Rozkład materiału nauczania fizyki w gimnazjum wg cyklu Ciekawa fizyka.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozkład materiału nauczania fizyki w gimnazjum wg cyklu Ciekawa fizyka."

Transkrypt

1 Rozkład materiału nauczania fizyki w gimnazjum wg cyklu Ciekawa fizyka. Wymagania ogólne i wymagania przekrojowe są uwzględnione w całym podręczniku i w dziennikach badawczych, dlatego nie piszemy odwołań do tych punktów przy każdym temacie lekcji. Poniższe zestawienie dotyczy tylko wymagań szczegółowych i doświadczalnych. CZĘŚĆ I Rozdział I Świat fizyki Nr lekcji Temat lekcji Wiadomości. Uczeń wie, że: 1. Czym zajmuje się fizyka, czyli o śmiałości stawiania pytań 2. Pomiary w fizyce 3. Oddziaływania i ich skutki 4. Wzajemność oddziaływań. Siła jako miara oddziaływań 5. Równowaga sił. Siła wypadkowa fizyka jest nauką przyrodniczą opartą na doświadczeniach, fizyka jest podstawą postępu technicznego. na czym polega pomiar, przy każdym pomiarze występuje niepewność pomiaru, wynikająca z ograniczonej dokładności przyrządów pomiarowych, istnieją oddziaływania: grawitacyjne, magnetyczne, elektryczne i jądrowe, skutki oddziaływań mogą być statyczne i dynamiczne, skutki oddziaływań mogą być trwałe i nietrwałe oddziaływania są wzajemne, siła jest miarą oddziaływań. zna warunek równoważenia się sił, jaką siłę nazywamy siłą wypadkową. 6. Masa i ciężar ciała masa i ciężar to dwie różne wielkości fizyczne, ciężar ciała wynika z oddziaływania grawitacyjnego i zależy od miejsca, w którym ciało się znajduje, jednostką podstawową masy jest kg, jednostką siły jest N. 7. Ruch. Względność ruchu. na czym polega ruch, prędkość oblicza się ze wzoru v=s/t Umiejętności ucznia. Uczeń potrafi: zadawać pytania związane ze zjawiskami fizycznymi. wykonać pomiar długości, obliczyć średnią wyników pomiarów, niepewności pomiarowej. podać przykłady sił i rozpoznać je w różnych sytuacjach praktycznych, rozpoznawać oddziaływania grawitacyjne, elektryczne i magnetyczne, określić skutki oddziaływań. zmierzyć siłę za pomocą siłomierza. wyznaczyć siłę wypadkową dla sił działających w tym samym kierunku. stosować do obliczeń związek między masą ciała, przyspieszeniem i siłą, siły ciężkości, wyznaczyć masę ciała za pomocą wagi, zmierzyć ciężar ciała za pomocą siłomierza, obliczyć ciężar ciała znając jego masę, przeliczać jednostki masy. wyznaczyć prędkość przemieszczania się za pośrednictwem pomiaru odległości i czasu, prędkości do opisu ruchu, przeliczać jednostki prędkości m/s na km/h i odwrotnie, obliczać prędkość średnią, odróżnić prędkość średnią od chwilowej, odczytywać prędkość i przebytą drogę z wykresów zależności drogi od czasu i prędkości od czasu Zgodność z nową podstawą programową Uwagi 1

2 8. Energia i jej przemiany 9.* Naturalne zasoby energii. Energia alternatywna do wykonania pracy niezbędna jest energia, energia występuje w różnych formach. konieczne jest oszczędzanie energii, pierwotnym źródłem energii na Ziemi jest energia światła słonecznego, korzystanie z różnych form energii alternatywnej przyczynia się do ochrony środowiska Ziemi. wykorzystać pojecie energii mechanicznej i wymienić różne jej formy, wymienić formy energii występujące w przyrodzie, podać przykłady przemian energii. określić, dlaczego należy oszczędzać energię elektryczną Rozdział II. Właściwości materii 10. Budowa cząsteczkowa materii 11. Stany skupienia materii substancje zbudowane są z cząsteczek i atomów, wszystkie atomy i cząsteczki są w nieustannym ruchu, cząsteczki oddziałują na siebie wzajemnie, atom składa się z jądra atomowego i otaczających je elektronów, jądro atomowe zawiera protony i neutrony. materia występuje w trzech podstawowych stanach skupienia: stałym, ciekłym i gazowym, zachodzą przemiany stanów skupienia. analizować różnice w budowie mikroskopowej ciał stałych, cieczy i gazów, wyjaśnić zjawiska: dyfuzji i kontrakcji. analizować różnice w budowie mikroskopowej ciał stałych, cieczy i gazów, opisać zjawiska: topnienia, krzepnięcia, parowania, skraplania, sublimacji i resublimacji Gęstość materii gęstość substancji oblicza się ze wzoru d= m/v, gęstość wyrażamy w kg/m 3 i g/cm Wyznaczanie gęstości ciał stałych 14. Wyznaczanie gęstości cieczy 15. Budowa wewnętrzna i właściwości ciał stałych 16. Budowa wewnętrzna i właściwości cieczy i gazów masę ciała wyznaczamy za pomocą wagi, objętość brył regularnych obliczamy korzystając ze wzorów matematycznych, objętość brył nieregularnych wyznaczamy z różnicy objętości cieczy, w której je zanurzamy. masę cieczy można wyznaczyć z różnicy mas naczynia z cieczą i naczynia bez cieczy, objętość cieczy można wyznaczyć za pomocą naczynia miarowego. o właściwościach ciał stałych decyduje ich budowa wewnętrzna, w ciałach o budowie krystalicznej atomy ułożone są w sposób regularny tworząc sieć krystaliczną. siły spójności, to siły działające między cząsteczkami tej samej substancji, siły przylegania, to siły działające między cząsteczkami różnych substancji. stosować do obliczeń związek między masą, gęstością i objętością dla ciał stałych i cieczy. wyznaczać gęstość substancji z jakiej wykonano przedmiot w kształcie prostopadłościanu za pomocą wagi i linijki, wyznaczać gęstość ciał stałych dla brył nieregularnych na podstawie pomiarów masy i objętości. stosować do obliczeń związek między masą, gęstością i objętością cieczy i na podstawie wyników pomiarów wyznaczać gęstość cieczy. omówić budowę kryształu na przykładzie soli kamiennej. opisać na wybranym przykładzie zjawisko napięcia powierzchniowego

3 17. Rozszerzalność temperaturowa ciał stałych zmiana długości ciała pod wpływem ogrzewania lub oziębiania zależy od: rodzaju substancji, długości początkowej i zmiany temperatury. analizować różnice w budowie mikroskopowej ciał stałych, wyjaśnić przyczyny temperaturowej rozszerzalności ciał stałych, 3.1. podać przykłady zapobiegania negatywnym skutkom zjawiska rozszerzalności temperaturowej ciał. 18. Rozszerzalność temperaturowa cieczy i gazów ciecze i gazy zmieniają swoją objętość pod wpływem ogrzewania lub oziębiania. analizować różnice w budowie mikroskopowej cieczy i gazów, wyjaśnić przyczyny temperaturowej rozszerzalności cieczy i gazów Ciśnienie ciśnienie obliczamy ze wzoru p =F/S, jednostką ciśnienia jest Pa. 20. Ciśnienie w cieczach i gazach ciśnienie hydrostatyczne obliczamy ze wzoru: p h = d g h, ciśnienie hydrostatyczne zależy od gęstości cieczy i od wysokości słupa cieczy, manometrem mierzymy ciśnienie w zbiornikach zamkniętych, barometrem mierzymy ciśnienie atmosferyczne, średnie ciśnienie atmosferyczne wynosi 1013 hpa 21. Prawo Pascala wzrost ciśnienia wywieranego na ciecz lub gaz wywołuje takie samo zwiększenie ciśnienia w całej objętości cieczy lub gazu. 22. Prawo Archimedesa siła wyporu jest różnicą wskazań siłomierza w powietrzu i po zanurzeniu ciała w wodzie, na ciało zanurzone w cieczy lub w gazie działa zwrócona do góry siła wyporu, której wartość jest równa ciężarowi cieczy wypartej przez to ciało. 23 Zastosowanie prawa Archimedesa ciało tonie, gdy d ciala >d cieczy ciało pływa w cieczy na dowolnej głębokości, gdy d ciala = d cieczy, ciało pływa częściowo zanurzone w cieczy, gdy d ciala < d cieczy. 24 * Aerodynamika podczas ruchu ciał w cieczach i w gazach występuje opór aerodynamiczny, różnica ciśnień powoduje powstanie zwróconej do góry siły nośnej. ciśnienia. ciśnienia hydrostatycznego i atmosferycznego, przeliczać jednostki ciśnienia Pa na hpa oraz kpa i odwrotnie formułować prawo Pascala i podać przykłady jego zastosowania (prasa hydrauliczna, hamulce hydrauliczne), posługiwać się wzorem F 1 /S 1 = F 2 /S 2 wykonać pomiar siły wyporu za pomocą siłomierza (dla ciała wykonanego z jednorodnej substancji o gęstości większej od gęstości wody), posługiwać się wzorem F w = d V g. analizować i porównywać wartości sił wyporu dla ciał zanurzonych w cieczy lub gazie, wyjaśnić pływanie ciał na podstawie prawa Archimedesa. wyjaśnić powstawanie siły nośnej działającej na samolot

