w mózgu Podejśce klasycze: metody mmalo-odległoścowe metody wzorców metody
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
ELEMENTY TEORII MOŻLIWOŚCI
ELEMENTY TEORII MOŻLIWOŚCI Opracował: M. Kweselewcz Zadeh (978) wprowadzł pojęce rozkładu możlwośc jako rozmyte ograczee, kóre odzaływuje w sposób elastyczy a wartośc przypsae daej zmeej. Defcja. Nech
POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny
KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych
Współczynnik korelacji rangowej badanie zależności między preferencjami
Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody
Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
Statystyczne charakterystyki liczbowe szeregu
Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc
Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
5. OPTYMALIZACJA NIELINIOWA
5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe
1. Relacja preferencji
dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x
Materiały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
Pomiary parametrów napięć i prądów przemiennych
Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA
Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej
Matematyka dyskretna. 10. Funkcja Möbiusa
Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Rozpoznawanie obrazów
Ostat etap obrazowaa medyczego: Etapy rozpozawaa obrazów medyczych chęte bym Państw przedstawł w sposób poglądowy opsowy, bo wzorów ta t e zapamęta, a w raze potrzeby moża je w cąg l mt zaleźć w Iterece
Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ
9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego
Podprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
Badania niezawodnościowe i statystyczna analiza ich wyników
Badaa ezawodoścowe statystycza aalza ch wyków. Co to są badaa ezawodoścowe jak sę je przeprowadza?. Metody prezetacj opsu daych pochodzących z eksperymetu 3. Sposoby wyzaczaa rozkładu zmeej losowej a podstawe
WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI
WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI GIEŁDOWYCH PRZY UŻYCIU ALGORYTMÓW GENETYCZNYCH mgr ż. Marc Klmek Katedra Iformatyk Państwowa Wyższa Szkoła Zawodowa m. Papeża Jaa Pawła II w Bałej Podlaskej Streszczee:
STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X
PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej
Lista 6. Kamil Matuszewski X X X X X X X X X X X X
Lsta 6 Kaml Matuszewsk 9..205 2 3 4 5 6 7 9 0 2 3 4 5 6 7 X X X X X X X X X X X X Zadae Lewa stroa: W delegacj możemy meć od do osób. Wyberamy ( k) osób a k sposobów wyberamy przewodczącego. k =.. węc
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
Portfel złożony z wielu papierów wartościowych
Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe
Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych
dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby
IV. ZMIENNE LOSOWE DWUWYMIAROWE
IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję
Indukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
3. OPTYMALIZACJA NIELINIOWA
Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz
Miary statystyczne. Katowice 2014
Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących
08 Model planowania sieci dostaw 1Po_2Pr_KT+KM
Nr Tytuł: Autor: 08 Model plaowaa sec dostaw 1Po_2Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:
FINANSE II. Model jednowskaźnikowy Sharpe a.
ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy
Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna
Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza
System finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
Badania Maszyn CNC. Nr 2
Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,
Lista 6. Kamil Matuszewski 26 listopada 2015
Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy
Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t
opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
Regresja REGRESJA
Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu
L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie
B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety
wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=
ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej
Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych
Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku
( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min
Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego
Wyrażanie niepewności pomiaru
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej
PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,
Statystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jacka wykład II, 3.05.016 PORÓWNANIE WIĘCEJ NIŻ DWÓCH POPULACJI TESTY NIEPARAMETRYCZNE Pla a dzsaj 1. Porówywae węcej ż dwóch populacj test jedoczykowej aalzy waracj (ANOVA).
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu
METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu
Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne
Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI
Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz
METODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
Modele wartości pieniądza w czasie
Joaa Ceślak, Paula Bawej Modele wartośc peądza w czase Podstawowe pojęca ozaczea Kaptał (ag. prcpal), kaptał początkowy, wartośd początkowa westycj - peądze jake zostały wpłacoe a początku westycj (a początku
Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?
Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Zmiana bazy i macierz przejścia
Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce
TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).
TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu
ZARYS METODY OCENY TRWAŁOSCI I NIEZAWODNOSCI OBIEKTU Z UWZGLEDNIENIEM CZYNNIKA LUDZKIEGO I PŁASZCZYZNY LICZB ZESPOLONYCH
Zdzsław IDZIASZEK 1 Mechatrocs ad Avato Faculty Mltary Uversty of Techology, 00-908 Warsaw 49, Kalskego street r zdzaszek@wat.edu.pl Norbert GRZESIK Avato Faculty Polsh Ar Force Academy, 08-51 Dębl, Dywzjou
k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2
Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu
MODELE OBIEKTÓW W 3-D3 część
WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego
Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.
Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór
Nieporządki Ten materiał zostanie przerobiony na ćwiczeniach
Wykład 3. wrtualy, materał zostae przeroboy a ćwczewach A.Mckewcz, Reduta Ordoa : A przecw m sterczy bała, wąska, zaostrzoa, Jak głaz bodzący morze, reduta Ordoa. Sześć tylko mała armat;(...) (...) Harmaty
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM
ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE
BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki
tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga
ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH
L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze
PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH
PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU EWOLUCYJNE METODY OPTYMALIZACJI. Rozwązać zadae zadaa załaduku (plecakowego z ograczeam a dopuszczale wymary oraz cężar []: a algorytmem symulowaego wyżarzaa.
Funkcja wiarogodności
Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza
Statystyka Inżynierska
Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe
ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ
ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem
ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7)
PROCES ZARZĄDZANIA PORTFELEM PAPIERÓW WARTOŚCIOWYCH WSPOMAGANY PRZEZ ŚRODOWISKO AUTOMATÓW KOMÓRKOWYCH Ageszka ULFIK Streszczee: W pracy przedstawoo sposób zarządzaa portfelem paperów wartoścowych wspomagay
PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI
Adrzej POWNUK *) PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI. Wprowadzee Mechaka lowa staow jak dotąd podstawowy obszar zateresowań żyerskch. Isteje jedak
Relacyjny model danych. Relacyjny model danych
Pla rozdzału Relacyjy model daych Relacyjy model daych - pojęca podstawowe Ograczea w modelu relacyjym Algebra relacj - podstawowe operacje projekcja selekcja połączee operatory mogoścowe Algebra relacj
Matematyczny opis ryzyka
Aalza ryzyka kosztowego robót remotowo-budowlaych w warukach epełe formac Mgr ż Mchał Bętkowsk dr ż Adrze Powuk Wydzał Budowctwa Poltechka Śląska w Glwcach MchalBetkowsk@polslpl AdrzePowuk@polslpl Streszczee
Elementy arytmetyki komputerowej
Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4
POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły
Projekt 3 Analiza masowa
Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga
WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW
WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW U podstaw wszystkch auk przyrodczych leży zasada: sprawdzaem wszelkej wedzy jest eksperymet, tz jedyą marą prawdy aukowej jest dośwadczee Fzyka, to auka
Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)
Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ
Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.
Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer
Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław
będą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka