Plan wykładu. Termodynamika cz. 2. Gaz doskonały... Gaz doskonały

Wielkość: px
Rozpocząć pokaz od strony:

Download "Plan wykładu. Termodynamika cz. 2. Gaz doskonały... Gaz doskonały"

Transkrypt

1 Plan wykładu Termodynamika cz. 2 dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl /14 1 Mikroskopowe i makroskopowe własności gazów Zasada ekwipartycji energii Czym jest energia wewnętrzna? Wzór barometryczny Rozkład Maxwella-Boltzmanna 2 Nieosiagalność zera bezwzględnego 1 dr inż. Ireneusz Owczarek Termodynamika cz. 2 2 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Gaz doskonały Mikroskopowe i makroskopowe własności gazów Gaz doskonały... Mikroskopowe i makroskopowe własności gazów Definicja makroskopowa (termodynamiczna) to gaz spełniajacy prawa: Boyle a-mariotte a w stałej temperaturze i dla danej masy gazu: pv=const. Charlesa przy stałej objętości gazu i dla danej masy gazu: p T =const. Gay-Lussaca dla stałego ciśnienia i dla danej masy gazu: V T =const. Opis makroskopowy Równanie stanu gazu doskonałego pv T =m µ R. 3 dr inż. Ireneusz Owczarek Termodynamika cz. 2 4 dr inż. Ireneusz Owczarek Termodynamika cz. 2

2 Gaz doskonały... Mikroskopowe i makroskopowe własności gazów Definicja mikroskopowa Gaz składa się z czasteczek, które traktować można jak punkty materialne. Czasteczki gazu maja identyczna masę. Całkowita liczba czasteczek jest bardzo duża. Odległości pomiędzy sasiednimi czasteczkami sa względnie duże. Czasteczki poruszaja się chaotycznie we wszystkich kierunkach. Czasteczki podlegaja prawom mechaniki Newtona. Czasteczki zdarzaja się ze soba sprężyście, wymieniajac pęd i energię. Poza momentami zderzeń czasteczki nie oddziałuja ze soba, a czas trwania tych zderzeń jest pomijalnie mały. nazywana też teoria kinetyczno-molekularna albo kinetyczno-czasteczkow a pozwala łaczyć kinematyczne wielkości dotyczace pojedynczych czasteczek gazu z termodynamicznymi parametrami takimi jak ciśnienie czy temperatura. W sześcianie o krawędziaznajduje sięn jednakowych czasteczek gazu. Chaotyczny ruch czasteczek można zastapić ruchem, w którym po 1 N 3 czasteczek porusza się prostopadle do każdej pary ścian równoległych. Opis mikroskopowy pv T =2 3 NE. 5 dr inż. Ireneusz Owczarek Termodynamika cz. 2 6 dr inż. Ireneusz Owczarek Termodynamika cz Średnia siła oddziaływania jednej czasteczki na ściankę naczynia: Dla jednej z tych czasteczek poruszajacej się np. poziomo zderzenia ze ściana sześcianu będa następowały w stałych odstępach czasu: τ= 2a v i. W trakcie zderzenia pęd czasteczki zmienia znak. Bezwzględna wartość zmiany pędu przy każdym zderzeniu wynosi: p i=mv i ( mv i)=2mv i. Czasteczka uderza w wybrana ściankę w stałych odstępach czasu. Można założyć, że działa niezmienna w czasie, średnia siła powodujaca w tym samym czasie taki sam przyrost pędu: p i=f iτ. F i= p τ = 2mvi = mv 2 i 2a a. v i Średnia siła oddziaływania na ta ścianę czasteczek o wszystkich prędkościach: F= 1 N N m N if i= N ivi 2 3 3a F= Nm 3a N gdzie średnia prędkość kwadratowa v 2 = N iv 2 i N =Nm 3a v2, N N iv 2 i N. 7 dr inż. Ireneusz Owczarek Termodynamika cz. 2 8 dr inż. Ireneusz Owczarek Termodynamika cz. 2

3 Średnia energia kinetyczna Energia i stopnie swobody Zasada ekwipartycji energii Ciśnienie wywierane przez gaz na ściankę sześcianu: p= F Nm a2= = 1 N 3a a 2v2 3V mv2. Jeśli średnia energia kinetyczna czasteczek gazu określona jest: to E= 1 2 mv2 p= 2 N 3V E, pv= 2 3 NE. Po porównaniu z równaniem stanu gazu doskonałego: 2 3 NE=nNAkBT, E= 3 2 kbt. W kinetycznej teorii gazu doskonałego temperatura jest miara średniej energii kinetycznej czasteczek gazu. Zasada ekwipartycji energii Średnia energia przypadajaca na każdy stopień swobody jest taka sama i równa E= 1 2 kbt. Liczba stopni swobodyz to liczba niezależnych współrzędnych jednoznacznie opisujacych położenie tego obiektu w przestrzeni. E= z 2 kbt. 9 dr inż. Ireneusz Owczarek Termodynamika cz dr inż. Ireneusz Owczarek Termodynamika cz. 2 Energia wewnętrzna Czym jest energia wewnętrzna? Definicje Definicja makroskopowa (termodynamiczna) Określa zdolność układu do oddawania ciepła do otoczenia. Zależy od temperatury układu, masy i rodzaju substancji z jakiej składa się układ. Definicja mikroskopowa Jest suma energii kinetycznej i potencjalnej oddziaływań międzyczaste- czkowych. Na energię kinetyczna molekuł składa się: energia ruchu postępowego, obrotowego i ruchu drgajacego atomów w czasteczkach. W mikroskopowym opisie gazu doskonałego czasteczki ze soba nie oddziałuja na odległość, to cała wewnętrzna energia gazu jest jego energia kinetyczna. Energia wewnętrznan czasteczek gazu gazu doskonałego U=N z 2 kbt, du=n z 2 kbdt. 11 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Ciepło molowe to ilość energii, która trzeba dostarczyć na sposób ciepła, aby uzyskać jednostkowa zmianę temperatury jednego mola substancji: ( ) dq C=. dt Jednosta ciepła molowego (pojemności cieplnej) jest: Ciepło właściwe J mol K. to ilość ciepła, która trzeba dostarczyć, aby uzyskać jednostkowa zmianę temperatury jednostki masy substancji: c= 1 ( ) dq J z jednostka m dt kg K. Obie te wielkości sa ze soba ściśle zwiazane: C=µc. 12 dr inż. Ireneusz Owczarek Termodynamika cz. 2

4 Definicje... Definicje... Ciepło molowe w stałej objętości: ( ) ( ) dq du C V= = dt dt V V = C V=N z 2 kb. ( d dt Nz 2 )V kbt, Równanie Mayera C p C V=Nk B, c p c V=k B. Dla przemiany izobarycznej: c V= CV N =z 2 kb. dq=c pdt=du+dw=du+pdv, =N z 2 kbdt+nkbdt=z+2 2 NkBdT. C p= z+2 2 NkB, c p= z+2 2 kb. 13 dr inż. Ireneusz Owczarek Termodynamika cz. 2 W ruchu postępowym czasteczka gazu doskonałego: jednoatomowa ma trzy stopnie swobody, tj.z=3ic V= 3 2 R, dwuatomowa ma pięć stopni swobody, tj.z=5ic V= 5 2 R, trójatomowa tj.z=6ic V=3R, wieloatomowa złożona z większej liczby atomów niż trzy maja również sześć stopni swobody, ponieważ ustalenie położenia trzech z dowolnej liczby sztywno zwiazanych ze soba punktów ustala położenie całego układu. 14 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Zależność od temperatury Rozkład przestrzenny czasteczek Wzór barometryczny Dla gazów dwuatomowych, obserwuje się nieoczekiwana zależność od temperatury. Wytłumaczenie nie jest możliwe na gruncie mechaniki klasycznej. Siła działajaca na wysokościh F g= mg= ρs h g ponieważ ciśnienie zmniejsza się odp, to siła ( ) F w=s p(h) p(h+ h) S dp dh h. Z równowagi sił F g+f w= ρsg h S dp dh h=0, otrzymuje się zależność dp= ρgdh. Rysunek: Wykres dla dwuatomowego wodoruh dr inż. Ireneusz Owczarek Termodynamika cz dr inż. Ireneusz Owczarek Termodynamika cz. 2

5 Wzór barometryczny Rozkład przestrzenny czasteczek... Rozkład Boltzmanna Wzór barometryczny Z równania stanu gazu p= 1 m µ V RT, uzyskuje się ρ= pµ RT, i po rozdzieleniu zmiennych (dp= ρgdh) dp p = gµ RT dh. Zakładajac, że T = const. i całkujac to równanie względem wysokości odh o doh k otrzymuje się lnp k lnp o= gµ RT (h ho), p k =p oe gµ RT (h ho). Ponieważ R = k B µ m orazmg(h h o)= E p, to wzór barometryczny ( ) p k =p oexp Ep. k BT 17 dr inż. Ireneusz Owczarek Termodynamika cz. 2 ( p k =p oexp ) Ep. k BT Rozkład przestrzenny czasteczek gazu doskonałego w polu grawitacyjnym ( n k =n oexp ) Ep, k BT jest różny dla różnych gazów tworzacych atmosferę i różniacych się masa czasteczkow a. Koncentracje lekkich gazów, takich jak wodór, maleja wolniej z wysokościa niż dla gazów cięższych, takich jak tlen. 18 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Rozkład Boltzmanna... Wzór barometryczny Rozkład Maxwella-Boltzmanna Rozkład prędkości czasteczek gazu doskonałego Rozkład Boltzmanna określa sposób obsadzania stanów energetycznych przez atomy, czasteczki w stanie równowagi termicznej. Jest to tzw. funkcja rozkładu energii dla układów zawierajacych duże liczby obiektów (np. do gazu doskonałego). Rozkład prędkości czasteczek w postaci: N=N oexp ( mv2 2k BT jest niepraktyczny. Dlatego należy znaleźć funkcję rozkładu określajac a jaka część wszystkich czasteczek ma prędkości zawarte pomiędzyv iv+dv. FunkcjaP(v) powinna być unormowana tak, by: 0 P(v)dv=1. ), Rysunek: Rozkład Maxwella prędkości czasteczek tlenu w temperaturze300k. Pole pod krzywa jest równe jedności. 19 dr inż. Ireneusz Owczarek Termodynamika cz dr inż. Ireneusz Owczarek Termodynamika cz. 2

6 Rozkład Maxwella-Boltzmanna Rozkład prędkości czasteczek gazu doskonałego... Rozkład Maxwella prędkości czasteczek gazu doskonałego dla prędkości od 0 do ma postać ( )3 m 2 ) P(v)=4π v 2 exp( mv2, 2πk BT 2k BT i jest to funkcja rozkładu prawdopodobieństwa. Rozkład Maxwella-Boltzmanna Rozkład prędkości czasteczek gazu doskonałego... Prędkość średnia kwadratowa v 2 =v sr.kw = 0 v 2 P(v)dv= 3RT µ. Prędkość średnia czasteczek gazu v sr= 0 vp(v)dv= 8k BT 8RT πm = πµ. Rozkład Maxwella jest asymetryczny, to prędkość średnia jest większa niż prędkość najbardziej prawdopodobna (tj. dla dp =0) dv 2RT v p= µ. Rysunek: Rozkład Maxwella prędkości czasteczek tlenu dla temperatury300k i80k. 21 dr inż. Ireneusz Owczarek Termodynamika cz dr inż. Ireneusz Owczarek Termodynamika cz. 2 Rozkład Maxwella-Boltzmanna Rozkład prędkości czasteczek gazu doskonałego... Prędkości czasteczek zależa od temperatury oraz masy molowej. Większość czasteczek będzie poruszać się z prędkościa zbliżona do pewnej wartości średniej. Ze względu na wyrażenie wykładnicze zv 2, udział czasteczek o bardzo dużych prędkościach jest bardzo mały. Gdyv maleje, udział czasteczek o bardzo małych prędkościach jest także znikomy. Rozkład Maxwella-Boltzmanna Rozkład prędkości czasteczek gazu doskonałego... Zadanie Oblicz charakterystyczne prędkości czasteczek tlenu w powietrzu o temperaturze0 C. Czy duże będa te prędkości w porównaniu z prędkościa dozwolona dla samochodu osobowego na terenie zabudowanym? Wnioski Wraz ze wzrostem temperatury gazu maksimum krzywej przesuwa się w stronę większych prędkości, a maksimum zmniejsza się. Prędkości v sr.kw,v sr iv p zwiększaja się. Przy ogrzewaniu gazu udział czasteczek o małych prędkościach zmniejsza się, a udział czasteczek o większych prędkościach powiększa się. W tej samej temperaturze, czasteczki gazów o mniejszej masie molowej będa poruszały się średnio szybciej niż czasteczki gazów o większej masie molowej. 2RT 2 8,314Jmol v p= µ = 1 K 1 273K mol 1 kg 8RT v sr= πµ =427m s =1539km h, 3RT v sr.kw = µ =462m s =1664km h. 377 m s =1356km h, 23 dr inż. Ireneusz Owczarek Termodynamika cz dr inż. Ireneusz Owczarek Termodynamika cz. 2

7 Definicje Definicje... Dla dowolnego cyklu odwracalnego Opis makroskopowy (fenomenologiczny) jest termodynamiczna funkcja zależna tylko od poczatkowego i końcowego stanu układu, a nie od drogi przejścia pomiędzy tymi stanami ds= dq T. Jeżeli wydajność cieplna cyklu Carnota to η= Q1+Q2 Q 1 = T1 T2 T 1, T 1 T 2 = Q1 Q 2, Q 1 T 1 + Q2 T 2 =0. Suma ciepeł zredukowanych w cyklu Carnota jest równa zeru. 25 dr inż. Ireneusz Owczarek Termodynamika cz. 2 lim N N N Q i = T i Q i T i =0. C dq T = C ds=0. wartość tej całki zależy wyłacznie od stanu poczatkowego i stanu końcowego. II zasada termodynamiki Procesy nieodwracalne zachodzace w układzie moga tylko zwiększyć entropię, nie moga jej natomiast zmniejszyć. S 0. ds dq T. Znak równości odnosi się do procesu odwracalnego. 26 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Prawdopodobieństwo termodynamiczne Prawdopodobieństwo termodynamiczne... Opis mikroskopowy kinetyczno-molekularny jest miara nieuporzadkowania (chaosu) w układzie zamkniętym. Im większe jest prawdopodobieństwo znalezienia się układu w danym stanie, tym większa jest entropia. Prawdopodobieństwo termodynamiczne stanu to liczba mikrostanów realizujacych dany stan układu ω= n! m!(n m)!. Sumaryczna liczba wszystkich mikrostanów N=2 n. W naczyniu jestnczasteczek (w dwu równych częściach). Mikrostan to zbiór informacji, w której części znajduje się każda czasteczka. Makrostan układu określony jest przez sumaryczna liczba czasteczek z jednej (np. lewej) strony naczynia. 27 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Prawdopodobieństwo określonego makrostanu ϑ= ω N = n! 2 n m!(n m)!. 28 dr inż. Ireneusz Owczarek Termodynamika cz. 2

8 Prawdopodobieństwo termodynamiczne... układu Liczbę mikrostanówω realizujacych dany stan układu nazywa się prawdopodobieństwem termodynamicznym tego stanu. rośnie wraz ze wzrostem prawdopodobieństwa stanu układu i jest logarytmiczna miara tego prawdopodobieństwa. Statystyczna definicja entropii S=k B ln(ω). Definicja ta obejmuje nie tylko procesy wymiany energii w postaci ciepła, lecz także wszelkie inne procesy termodynamiczne. Wnioski Przemiany nieodwracalne zachodzace w układzie izolowanym prowadza do wzrostu entropii układu. Stanowi równowagi odpowiada stan najbardziej prawdopodobny o maksymalnej wartości entropii. zwiazana jest z nieuporzadkowaniem. Wzrost entropii równoznaczny jest ze wzrostem nieuporzadkowania elementów układu. Przemiany nieodwracalne zachodzace w układzie izolowanym prowadza do wzrostu entropii układu. Procesy samorzutne przebiegaja w kierunku zmniejszajacego się porzadku ( od porzadku do bałaganu ) 29 dr inż. Ireneusz Owczarek Termodynamika cz dr inż. Ireneusz Owczarek Termodynamika cz. 2 III zasada termodynamiki Nieosiagalność zera bezwzględnego Zasada Nersta Nieosiagalność zera bezwzględnego Nernst (1905), Planck: układu w temperaturze zera bezwzględnego równa jest zeru (dla substancji bez zanieczyszczeń) lim S(T)=0. T 0K zależna jest od temperatury oraz od innych zmiennych parametrów układu, tzn.s=s(t,x), gdzie parametrx określa fizyczna własność układu, której zmiana w pewnych granicach pociaga za soba zmianę entropii. Zasada nieosiagalności zera bezwzględnego Niemożliwe jest za pomoca jakiegokolwiek postępowania, niezależnie od stopnia jego wyidealizowania, sprowadzenie dowolnego układu do temperatury zera bezwzględnego poprzez skończony ciag działań. Zasada nieosiagalności zera bezwzględnego Niemożliwe jest za pomoca jakiegokolwiek postępowania, niezależnie od stopnia jego wyidealizowania, sprowadzenie wartości entropii dowolnego układu do entropii zera bezwzględnego poprzez skończona liczbę kroków. 31 dr inż. Ireneusz Owczarek Termodynamika cz dr inż. Ireneusz Owczarek Termodynamika cz. 2

9 Literatura Nieosiagalność zera bezwzględnego Halliday D., Resnick R, Walker J. Podstawy Fizyki t PWN, Praca zbiorowa pod red. A. Justa Wstęp do analizy matematycznej i wybranych zagadnień z fizyki. Wydawnictwo PŁ, Łódź Jaworski B., Dietłaf A. Kurs Fizyki t PWN, Strona internetowa prowadzona przez CMF PŁ e-fizyka. Podstawy fizyki. Kakol Z. Żukrowski J. kakol/wyklady_pl.htm Wykłady z fizyki. 33 dr inż. Ireneusz Owczarek Termodynamika cz. 2

Termodynamika cz. 2. Gaz doskonały. Gaz doskonały... Gaz doskonały... Notes. Notes. Notes. Notes. dr inż. Ireneusz Owczarek

Termodynamika cz. 2. Gaz doskonały. Gaz doskonały... Gaz doskonały... Notes. Notes. Notes. Notes. dr inż. Ireneusz Owczarek Termodynamika cz. 2 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Gaz doskonały Definicja makroskopowa (termodynamiczna)

Bardziej szczegółowo

Plan wykładu. Termodynamika cz. 2. Gaz doskonały... Gaz doskonały

Plan wykładu. Termodynamika cz. 2. Gaz doskonały... Gaz doskonały Plan wykładu Termodynamika cz. 2 dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 1 Mikroskopowe i makroskopowe własności gazów Zasada ekwipartycji energii

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Ciśnienie i temperatura model mikroskopowy

Ciśnienie i temperatura model mikroskopowy Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy

Bardziej szczegółowo

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha Ciepło właściwe Autorzy: Zbigniew Kąkol Bartek Wiendlocha 01 Ciepło właściwe Autorzy: Zbigniew Kąkol, Bartek Wiendlocha W module zapoznamy się z jednym z kluczowych pojęć termodynamiki - ciepłem właściwym.

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Teoria kinetyczna gazów

Teoria kinetyczna gazów Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes Termodynamika cz.1 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz.1 Ziarnista budowa materii Ziarnista budowa

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych FIZYKA STATYSTYCZA Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych elementów takich jak atomy czy cząsteczki. Badanie ruchów pojedynczych cząstek byłoby bardzo trudnym

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2012/13 1 Ziarnista budowa materii Liczba Avogadro 2 Temperatura termodynamiczna 3 Sposoby

Bardziej szczegółowo

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2013/14 1 Ziarnista budowa materii Liczba Avogadro 2 Pomiary temperatury Temperatura

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki) Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

Teoria kinetyczno cząsteczkowa

Teoria kinetyczno cząsteczkowa Teoria kinetyczno cząsteczkowa Założenie Gaz składa się z wielkiej liczby cząstek znajdujących się w ciągłym, chaotycznym ruchu i doznających zderzeń (dwucząstkowych) Cel: Wyprowadzić obserwowane (makroskopowe)

Bardziej szczegółowo

Elementy fizyki statystycznej

Elementy fizyki statystycznej 5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron

Bardziej szczegółowo

Fizyka 14. Janusz Andrzejewski

Fizyka 14. Janusz Andrzejewski Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych

Bardziej szczegółowo

Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.

Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny. Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 5. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 5. AJ Wojtowicz IF UMK Wykład 5 Gaz doskonały w ujęciu teorii kinetycznej Ciśnienie i temperatura gazu doskonałego Prędkość średnia kwadratowa cząsteczek gazu doskonałego Rozkład awella prędkości cząsteczek gazu doskonałego

Bardziej szczegółowo

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1 1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

Karta punktowania egzaminu do kursu Fizyka 1 dla studentów Wydziału Inż. Śr., kier. Inż. Śr. oraz WPPT IB. Zagadnienie 1.