4 Część druga Rozdział I. Energia mechaniczna 1. Praca praca jest wykonywana wtedy, gdy pod działaniem siły ciało przemieszcza się lub ulega odkształceniu, pracę obliczamy ze wzoru W = F s, ten wzór stosuje się tylko wtedy, gdy siła działa zgodnie z przemieszczeniem, jednostką pracy jest dżul (J) 1J = 1N 1m pracy, obliczać pracę na podstawie wykresu F(s), podać przykłady, gdy działająca siła nie wykonuje pracy Moc moc jest to szybkość wykonywania pracy, moc obliczamy ze wzoru P = W/t, jednostką mocy jest wat (W), 1W = 1J/ 1s mocy, posługiwać się wzorem na moc, rozwiązywać zadania obliczeniowe z zastosowaniem wzorów na pracę i moc Maszyny proste maszyny proste ułatwiają wykonanie pracy, przy użyciu maszyn prostych wykonujemy pracę, działając mniejszą siłą, ale na dłuższej drodze, warunek równowagi dźwigni dwustronnej zapisujemy: r 1 F 1 = r 2 F 2 blok nieruchomy i kołowrót działają na zasadzie dźwigni dwustronnej. wyznaczyć masę ciała za pomocą dźwigni dwustronnej, innego ciała o znanej masie oraz linijki, wyjaśnić zasadę działania dźwigni dwustronnej, bloku nieruchomego, kołowrotu, podać przykłady zastosowania maszyn prostych, stosować warunek równowagi dźwigni dwustronnej Energia potencjalna grawitacji zmiana energii potencjalnej grawitacji jest równa pracy wykonanej przy podnoszeniu ciała E p = W, zmianę energii potencjalnej grawitacji obliczamy ze wzoru: E p = m g h, energię potencjalną grawitacji wyrażamy w dżulach (J) opisywać wpływ wykonanej pracy na zmianę energii, wykorzystywać pojęcie energii mechanicznej i wymieniać różne jej formy, rozwiązywać zadania obliczeniowe z zastosowaniem wzoru na zmianę energii potencjalnej Energia kinetyczna zmiana energii kinetycznej ciała jest równa pracy wykonanej przy rozpędzaniu ciała E k = W, energia kinetyczna zależy od masy ciała i od kwadratu jego prędkości, energię kinetyczną obliczamy ze wzoru: E k = m v 2 /2, jednostką energii kinetycznej jest dżul (J) wykorzystywać pojęcie energii mechanicznej i wymieniać różne jej formy, opisywać wpływ wykonanej pracy na zmianę energii, posługiwać się wzorem na energię kinetyczną,

5 6. Zasada zachowania energii energia mechaniczna jest to suma energii kinetycznej, energii potencjalnej grawitacji i energii potencjalnej sprężystości, w układzie zamkniętym ciał suma wszystkich rodzajów energii pozostaje stała, energii nie można wytwarzać ani zniszczyć; energia może być przekazywana między ciałami lub zamieniana w inne formy energii. energii mechanicznej jako sumy energii kinetycznej i potencjalnej, stosować zasadę zachowania energii mechanicznej, wyjaśnić przemiany form energii mechanicznej na przykładzie skoku na batucie Rozdział II. Ciepło jako forma przekazywania energii 7. Temperatura jednostką temperatury jest kelwin (K), średnia energia kinetyczna cząsteczek ciała jest wprost proporcjonalna do temperatury wyrażonej w skali Kelvina, 0 0 C to w przybliżeniu 273 K, zmiana temperatury wyrażonej w stopniach Celsjusza jest równa zmianie temperatury wyrażonej w skali Kelvina T ( 0 C) = T (K). 8. Przekazywanie ciepła energię przekazywaną między ciałami o różnej temperaturze nazywamy ciepłem, jednostką ciepła jest dżul (J), ciepło może być przekazywane pomiędzy ciałami na drodze przewodnictwa, konwekcji i promieniowania. 9. Ciepło właściwe ciepło właściwe substancji jest to ilość ciepła potrzebnego do zmiany temperatury ciała o masie 1 kg o 1 K, ciepło właściwe obliczamy ze wzoru: c = Q/m T, jednostka ciepła właściwego jest J/kg K, gdy rośnie temperatura ciała to ciało pobiera ciepło, gdy maleje temperatura ciała to ciało oddaje ciepło. 10. Ciepło a praca. Zmiana energii wewnętrznej 11. Energia wewnętrzna i zmiany stanów skupienia energia wewnętrzna to suma wszystkich rodzajów energii cząsteczek ciała, energię wewnętrzną można zmienić w wyniku przepływu ciepła i w wyniku wykonanej pracy, zmianę energii wewnętrznej obliczamy ze wzoru: U = Q + W. topnienie/ krzepnięcie ciał o budowie krystalicznej zachodzi w stałej temperaturze zwanej temperaturą topnienia/krzepnięcia, ciepłem topnienia nazywamy ilość ciepła, którą należy dostarczyć ciału o masie 1 kg w temperaturze topnienia do całkowitego jego stopienia, ciepło topnienia obliczamy ze wzoru: c t = Q/m, wyjaśnić związek między energia kinetyczna cząsteczek i temperaturą, przeliczać temperaturę wyrażoną w stopniach Celsjusza na kelwiny i odwrotnie. wyjaśnić przepływ ciepła w zjawisku przewodnictwa cieplnego oraz rolę izolacji cieplnej, opisywać ruch cieczy i gazów w zjawisku konwekcji, wymienić dobre przewodniki ciepła i izolatory. wyznaczyć ciepło właściwe wody za pomocą czajnika elektrycznego lub grzałki o znanej mocy (przy założeniu braku strat ciepła), ciepła właściwego, obliczyć ciepło właściwe na podstawie wykresu T(Q), posługiwać się wzorem na ciepło właściwe przy rozwiązywaniu zadań. analizować jakościowo zmiany energii wewnętrznej spowodowane wykonaniem pracy i przepływem ciepła, podać przykłady zamiany pracy w energię wewnętrzną ciała. opisać zjawiska topnienia, krzepnięcia, parowania, skraplania, sublimacji i resublimacji, posługuje się pojęciem ciepła właściwego, ciepła topnienia i ciepła parowania, zastosować wzory do rozwiązywania zadań, analizować wykres T(Q), sporządzać wykres T(Q)

6 jednostka ciepła topnienia jest J/kg, ciepłem parowania nazywamy ilość ciepła, którą należy dostarczyć cieczy w temperaturze wrzenia o masie 1 kg do całkowitego jej wyparowania, ciepło parowania obliczamy ze wzoru c p = Q/m jednostką ciepła parowania jest J/kg 12.* Rozdział III. Ruch i siły 12. Ruch jednostajny prostoliniowy ruch, w którym prędkość ma stałą wartość, a torem ruchu jest linia prosta nazywamy ruchem jednostajnym prostoliniowym. odczytywać prędkość i przebytą odległość ( położenie)z wykresów zależności drogi i prędkości od czasu oraz rysuje te wykresy na podstawie opisu słownego, obliczyć przebytą drogę na podstawie pola figury pod wykresem v(t) Opory ruchu. Tarcie wyróżniamy tarcie statyczne i kinetyczne, wartość siły tarcia zależy od siły nacisku na podłoże i rodzaju powierzchni trących, wartość tarcia kinetycznego lub maksymalnego tarcia statycznego obliczamy ze wzoru: F T = f F N 14. Pierwsza zasada dynamiki 15. Ruch zmienny. Przyspieszenie 16. Druga zasada dynamiki masa ciała jest miarą jego bezwładności, zjawisko bezwładności ciał występuje, gdy ciała przyspieszają, zwalniają lub zmieniają kierunek ruchu względem nieruchomego układu odniesienia, gdy na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym względem przyjętego nieruchomego układu odniesienia. jeżeli wartość prędkości ciała wzrasta, to ciało porusza się ruchem przyspieszonym, jeżeli wartość prędkości maleje, to ciało porusza się ruchem opóźnionym, przyspieszenie obliczamy, dzieląc zmianę prędkości przez przedział czasu, w którym ta zmiana nastąpiła a = v/ t, jednostką przyspieszenia jest m/s 2. siła wypadkowa jest przyczyną zmiany wektora prędkości ciała, czyli powoduje skutki dynamiczne, przyspieszenie jakie uzyskuje ciało pod wpływem działającej na nie siły wypadkowej, jest opisywać wpływ oporów ruchu na poruszające się ciała, podać sposoby zwiększania i zmniejszania współczynnika tarcia. opisać zachowanie się ciał na podstawie pierwszej zasady dynamiki Newtona, podać przykłady wykorzystania zjawiska bezwładności. przyspieszenia do opisu ruchu o zmiennej prędkości, na podstawie wyników pomiarów narysować wykres zależności prędkości od czasu dla ruchu przyspieszonego i opóźnionego, analizować wykresy v(t). opisywać zachowanie się ciał na podstawie drugiej zasady dynamiki Newtona, stosować do obliczeń związek między masą ciała, przyspieszeniem i siłą

7 17. Ruch jednostajnie przyspieszony prostoliniowy wprost proporcjonalne do tej siły i odwrotnie proporcjonalne do masy ciała a = F w /m, kierunek i zwrot przyspieszenia są zgodne z kierunkiem i zwrotem działającej siły wypadkowej, 1 N jest to siła, która ciału o masie 1 kg nadaje przyspieszenie 1 m/s 2 1 N = 1 kg 1 m/s 2. ruchem jednostajnie przyspieszonym prostoliniowym nazywamy taki ruch, w którym wartość prędkości rośnie jednostajnie, a torem jest linia prosta, prędkość w ruchu jednostajnie przyspieszonym prostoliniowym, gdy prędkość początkowa v 0 =0 obliczamy ze wzoru: v = a t drogę w ruchu jednostajnie przyspieszonym prostoliniowym, gdy prędkość początkowa v 0 =0, obliczamy ze wzoru: s = a t 2 / 2, w ruchu jednostajnie przyspieszonym prostoliniowym z prędkością początkową równą zero, w kolejnych jednakowych przedziałach czasu, ciało przebywa odcinki drogi, które pozostają w proporcji takiej, jak kolejne liczby nieparzyste 18. Spadek swobodny spadkiem swobodnym nazywamy ruch ciał z prędkością początkową równą zero, na które działa tylko siła ciężkości, spadek swobodny jest ruchem jednostajnie przyspieszonym prostoliniowym z przyspieszeniem grawitacyjnym, przyspieszenie ciała spadającego swobodnie nie zależy od jego masy. przyspieszenia do opisu ruchu prostoliniowego jednostajnie przyspieszonego, odróżniać prędkość średnią od chwilowej w ruchu niejednostajnym, na podstawie wykresu v(t) rozpoznać rodzaj ruchu, na podstawie wykresu v(t) obliczyć przebytą drogę i przyspieszenie, stosować do obliczeń poznane wzory. stosować zasadę zachowania energii mechanicznej, sporządzać wykres v(t) dla spadku swobodnego *. Ruch jednostajnie opóźniony prostoliniowy 20. Trzecia zasada dynamiki ruchem jednostajnie opóźnionym prostoliniowym nazywamy taki ruch, w którym wartość prędkości maleje jednostajnie, a torem ruchu jest prosta, jeżeli wartość prędkości początkowej wynosi v 0, to prędkość w ruchu jednostajnie opóźnionym prostoliniowym w chwili t obliczamy ze wzoru: v = v 0 + a t, drogę w ruchu jednostajnie opóźnionym prostoliniowym, gdy prędkość początkowa wynosi v 0, a prędkość końcowa wynosi zero, obliczamy ze wzoru: s = v 0 t /2 jeżeli jedno ciało działa siłą na drugie ciało, to również drugie ciało działa siłą na pierwsze ciało, obie siły mają taka samą wartość, ten sam kierunek, ale przeciwne zwroty, siły te działają równocześnie i nie równoważą się, ponieważ każda z nich jest przyłożona do innego ciała, siły te nazywamy siłami akcji i na wykresie v(t) rozpoznać ruch jednostajnie opóźniony, obliczyć drogę na podstawie pola figury pod wykresem v(t), obliczyć przyspieszenie na podstawie wykresu v(t). opisywać wzajemne oddziaływanie ciał posługując się trzecią zasadą dynamiki Newtona

8 reakcji. Rozdział IV. Drgania i fale mechaniczne 21. Ruch drgający ruch drgający to taki ruch, w którym ciało zmienia swoje położenie względem położenia równowagi, pod wpływem siły zwróconej do środka drgań, amplitudą drgań nazywamy maksymalne wychylenie z położenia równowagi, amplitudę drgań oznaczamy symbolem A i wyrażamy w metrach, czas trwania jednego drgania nazywamy okresem drgań T i wyrażamy w sekundach, częstotliwość drgań to liczba drgań w jednostce czasu, częstotliwość obliczamy ze wzoru: f = 1/T, częstotliwość wyrażamy w hercach 1 Hz = 1/s 22. Drgania swobodne po wychyleniu z położenia równowagi ciało wykonuje drgania swobodne, ciała mają własne częstotliwości drgań swobodnych, które zależą od kształtu ciała, jego wymiarów i sprężystości, w czasie drgań wahadła zachodzą przemiany energii potencjalnej grawitacji, energii kinetycznej i energii sprężystości, drgania gasnące to takie, których amplituda stopniowo maleje, okres drgań wahadła nie zależy od amplitudy drgań, okres drgań wahadła matematycznego zależy od jego długości i wartości przyspieszenia grawitacyjnego. 23. Drgania wymuszone i rezonans 24. Powstawanie fal w ośrodkach materialnych powtarzające się okresowo działanie siły wywołuje drgania wymuszone, rezonans jest to zjawisko przekazywania energii drgań między ciałami, gdy częstotliwość drgań wymuszających jest równa częstotliwości drgań swobodnych ciała, rezonans powoduje wzrost amplitudy drgań wymuszonych. falą mechaniczną nazywamy rozchodzące się drgania ośrodka przenoszące energię, w czasie rozchodzenia się fali energia drgań przekazywana jest od źródła fali do kolejnych punktów ośrodka, fale poprzeczne to fale, w których kierunek drgań ośrodka jest prostopadły do kierunku rozchodzenia się fali, fale podłużne to fale, w których kierunek drgań ośrodka jest zgodny z kierunkiem rozchodzenia się fali, długość fali poprzecznej jest to odległość między dwoma posługiwać się pojęciami: amplitudy drgań, okresu i częstotliwości do opisu drgań, wskazywać położenie równowagi oraz odczytywać amplitudę i okres drgań z wykresu x(t), obliczać częstotliwość na podstawie wykresu x(t). wyznaczyć okres i częstotliwość drgań wahadła matematycznego, wyznaczyć okres i częstotliwość drgań ciężarka zawieszonego na sprężynie, opisać ruch wahadła matematycznego i analizować przemiany energii w tym ruchu, opisać ruch ciężarka na sprężynie i analizować przemiany energii w tym ruchu. podać przykłady zjawiska rezonansu, opisywać mechanizm przekazywania drgań z jednego punktu ośrodka do drugiego w przypadku fali na napiętej linie, posługiwać się pojęciami: amplitudy, okresu i częstotliwości, prędkości i długości fali, stosować do obliczeń związki między tymi wielkościami f= 1/T v = λ f, rozpoznać falę poprzeczną i podłużną

9 25. Odbicie i załamanie fal sąsiednimi grzbietami lub dolinami fali, prędkość rozchodzenia się fali w ośrodku obliczamy ze wzoru: v = λ f. biegnące fale mechaniczne odbijają się od przeszkody, kąt odbicia fali jest równy kątowi padania i oba kąty leżą w jednej płaszczyźnie, przy przechodzeniu fali do ośrodka, w którym biegnie ona z inną prędkością, fala zmienia kierunek ruchu, czyli się załamuje. 26. Fale dźwiękowe drgania odbierane zmysłem słuchu nazywamy dźwiękami, człowiek słyszy dźwięki od 16 do Hz, prędkość rozchodzenia się fal dźwiękowych w ośrodku zależy od jego sprężystości, fale dźwiękowe w powietrzu to fale podłużne 27. Cechy dźwięków wysokość, głośność i barwa to podstawowe cechy dźwięków, wysokość dźwięku zależy od częstotliwości tonu podstawowego, barwa dźwięku zależy od częstotliwości i amplitudy tonów dodatkowych tworzących dźwięk wraz z tonem podstawowym, głośność dźwięku zależy od amplitudy drgań źródła dźwięku, głośność wyrażamy w fonach. 28. Ultradźwięki i infradźwięki ultradźwięki to drgania o częstotliwościach większych od 20 khz, infradźwięki to drgania o częstotliwościach mniejszych od 16 Hz. rozpoznać zjawisko odbicia i załamania fal. opisać mechanizm przekazywania drgań z jednego punktu ośrodka do drugiego dla fal dźwiękowych w powietrzu, wymienić od jakich wielkości fizycznych zależy wysokość i głośność dźwięku, rozpoznać dźwięki wyższe i niższe. posługiwać się pojęciami infradźwięki i ultradźwięki, podać przykłady zastosowania ultradźwięków Fale stojące zjawisko nakładania się fal pochodzących z różnych źródeł nazywamy interferencją, w wyniku interferencji fale mogą ulegać wzmocnieniu, osłabieniu lub wygaszeniu, fala stojąca jest wynikiem interferencji fali wytworzonej z fala odbitą o tej samej częstotliwości i amplitudzie, częstotliwość fali stojącej zależy od wymiarów ciała i prędkości fali w ośrodku. 30. Instrumenty muzyczne instrumenty muzyczne dzielimy na : strunowe, dęte, perkusyjne i elektroniczne, w głośnikach i słuchawkach źródłem dźwięku jest drgająca membrana, która zamienia drgania elektryczne na mechaniczne. wytwarzać dźwięki o większej i mniejszej częstotliwości od danego dźwięku za pomocą dowolnego drgającego przedmiotu lub instrumentu muzycznego, opisać mechanizm wytwarzania dźwięku w instrumentach muzycznych. wytwarzać dźwięki o większej i mniejszej częstotliwości od danego dźwięku za pomocą dowolnego instrumentu muzycznego Rozdział V. Optyka 31. Źródła światła światło rozchodzi się po liniach prostych w ośrodku jednorodnym, światłem nazywamy podać przybliżoną wartość prędkości światła w próżni, wymienić źródła światła