Karta punktowania egzaminu do kursu Fizyka 1 dla studentów Wydziału Inż. Śr., kier. Inż. Śr. oraz WPPT IB. Zagadnienie 1. Karta punktowania egzaminu do kursu Fizyka 1 dla studentów Wydziału Inż. Śr., kier. Inż. Śr. oraz WPPT IB. Zagadnienie 1. 3 PKT. Wzorcowa odpowiedź ad I zasada zaczerpnięta z podręcznika HRW lub równoważna

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

Termodynamika Termodynamika

Termodynamika Termodynamika Termodynamika 1. Wiśniewski S.: Termodynamika techniczna, WNT, Warszawa 1980, 1987, 1993. 2. Jarosiński J., Wiejacki Z., Wiśniewski S.: Termodynamika, skrypt PŁ. Łódź 1993. 3. Zbiór zadań z termodynamiki

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

ogromna liczba małych cząsteczek, doskonale elastycznych, poruszających się we wszystkich kierunkach, tory prostoliniowe, kierunek ruchu zmienia się

ogromna liczba małych cząsteczek, doskonale elastycznych, poruszających się we wszystkich kierunkach, tory prostoliniowe, kierunek ruchu zmienia się CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietro p. 138 WYKŁAD - STAN GAZOWY i CHEMIA GAZÓW kinetyczna teoria gazów ogromna liczba małych cząsteczek, doskonale

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Termodynamika program wykładu

Termodynamika program wykładu Termodynamika program wykładu Wiadomości wstępne: fizyka statystyczna a termodynamika masa i rozmiary cząstek stan układu, przemiany energia wewnętrzna pierwsza zasada termodynamiki praca wykonana przez

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w Wykład z fizyki, Piotr Posmykiewicz 7 P dt dt + nrdt i w rezultacie: nr 4-7 P + Dla gazu doskonałego pojemność cieplna przy stałym ciśnieniu jest większa od pojemności cieplnej przy stałej objętości o

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

Wykład Temperatura termodynamiczna 6.4 Nierówno

Wykład Temperatura termodynamiczna 6.4 Nierówno ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu

Bardziej szczegółowo

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi

Bardziej szczegółowo

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Warszawa, 31 sierpnia 2015r. Zespół Przedmiotowy z chemii i fizyki Temat

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl

Bardziej szczegółowo

ELEMENTY TERMODYNAMIKI

ELEMENTY TERMODYNAMIKI ELEMENTY TERMODYNAMIKI 8.1. Rozkład szybkości cząstek gazu Początkowo termodynamika zajmowała się badaniem właściwości cieplnych ciał i ich układów, bez analizowania ich mikroskopowej struktury. Obecnie

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko

Bardziej szczegółowo

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)

Bardziej szczegółowo

Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu

Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Wykład 5 Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Prędkość średnia kwadratowa cząsteczek gazu doskonałego Rozkład Maxwella prędkości cząsteczek gazu doskonałego Średnia energia kinetyczna

Bardziej szczegółowo

Równanie gazu doskonałego

Równanie gazu doskonałego Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.

Bardziej szczegółowo

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):

Bardziej szczegółowo

Temperatura. Zerowa zasada termodynamiki

Temperatura. Zerowa zasada termodynamiki Temperatura Istnieje wielkość skalarna zwana temperaturą, która jest właściwością wszystkich ciał izolowanego układu termodynamicznego pozostających w równowadze wzajemnej. Równowaga polega na tym, że

Bardziej szczegółowo

ZADANIA Z FIZYKI - TERMODYNAMIKA

ZADANIA Z FIZYKI - TERMODYNAMIKA ZADANIA Z FIZYKI - TERMODYNAMIKA Zad 1.(RH par 22-8 zad 36) Cylinder jest zamknięty dobrze dopasowanym metalowym tłokiem o masie 2 kg i polu powierzchni 2.0 cm 2. Cylinder zawiera wodę i parę o temperaturze

Bardziej szczegółowo

Zasady zachowania. Fizyka I (Mechanika) Wykład VI:

Zasady zachowania. Fizyka I (Mechanika) Wykład VI: Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskopowych uogólnienie licznych badań doświadczalnych opis makro i mikro rezygnacja z przyczynowości znaczenie praktyczne p układ

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin

Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin Biofizyka wykład: dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Biofizyka - wykłady Biotechnologia III rok Tematyka (15 godz.): dr hab. Jerzy Nakielski dr Joanna Szymanowska-Pułka dr

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ Podstawowe pojęcia w termodynamice technicznej 1/1 WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ 1. WIADOMOŚCI WSTĘPNE 1.1. Przedmiot i zakres termodynamiki technicznej Termodynamika jest działem fizyki,

Bardziej szczegółowo

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości

Bardziej szczegółowo

WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO

WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO W3 WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO Ciepło właściwe jest jedną z podstawowych cech termodynamicznych ciał, mającą duże znaczenie praktyczne. Zależność ciepła właściwego różnych ciał od temperatury

Bardziej szczegółowo

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 204/205 Warszawa, 29 sierpnia 204r. Zespół Przedmiotowy z chemii i fizyki Temat lekcji

Bardziej szczegółowo