10 promieniowanie odbierane zmysłem wzroku człowieka, źródłami światła nazywamy ciała wysyłające promieniowanie świetlne, prędkość światła w próżni wynosi około km/s, jest to największa prędkość w przyrodzie. 32. Zaćmienia ciała nieprzezroczyste to takie, przez które nie przechodzi promieniowanie świetlne, jeżeli na drodze promieni świetlnych znajduje się ciało nieprzezroczyste, to powstaje za nim obszar cienia, całkowite zaćmienie Słońca występuje wtedy, gdy na powierzchnię Ziemi pada cień Księżyca, zaćmienie Księżyca występuje wtedy, gdy znajdzie się on w obszarze półcienia lub cienia Ziemi. wyjaśnić powstawanie obszarów cienia i półcienia za pomocą prostoliniowego rozchodzenia się światła w ośrodku jednorodnym Odbicie światła kątem padania nazywamy kąt, jaki tworzy promień padający z prostą prostopadłą do powierzchni odbijającej w punkcie padania, kątem odbicia nazywamy kąt, jaki tworzy promień odbity z prostą prostopadłą do powierzchni odbijającej w punkcie odbicia, kąt odbicia jest równy kątowi padania, promień padający, promień odbity i prosta prostopadłą do powierzchni odbijającej w punkcie padania światła leżą w jednej. płaszczyźnie, obraz przedmiotu otrzymywany w zwierciadle płaskim jest pozorny, prosty, tej samej wielkości. 34. Zwierciadła wklęsłe i wypukle 35. Konstrukcja obrazów w zwierciadłach kulistych zwierciadła, których powierzchnię odbijająca światło stanowi część powierzchni kuli, nazywamy zwierciadłami kulistymi, zwierciadło kuliste wklęsłe to zwierciadło, którego powierzchnię odbijającą stanowi część wewnętrznej powierzchni kuli, zwierciadło kuliste wypukłe, to zwierciadło, którego powierzchnię odbijającą stanowi część zewnętrznej powierzchni kuli, ognisko F zwierciadła wklęsłego jest to punkt, w którym skupiają się po odbiciu promienie światła padające równolegle do osi optycznej zwierciadła, ogniskowa f zwierciadła wklęsłego jest to odległość ogniska od zwierciadła, ogniskową f zwierciadeł kulistych obliczamy ze wzoru f= r/2 położenie i rozmiar obrazu utworzonego przez promienie światła odbite od zwierciadła kulistego wklęsłego zależy od rozmiarów i odległości przedmiotu od zwierciadła, wyjaśnić powstawanie obrazu pozornego w zwierciadle płaskim, wykorzystując prawo odbicia; opisuje zjawisko rozproszenia światła od powierzchni chropowatej, stosować prawo odbicia światła. opisać skupianie promieni światła w zwierciadle wklęsłym posługując się pojęciami ogniska i ogniskowej. wykonać konstrukcje obrazów wytworzonych przez zwierciadła wklęsłe, rozróżnić obrazy rzeczywiste, pozorne, proste, odwrócone, powiększone, pomniejszone,

11 w zwierciadle kulistym wypukłym otrzymujemy zawsze obraz pozorny, pomniejszony, prosty. 36. Załamanie światła zjawisko zmiany kierunku rozchodzenia się światła przy przechodzeniu przez granicę dwóch ośrodków przezroczystych nazywamy załamaniem światła, jeżeli światło przechodzi do ośrodka, w którym jego prędkość jest mniejsza, to kąt załamania jest mniejszy od kąta padania, jeżeli światło przechodzi do ośrodka, w którym jego prędkość jest większa, to kąt załamania jest większy od kąta padania. 37. Zjawisko całkowitego wewnętrznego odbicia 38. Rozszczepienie światła kąt padania, przy którym kąt załamania β = 90 0, nazywamy kątem granicznym α gr, całkowite wewnętrzne odbicie występuje na granicy dwóch ośrodków przezroczystych, gdy światło w drugim ośrodku rozchodzi się z większą prędkością niż w pierwszym i kąt padania jest większy od kąta granicznego. światło białe jest mieszaniną barw, a światło lasera jest jednobarwne, rozdzielenie światła białego na barwy, z których ono się składa, nazywamy rozszczepieniem światła, po przejściu przez pryzmat najmniej odchylone od pierwotnego kierunku jest światło czerwone, a najbardziej fioletowe. 39. Soczewki soczewki dzielimy na skupiające i rozpraszające, ogniskiem soczewki skupiającej F nazywamy punkt, w którym promienie równoległe do osi optycznej skupiają się po przejściu przez soczewkę, ogniskowa soczewki f to odległość ogniska soczewki F od środka soczewki, soczewka rozpraszająca ma ognisko pozorne, które tworzą przedłużenia promieni po przejściu przez soczewkę, zdolnością skupiającą soczewki nazywamy odwrotność jej ogniskowej Z = 1/f, jednostka zdolności skupiającej soczewki jest dioptria (D) 1 D = 1/m, dla soczewek skupiających Z > 0, a dla soczewek rozpraszających Z< Konstrukcja obrazów wytworzonych przez soczewki obraz otrzymywany za pomocą soczewki skupiającej zależy od odległości przedmiotu od soczewki x i od jej ogniskowej f, stosując soczewki rozpraszające, zawsze otrzymujemy obraz pozorny, prosty, pomniejszony, powiększeniem nazywamy iloraz wysokości uzyskanego obrazu i wysokości przedmiotu. podać przykłady zastosowania zwierciadeł wklęsłych i wypukłych. demonstrować zjawisko załamania światła (zmiany kąta załamania przy zmianie kąta padania światła- jakościowo), opisać (jakościowo) bieg promieni przy przejściu światła z ośrodka rzadszego do ośrodka gęstszego optycznie i odwrotnie. opisać (jakościowo) bieg promieni światła przy przejściu z ośrodka gęstszego do ośrodka rzadszego optycznie, podać warunki, przy których nastąpi zjawisko całkowitego wewnętrznego odbicia światła, podać przykłady zastosowania zjawiska całkowitego wewnętrznego odbicia światła. opisać zjawisko rozszczepienia światła za pomocą pryzmatu, opisać światło białe jako mieszaninę barw, a światło lasera jako światło jednobarwne, podać kolejność barw w widmie światła białego po rozszczepieniu. opisać bieg promieni przechodzących przez soczewkę skupiającą i rozpraszającą (biegnących równolegle do osi optycznej) posługując się pojęciami ogniska i ogniskowej, umie obliczać zdolność skupiającą soczewek. wytwarzać za pomocą soczewki skupiającej ostry obraz przedmiotu na ekranie odpowiednio dobierając doświadczalnie położenie soczewki i przedmiotu, rysować konstrukcyjnie obrazy wytworzone przez soczewki, rozróżnia obrazy rzeczywiste, pozorne, proste, odwrócone, powiększone, pomniejszone

12 41. Budowa i działanie oka oko ludzkie jest układem optycznym, który załamuje promienie świetlne, odbiera barwny obraz i przekazuje sygnały nerwowe do mózgu, układ optyczny oka tworzy na siatkówce obraz pomniejszony i odwrócony, akomodacja jest to zdolność przystosowania się oka do wyraźnego widzenia przedmiotów znajdujących się w różnej odległości, odpowiednio dobrane soczewki rozpraszające korygują krótkowzroczność i poprawiają ostrość widzenia, odpowiednio dobrane soczewki skupiające korygują dalekowzroczność i poprawiają ostrość widzenia. wyjaśnić pojęcia krótkowzroczności i dalekowzroczności oraz opisuje rolę soczewek w ich korygowaniu Część III Rozdział I. Elektryczność i magnetyzm 1 Oddziaływania elektrostatyczne ciała naelektryzowane jednoimiennie odpychają się wzajemnie, a naelektryzowane różnoimiennie się przyciągają, elektron jest cząstką o elementarnym ładunku elektrycznym ujemnym, proton jest cząstką o elementarnym ładunku elektrycznym dodatnim, ciało naelektryzowane ujemnie to ciało, które ma więcej elektronów niż protonów, ciało naelektryzowane dodatnio to ciało, które ma mniej elektronów niż protonów, podczas elektryzowania ciał stałych przemieszczają się tylko elektrony. opisać sposoby elektryzowania ciał przez tarcie i dotyk; wyjaśnia, że zjawisko to polega na przepływie elektronów miedzy ciałami; wykonać elektryzowanie ciał przez tarcie oraz zademonstrować wzajemne oddziaływanie ciał naelektryzowanych, opisać (jakościowo) oddziaływanie ładunków jednoimiennych i różnoimiennych, ładunku elektrycznego jako wielokrotności ładunku elektronu (elementarnego) Zasada zachowania ładunku elektrycznego 3. Mikroskopowy model zjawisk elektrycznych 4. Natężenie prądu elektrycznego w izolowanym elektrycznie układzie ciał suma ładunków elektrycznych dodatnich i ujemnych pozostaje stała, elektryzujemy ciała przez pocieranie i przepływ ładunku. ze względu na przewodnictwo elektryczne ciała stałe dzielimy na przewodniki i izolatory. ukierunkowany ruch elektronów w przewodniku nazywamy prądem elektrycznym, jednostką natężenia jest amper, jeżeli w przewodniku płynie prąd o natężeniu 1A, to w czasie 1s stosować zasadę zachowania ładunku elektrycznego. analizować kierunek przepływu elektronów, odróżnić przewodniki od izolatorów oraz podać przykłady obu rodzajów ciał. opisać przepływ prądu w przewodnikach jako ruch elektronów swobodnych, natężenia prądu elektrycznego

13 nastąpi przemieszczenie ładunku elektrycznego 1C przez poprzeczny przekrój tego przewodnika, 1C = 1A 1s q = I t 5. Napięcie elektryczne U = W/q, 1V = 1J/1C posługiwać się ( intuicyjnie) pojęciem napięcia elektrycznego Budowa obwodów elektrycznych prąd elektryczny płynie w obwodzie zamkniętym. 7. Prawo Ohma natężenie prądu elektrycznego płynącego przez przewodnik jest wprost proporcjonalne do napięcia elektrycznego między jego końcami I = U/R, jednostką oporu elektrycznego jest om: 1Ω= 1V/1A, opór elektryczny przewodnika zależy od jego rodzaju, długości i powierzchni przekroju poprzecznego. budować proste obwody elektryczne i rysować ich schematy, budować prosty obwód elektryczny według zadanego schematu, rozpoznawać symbole elementów obwodu elektrycznego: ogniwo, opornik, żarówka, wyłącznik, woltomierz, amperomierz. oporu elektrycznego, stosować prawo Ohma w prostych obwodach elektrycznych, wyznaczyć opór elektryczny opornika lub żarówki za pomocą woltomierza i amperomierza Połączenia szeregowe i równoległe w obwodach elektrycznych 9. Praca i moc prądu elektrycznego 10. Przepływ prądu elektrycznego w cieczach, gazach i w próżni 11. Oddziaływania magnetyczne jeżeli łączymy szeregowo odbiorniki energii elektrycznej, to całkowity opór elektryczny rośnie, a jeżeli łączymy równolegle to całkowity opór elektryczny maleje. w czasie przepływu prądu elektrycznego energia elektryczna zostaje przekształcona w inne formy energii, praca prądu elektrycznego jest wprost proporcjonalna do napięcia i natężenia prądu oraz czasu jego przepływu W = U I t, szybkość przekształcania energii elektrycznej w inne formy energii nazywamy mocą elektryczną P = U I zna zasady bezpiecznego korzystania z urządzeń elektrycznych. budować proste obwody elektryczne i rysować ich schematy, oporu elektrycznego, stosować prawo Ohma w prostych obwodach elektrycznych. pracy i mocy prądu elektrycznego, obliczać energię. elektryczną podaną w kilowatogodzinach na dżule i dżule na kilowatogodziny, wymieniać formy energii w jakie przekształca się energia elektryczna, wyznaczać moc żarówki zasilanej z baterii za pomocą woltomierza i amperomierza. nazwać bieguny magnetyczne magnesów trwałych, opisać oddziaływania między nimi, opisać zachowanie igły magnetycznej w obecności magnesu, oraz zasadę działania kompasu, opisać oddziaływanie magnesu na żelazo i podać przykłady wykorzystania tego oddziaływania Oddziaływania magnetyczne wokół przewodu z prądem elektrycznym opisać działanie przewodnika z prądem elektrycznym na igłę magnetyczną, demonstrować działanie prądu

14 w przewodzie na igłę magnetyczną (zmiany kierunku wychylenia przy zmianie kierunku przepływu prądu, zależność wychylenia igły od pierwotnego jej ułożenia względem przewodu), opisać działanie elektromagnesu i rolę rdzenia w elektromagnesie. 13. Silnik elektryczny opisać wzajemne oddziaływanie magnesów z elektromagnesami i wyjaśnić działanie silnika elektrycznego. 14.* Prądnica prądu przemiennego Rozdział II. Fale elektromagnetyczne 15. Rodzaje fal elektromagnetycznych 16. Fale radiowe i mikrofale 17. Promieniowanie podczerwone i nadfioletowe 18. Promieniowanie rentgenowskie nazwać rodzaje fal elektromagnetycznych ( radiowe, mikrofale, promieniowanie podczerwone, światło widzialne, nadfioletowe, rentgenowskie). podać przykłady zastosowania fal elektromagnetycznych, porównać (wymienia cechy wspólne i różnice) rozchodzenia się fal mechanicznych i elektromagnetycznych). opisać zastosowanie fal radiowych i mikrofal. opisać zastosowanie promieniowania podczerwonego i nadfioletowego. opisać zastosowanie promieniowania rentgenowskiego Rozdział III. Powtórzenie wiadomości zdobytych w gimnazjum na lekcjach fizyki I. Właściwości materii II. Ruch i siły III. Dynamika IV. Termodynamika V. Drgania i fale mechaniczne VI. Optyka VII. Elektromagnetyzm VIII. Fale elektromagnetyczne 14

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

KLASA II (nacobezu) Rozdział I. PRACA, MOC, ENERGIA. Ciepło jako forma przekazywania energii. Wymagania rozszerzające (PP) (oceny:4,5) (oceny:2,3)

KLASA II (nacobezu) Rozdział I. PRACA, MOC, ENERGIA. Ciepło jako forma przekazywania energii. Wymagania rozszerzające (PP) (oceny:4,5) (oceny:2,3) KLASA II (nacobezu) Rozdział I. PRACA, MOC, ENERGIA Temat lekcji Wymagania podstawowe (P) (oceny:2,3) Wymagania rozszerzające (PP) (oceny:4,5) 1. Praca praca jest wykonywana wtedy, gdy pod działaniem siły

Bardziej szczegółowo

Rozkład materiału dla klasy 8 szkoły podstawowej (2 godz. w cyklu nauczania) 2 I. Wymagania przekrojowe.

Rozkład materiału dla klasy 8 szkoły podstawowej (2 godz. w cyklu nauczania) 2 I. Wymagania przekrojowe. Rozkład materiału dla klasy 8 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowa na liczba godzin Elektrostatyka 8 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy programowej

Bardziej szczegółowo

Podstawa programowa III etap edukacyjny

Podstawa programowa III etap edukacyjny strona 1/5 Źródło: Rozporządzenie Ministra Edukacji Narodowej z dnia 23 grudnia 2008 r. w sprawie podstawy programowej Więcej: www.reformaprogramowa.men.gov.pl/rozporzadzenie Podstawa programowa III etap

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot. fizyka Klasa pierwsza... druga... trzecia... Rok szkolny Imię i nazwisko nauczyciela przedmiotu

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot. fizyka Klasa pierwsza... druga... trzecia... Rok szkolny Imię i nazwisko nauczyciela przedmiotu KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot fizyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela przedmiotu

Bardziej szczegółowo

Fizyka. Klasa 3. Semestr 1. Dział : Optyka. Wymagania na ocenę dopuszczającą. Uczeń:

Fizyka. Klasa 3. Semestr 1. Dział : Optyka. Wymagania na ocenę dopuszczającą. Uczeń: Fizyka. Klasa 3. Semestr 1. Dział : Optyka Wymagania na ocenę dopuszczającą. Uczeń: 1. wymienia źródła światła 2. wyjaśnia, co to jest promień światła 3. wymienia rodzaje wiązek światła 4. wyjaśnia, dlaczego

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: Stopień Zakres wymagań niedostateczny mniej niż 75 % wymagań koniecznych dopuszczający około 75% wymagań koniecznych dostateczny dobry

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) lekcji Cele operacyjne uczeń: Wymagania podstawowe po nadpod stawowe Dopuszczający Dostateczny Dobry Bardzo dobry 1 2 3 4 5 6 1. Światło i cień wymienia źródła światła wyjaśnia,

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

opisuje przepływ prądu w przewodnikach, jako ruch elektronów swobodnych posługuje się intuicyjnie pojęciem napięcia

opisuje przepływ prądu w przewodnikach, jako ruch elektronów swobodnych posługuje się intuicyjnie pojęciem napięcia Fizyka kl. 3 Temat lekcji Prąd w metalach. Napięcie elektryczne Źródła napięcia. Obwód Natężenie prądu Prawo Ohma. oporu opornika opisuje przepływ prądu w przewodnikach, jako ruch elektronów swobodnych

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

9. Plan wynikowy (propozycja)

9. Plan wynikowy (propozycja) 9. Plan wynikowy (propozycja) lekcji ele operacyjne uczeń: Kategoria celów Wymagania podstawowe po nadpod stawowe konieczne podstawowe rozszerzające dopełniające 1 2 3 4 5 6 7 Rozdział I. Optyka 1. Światło

Bardziej szczegółowo

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowana liczba godzin POMIARY I RUCH 12 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy

Bardziej szczegółowo

FIZYKA KLASA III GIMNAZJUM

FIZYKA KLASA III GIMNAZJUM FIZYKA KLASA III GIMNAZJUM lekcji ele operacyjne uczeń: Kategoria celów opuszcza jąca ostatecz ną Wymagania na ocenę 1 2 3 4 5 6 7 8 dobrą ardzo dobrą celującą 1. Światło i cień 2. Widzimy dzięki światłu

Bardziej szczegółowo

Podstawa programowa z fizyki (III etap edukacyjny) Cele kształcenia wymagania ogólne. Treści nauczania wymagania szczegółowe

Podstawa programowa z fizyki (III etap edukacyjny) Cele kształcenia wymagania ogólne. Treści nauczania wymagania szczegółowe Podstawa programowa z fizyki (III etap edukacyjny) Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II.

Bardziej szczegółowo

mgr Anna Hulboj Treści nauczania

mgr Anna Hulboj Treści nauczania mgr Anna Hulboj Realizacja treści nauczania wraz z wymaganiami szczegółowymi podstawy programowej z fizyki dla klas 7 szkoły podstawowej do serii Spotkania z fizyką w roku szkolnym 2017/2018 (na podstawie

Bardziej szczegółowo

Przykładowy rozkład materiału nauczania fizyki w gimnazjum wg cyklu Ciekawa fizyka.

Przykładowy rozkład materiału nauczania fizyki w gimnazjum wg cyklu Ciekawa fizyka. Przykładowy rozkład materiału nauczania fizyki w gimnazjum wg cyklu Ciekawa fizyka. Wymagania ogólne i wymagania przekrojowe są uwzględnione w całym podręczniku i w dziennikach badawczych, dlatego nie

Bardziej szczegółowo

Wymagania edukacyjne Fizyka klasa II gimnazjum. Wymagania na ocenę dostateczną Uczeń:

Wymagania edukacyjne Fizyka klasa II gimnazjum. Wymagania na ocenę dostateczną Uczeń: Przedmiotowy system oceniania dla uczniów z opinią PPP z fizyki kl.ii Wymagania edukacyjne Fizyka klasa II gimnazjum 1. Ruch i siły. 11 godz. L.p. Temat lekcji Wymagania na ocenę dopuszczającą 1 Ruch jednostajny

Bardziej szczegółowo

Wymagania edukacyjne Fizyka klasa II gimnazjum. Wymagania na ocenę dostateczną Uczeń:

Wymagania edukacyjne Fizyka klasa II gimnazjum. Wymagania na ocenę dostateczną Uczeń: Przedmiotowy system oceniania z fizyki kl.ii Wymagania edukacyjne Fizyka klasa II gimnazjum 1. Ruch i siły. 11 godz. L.p. Temat lekcji Wymagania na ocenę dopuszczającą 1 Ruch jednostajny prostoliniowy.

Bardziej szczegółowo

Program merytoryczny Konkursu Fizycznego dla uczniów gimnazjów rok szkolny 2011/2012

Program merytoryczny Konkursu Fizycznego dla uczniów gimnazjów rok szkolny 2011/2012 Program merytoryczny Konkursu Fizycznego dla uczniów gimnazjów rok szkolny 2011/2012 Celem Konkursu Fizycznego jest rozwijanie zainteresowań prawidłowościami świata przyrody, umiejętność prezentacji wyników

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI KL.II I-półrocze

WYMAGANIA EDUKACYJNE Z FIZYKI KL.II I-półrocze Temat Energia wewnętrzna i jej zmiany przez wykonanie pracy Cieplny przepływ energii. Rola izolacji cieplnej Zjawisko konwekcji Ciepło właściwe Przemiany energii podczas topnienia. Wyznaczanie ciepła topnienia

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień

Bardziej szczegółowo

WYMAGANIA Z FIZYKI KLASA 3 GIMNAZJUM. 1. Drgania i fale R treści nadprogramowe

WYMAGANIA Z FIZYKI KLASA 3 GIMNAZJUM. 1. Drgania i fale R treści nadprogramowe WYMAGANIA Z FIZYKI KLASA 3 GIMNAZJUM 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry wskazuje w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III I. Drgania i fale R treści nadprogramowe Ocena dopuszczająca dostateczna dobra bardzo dobra wskazuje w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE III GIMNAZJUM NA ROK SZKOLNY 2018/2019

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE III GIMNAZJUM NA ROK SZKOLNY 2018/2019 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE III GIMNAZJUM NA ROK SZKOLNY 2018/2019 WYMAGANIA NA POSZCZEGÓLNE OCENY DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY wymienia źródła wyjaśnia,

Bardziej szczegółowo

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i

Bardziej szczegółowo

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon Klasa III Elektryzowanie przez tarcie. Ładunek elementarny i jego wielokrotności opisuje budowę atomu i jego składniki elektryzuje ciało przez potarcie wskazuje w otoczeniu zjawiska elektryzowania przez

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy III gimnazjum, rok szkolny 2017/2018

Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy III gimnazjum, rok szkolny 2017/2018 Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy III gimnazjum, rok szkolny 2017/2018 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału w

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki w klasie 3

Przedmiotowy system oceniania z fizyki w klasie 3 Przedmiotowy system oceniania z fizyki w klasie 3 Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry

Bardziej szczegółowo

Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era

Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era 1. Drgania i fale Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry

Bardziej szczegółowo

Rozkład materiału z zestawieniem wiadomości i umiejętności uczniów według cyklu Ciekawa fizyka

Rozkład materiału z zestawieniem wiadomości i umiejętności uczniów według cyklu Ciekawa fizyka Rozkład materiału z zestawieniem wiadomości i umiejętności uczniów według cyklu Ciekawa fizyka CZĘŚĆ I Świat fizyki Nr Temat lekcji Wiadomości Uczeń wie, że: 1. Czym zajmuje się fizyka, czyli o śmiałości

Bardziej szczegółowo

niepewności pomiarowej zapisuje dane w formie tabeli posługuje się pojęciami: amplituda drgań, okres, częstotliwość do opisu drgań, wskazuje

niepewności pomiarowej zapisuje dane w formie tabeli posługuje się pojęciami: amplituda drgań, okres, częstotliwość do opisu drgań, wskazuje Wymagania edukacyjne z fizyki dla klasy III na podstawie przedmiotowego systemu oceniania wydawnictwa Nowa Era dla podręcznika Spotkania z fizyką, zmodyfikowane Ocena niedostateczna: uczeń nie opanował

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 3 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 3 gimnazjum Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 3 gimnazjum Semestr I 2. Drgania i fale sprężyste Ruch drgający wskazuje w otoczeniu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE 3 GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE 3 GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE 3 GIMNAZJUM 1) ocenę celującą otrzymuje uczeń, który spełnia wymagania na ocenę dopuszczającą, dostateczną, dobrą i bardzo dobrą oraz: - potrafi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z fizyki dla klasy trzeciej gimnazjum

Wymagania edukacyjne na poszczególne oceny z fizyki dla klasy trzeciej gimnazjum Wymagania edukacyjne na poszczególne oceny z fizyki dla klasy trzeciej gimnazjum Dział : Zjawiska magnetyczne. podaje nazwy biegunów magnetycznych i opisuje oddziaływania między nimi opisuje sposób posługiwania

Bardziej szczegółowo

FIZYKA WYMAGANIA EDUKACYJNE klasa III gimnazjum

FIZYKA WYMAGANIA EDUKACYJNE klasa III gimnazjum FIZYKA WYMAGANIA EDUKACYJNE klasa III gimnazjum Zasady ogólne: 1. Na podstawowym poziomie wymagań uczeń powinien wykonać zadania obowiązkowe (łatwe na stopień dostateczny i bardzo łatwe na stopień dopuszczający);

Bardziej szczegółowo

Przedmiotowy System Oceniania Klasa 8

Przedmiotowy System Oceniania Klasa 8 Klasa 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej podaje przykłady, w których na skutek

Bardziej szczegółowo

Przedmiotowy System Oceniania Klasa 8

Przedmiotowy System Oceniania Klasa 8 Klasa 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej podaje przykłady, w których na skutek

Bardziej szczegółowo

Przedmiotowy System Oceniania Klasa 8

Przedmiotowy System Oceniania Klasa 8 Klasa 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej podaje przykłady, w których na skutek

Bardziej szczegółowo

Wymagania podstawowe (dostateczna) wymienia składniki energii wewnętrznej (4.5)

Wymagania podstawowe (dostateczna) wymienia składniki energii wewnętrznej (4.5) Klasa 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej podaje przykłady, w których na skutek

Bardziej szczegółowo

Przedmiotowy System Oceniania Klasa 8

Przedmiotowy System Oceniania Klasa 8 Klasa 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej podaje przykłady, w których na skutek

Bardziej szczegółowo

Przedmiotowy System Oceniania Klasa 8

Przedmiotowy System Oceniania Klasa 8 Klasa 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy podaje przykłady, w których na skutek wykonania pracy wzrosła energia wewnętrzna ciała (4.4)

Bardziej szczegółowo

Wymagania z fizyki dla klasy 8 szkoły podstawowej

Wymagania z fizyki dla klasy 8 szkoły podstawowej Wymagania z fizyki dla klasy 8 szkoły podstawowej 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej

Bardziej szczegółowo

Dział VII: Przemiany energii w zjawiskach cieplnych

Dział VII: Przemiany energii w zjawiskach cieplnych Dział VII: Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej 7.3. Zjawisko konwekcji podaje przykłady,

Bardziej szczegółowo

Przedmiotowy System Oceniania z fizyki dla klasy 8

Przedmiotowy System Oceniania z fizyki dla klasy 8 Przedmiotowy System Oceniania z fizyki dla klasy 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej

Bardziej szczegółowo

Przedmiotowy System Oceniania Klasa 8

Przedmiotowy System Oceniania Klasa 8 Klasa 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej podaje przykłady, w których na skutek

Bardziej szczegółowo

Przedmiotowe ocenianie z fizyki klasa III Kursywą oznaczono treści dodatkowe.

Przedmiotowe ocenianie z fizyki klasa III Kursywą oznaczono treści dodatkowe. Przedmiotowe ocenianie z fizyki klasa III Kursywą oznaczono treści dodatkowe. Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III Dział XI. DRGANIA I FALE (9 godzin lekcyjnych) Ocenę dopuszczającą otrzymuje uczeń, który: wskaże w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

Wymagania podstawowe (dostateczna) Uczeń: wymienia składniki energii wewnętrznej (4.5)

Wymagania podstawowe (dostateczna) Uczeń: wymienia składniki energii wewnętrznej (4.5) Wymagania edukacyjne z fizyki dla klasy 8. 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej 7.3.

Bardziej szczegółowo

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca Fizyka, klasa II Podręcznik: Świat fizyki, cz.2 pod red. Barbary Sagnowskiej 6. Praca. Moc. Energia. Lp. Temat lekcji Wymagania konieczne i podstawowe 1 Praca mechaniczna - podaje przykłady wykonania pracy

Bardziej szczegółowo

Wymagania edukacyjne z Fizyki w klasie 8 szkoły podstawowej w roku szkolnym 2018/2019

Wymagania edukacyjne z Fizyki w klasie 8 szkoły podstawowej w roku szkolnym 2018/2019 Wymagania edukacyjne z Fizyki w klasie 8 szkoły podstawowej w roku szkolnym 2018/2019 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna podaje przykłady, w których na skutek wymienia

Bardziej szczegółowo

Przedmiotowy system oceniania (propozycja)

Przedmiotowy system oceniania (propozycja) Przedmiotowy system oceniania (propozycja) Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra 1 2 3 4 wymienia

Bardziej szczegółowo

Przedmiotowy System Oceniania Klasa 8

Przedmiotowy System Oceniania Klasa 8 Klasa 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej podaje przykłady, w których na skutek

Bardziej szczegółowo

Przedmiotowy System Oceniania oraz wymagania edukacyjne na poszczególne oceny Klasa 8

Przedmiotowy System Oceniania oraz wymagania edukacyjne na poszczególne oceny Klasa 8 Przedmiotowy System Oceniania oraz wymagania edukacyjne na poszczególne oceny Klasa 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny

Bardziej szczegółowo

Dostosowanie programu nauczania,,spotkania z fizyką w gimnazjum dla uczniów z upośledzeniem umysłowym w stopniu lekkim

Dostosowanie programu nauczania,,spotkania z fizyką w gimnazjum dla uczniów z upośledzeniem umysłowym w stopniu lekkim Dostosowanie programu nauczania,,spotkania z fizyką w gimnazjum dla uczniów z upośledzeniem umysłowym w stopniu lekkim WSTĘP: Ucznia z upośledzeniem umysłowym w stopniu lekkim obowiązuje ta sama podstawa

Bardziej szczegółowo

Spełnienie wymagań poziomu oznacza, że uczeń ponadto:

Spełnienie wymagań poziomu oznacza, że uczeń ponadto: Fizyka SP-8 R - treści nadobowiązkowe. Wymagania podstawowe odpowiadają ocenom dopuszczającej i dostatecznej, ponadpodstawowe dobrej i bardzo dobrej Wymagania podstawowe Spełnienie wymagań poziomu oznacza,

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z fizyki w klasie 3 gimnazjum. konieczne podstawowe rozszerzające dopełniające

Wymagania edukacyjne na poszczególne oceny z fizyki w klasie 3 gimnazjum. konieczne podstawowe rozszerzające dopełniające Wymagania edukacyjne na poszczególne oceny z fizyki w klasie 3 gimnazjum. konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry 1 2 3 4 Rozdział I. Drgania i fale

Bardziej szczegółowo

Świat fizyki. Program nauczania. Wersja 2 (1-2-1 lub 2-1-1)

Świat fizyki. Program nauczania. Wersja 2 (1-2-1 lub 2-1-1) Świat fizyki Program nauczania Wersja 2 (1-2-1 lub 2-1-1) Motto Szkoła powinna poświęcić dużo uwagi efektywności kształcenia w zakresie nauk przyrodniczych i ścisłych zgodnie z priorytetami Strategii Lizbońskiej.

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 3 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 3 gimnazjum Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 3 gimnazjum Semestr I 1. Przemiany energii w zjawiskach cieplnych Zmiana energii

Bardziej szczegółowo

Przedmiotowy System Oceniania

Przedmiotowy System Oceniania 1 Przedmiotowy System Oceniania Klasa 8 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej podaje

Bardziej szczegółowo

Wymagania Edukacyjne z Fizyki w Roku Szkolnym 2018/2019 Klasy 7 Szkoły Podstawowej

Wymagania Edukacyjne z Fizyki w Roku Szkolnym 2018/2019 Klasy 7 Szkoły Podstawowej Wymagania Edukacyjne z Fizyki w Roku Szkolnym 2018/2019 Klasy 7 Szkoły Podstawowej Treści podstawowe 1) opisuje przebieg i wynik przeprowadzanego doświadczenia, wyjaśnia rolę użytych przyrządów, wykonuje

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,

Bardziej szczegółowo

Koło ratunkowe fizyka moduł I - IV I. Oddziaływania II. Właściwości i budowa materii.

Koło ratunkowe fizyka moduł I - IV I. Oddziaływania II. Właściwości i budowa materii. Koło ratunkowe fizyka moduł I - IV Opanowanie zawartych poniżej wiadomości i umiejętności umożliwia otrzymanie oceny dopuszczającej jako poprawy oceny niedostatecznej. I. Oddziaływania odróżnia pojęcia:

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) 2. Optyka (co najmniej 12 godzin lekcyjnych, w tym 1 2 godzin na powtórzenie materiału i sprawdzian bez treści rozszerzonych) Zagadnienie (tematy lekcji) Światło i jego właściwości

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI NAUCZYCIEL PROWADZĄCY MGR EWELINA KISZKA WIADOMOŚCI WSTĘPNE na ocenę dopuszczającą / dostateczną uczeń: rozumie pojęcia: materia, ciało fizyczne, substancja chemiczna, zjawisko

Bardziej szczegółowo

Szczegółowe wymagania z fizyki dla klasy 3 gimnazjum

Szczegółowe wymagania z fizyki dla klasy 3 gimnazjum Szczegółowe wymagania z fizyki dla klasy 3 gimnazjum Podręcznik część 3 To jest fizyka Rozdział I. Elektrostatyka i prąd elektryczny Ocena dopuszczający wymienia rodzaje ładunków elektrycznych wyjaśnia,

Bardziej szczegółowo

Wymagania podstawowe (dostateczna) Uczeń:

Wymagania podstawowe (dostateczna) Uczeń: KRYTERIA WYMAGAŃ FIZYKA -KLASA 8 Dodatkowe informacje: Ocena celująca oznaczona * * I półrocze Wymagania konieczne (dopuszczająca) Uczeń: Wymagania podstawowe (dostateczna) Uczeń: Wymagania rozszerzone

Bardziej szczegółowo

Wymagania konieczne i podstawowe Uczeń: 7. Przemiany energii w zjawiskach cieplnych

Wymagania konieczne i podstawowe Uczeń: 7. Przemiany energii w zjawiskach cieplnych Klasa 8 61 Energia wewnętrzna i jej zmiana przez wykonanie pracy 7. Przemiany energii w zjawiskach cieplnych wymienia składniki energii wewnętrznej (4.5) podaje przykłady, w których na skutek wykonania

Bardziej szczegółowo

FIZYKA - wymagania edukacyjne (klasa 8)

FIZYKA - wymagania edukacyjne (klasa 8) FIZYKA - wymagania edukacyjne (klasa 8) 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnętrzna i jej zmiana przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji cieplnej podaje

Bardziej szczegółowo

Wymagania edukacyjne z fizyki w Szkole Podstawowej nr 16 w Zespole Szkolno-Przedszkolnym nr 1 w Gliwicach

Wymagania edukacyjne z fizyki w Szkole Podstawowej nr 16 w Zespole Szkolno-Przedszkolnym nr 1 w Gliwicach Wymagania edukacyjne z fizyki w Szkole Podstawowej nr 16 w Zespole Szkolno-Przedszkolnym nr 1 w Gliwicach Wymagania edukacyjne dla ucznia klasy VII Wymagania przekrojowe. Uczeń: wyodrębnia z tekstów, tabel,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE z Fizyki klasa I i III Gimnazjum w Zespole Szkół w Rudkach.

WYMAGANIA EDUKACYJNE z Fizyki klasa I i III Gimnazjum w Zespole Szkół w Rudkach. Beata Cieślik KLASA I WYMAGANIA EDUKACYJNE z Fizyki klasa I i III Gimnazjum w Zespole Szkół w Rudkach. Ocenę dopuszczającą otrzymuje uczeń, który - Opanował treści elementarne użyteczne w pozaszkolnej

Bardziej szczegółowo

Plan wynikowy Klasa 8

Plan wynikowy Klasa 8 Plan wynikowy Klasa 8 Nr Temat lekcji Wymagania konieczne 61 Energia wewnętrzna i jej zmiana przez wykonanie pracy 62 Cieplny przepływ energii. Rola izolacji cieplnej 63 Zjawisko konwekcji 7. Przemiany

Bardziej szczegółowo

Podstawa programowa z fizyki ilustrowana przykładami zadań z egzaminu gimnazjalnego.

Podstawa programowa z fizyki ilustrowana przykładami zadań z egzaminu gimnazjalnego. Podstawa programowa z fizyki ilustrowana przykładami zadań z egzaminu gimnazjalnego. Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych

Bardziej szczegółowo

Plan wynikowy Klasa 8

Plan wynikowy Klasa 8 Plan wynikowy Klasa 8 Nr Temat lekcji Wymagania konieczne i podstawowe Uczeń: Wymagania rozszerzone i dopełniające Uczeń: Uwagi 7. Przemiany energii w zjawiskach cieplnych 61 Energia wewnętrzna i jej zmiana

Bardziej szczegółowo

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.

Bardziej szczegółowo

Wymagania na poszczególne oceny z fizyki w gimnazjum

Wymagania na poszczególne oceny z fizyki w gimnazjum Wymagania na poszczególne oceny z fizyki w gimnazjum WYMAGANIA OGÓLNE POZIOM WYMAGAŃ wymagania konieczne wymagania podstawowe wymagania rozszerzające wymagania dopełniające wymagania wykraczające STOPIEŃ

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa II Wymagania na poszczególne oceny przy realizacji i podręcznika Świat fizyki 6. Praca. Moc. Energia 6.1. Praca mechaniczna podaje przykłady wykonania pracy w sensie fizycznym podaje jednostkę pracy

Bardziej szczegółowo

Fizyka. Klasa II Gimnazjum. Pytania egzaminacyjne. 1. Ładunkiem ujemnym jest obdarzony: a) kation, b) proton, c) neutron, d) elektron.

Fizyka. Klasa II Gimnazjum. Pytania egzaminacyjne. 1. Ładunkiem ujemnym jest obdarzony: a) kation, b) proton, c) neutron, d) elektron. Fizyka Klasa II Gimnazjum Pytania egzaminacyjne 2017 1. Ładunkiem ujemnym jest obdarzony: a) kation, b) proton, c) neutron, d) elektron. 2. Naelektryzowany balonik zbliżono do strugi wody; w konsekwencji:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE w klasie drugiej

WYMAGANIA EDUKACYJNE w klasie drugiej WYMAGANIA EDUKACYJNE w klasie drugiej Rozdział III Energia Nr lekcji Temat Treści z podstawy programowej Wymagania i kryteria pracy Czynnościowe ujęcie celów Poziom 2 3 4 5 34. Przypomnienie regulaminu

Bardziej szczegółowo

Świat fizyki Gimnazjum Rozkład materiału - WYMAGANIA KLASA II

Świat fizyki Gimnazjum Rozkład materiału - WYMAGANIA KLASA II Świat fizyki Gimnazjum Rozkład materiału - WYMAGANIA KLASA II Lp. Temat lekcji Wymagania konieczne i podstawowe Uczeń: Wymagania rozszerzone i dopełniające Uczeń: Wymagania z podstawy/ Uwagi 5. Siły w

Bardziej szczegółowo

Wymagania podstawowe. (dostateczna) wskazuje w otoczeniu zjawiska elektryzowania przez tarcie objaśnia elektryzowanie przez dotyk

Wymagania podstawowe. (dostateczna) wskazuje w otoczeniu zjawiska elektryzowania przez tarcie objaśnia elektryzowanie przez dotyk Wymagania edukacyjne Gimnazjum- KL. III 9. O elektryczności statycznej Temat według Wymagania konieczne Wymagania podstawowe Wymagania rozszerzone Wymagania dopełniające 9.1. Elektryzowanie przez tarcie

Bardziej szczegółowo

Kryteria oceniania z fizyki. Nowa podstawa programowa nauczania fizyki i astronomii w gimnazjum. Moduł I, klasa I. 1.Ocenę dopuszczającą otrzymuje

Kryteria oceniania z fizyki. Nowa podstawa programowa nauczania fizyki i astronomii w gimnazjum. Moduł I, klasa I. 1.Ocenę dopuszczającą otrzymuje Kryteria oceniania z fizyki. Moduł I, klasa I. - zna pojęcia: substancja, ekologia, wzajemność oddziaływań, siła. - zna cechy wielkości siły, jednostki siły. - wie, jaki przyrząd służy do pomiaru siły.

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) Wymagania Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe ponad podstawowe konieczne podstawowe rozszerzające dopełniające 1 2 3 4 5 6 7 Rozdział I. Elektrostatyka

Bardziej szczegółowo

d) Czy bezpiecznik 10A wyłączy prąd gdy pralka i ekspres są włączone? a) Jakie jest natężenie prądu płynące przez ten opornik?

d) Czy bezpiecznik 10A wyłączy prąd gdy pralka i ekspres są włączone? a) Jakie jest natężenie prądu płynące przez ten opornik? FIZYKA Egzamin po 8 klasie 1. Na czym polega elektryzowanie ciał przez pocieranie, przez indukcję i przez dotyk. Opowiedz o swoich doświadczeniach. 2. Na czym polega przepływ prądu elektrycznego w metalach,

Bardziej szczegółowo

Wymagania edukacyjne fizyka klasa VIII

Wymagania edukacyjne fizyka klasa VIII Wymagania edukacyjne fizyka klasa VIII ocena dopuszczająca ocena dostateczna spełnia wymagania edukacyjne niezbędne do uzyskania oceny dopuszczającej oraz: ocena dobra spełnia wymagania edukacyjne niezbędne

Bardziej szczegółowo

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Tabela wymagań programowych i kategorii celów poznawczych Temat lekcji w podręczniku 22. Ruch drgający podać

Bardziej szczegółowo

WYMAGANIA Z FIZYKI. Klasa III DRGANIA I FALE

WYMAGANIA Z FIZYKI. Klasa III DRGANIA I FALE WYMAGANIA Z FIZYKI Klasa III DRGANIA I FALE dopuszczający dostateczny dobry bardzo dobry wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i wynik przeprowadzonego, wyjaśnia

Bardziej szczegółowo

(Plan wynikowy) - zakładane osiągnięcia ucznia. stosuje wzory

(Plan wynikowy) - zakładane osiągnięcia ucznia. stosuje wzory (Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa III 1 Zapoznanie z wymaganiami edukacyjnymi i kryteriami oceniania. Regulamin pracowni i przepisy BHP. 1. Drgania i fale spręŝyste (8.1-8.12)

Bardziej szczegółowo

Ocena. Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry

Ocena. Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry Drgania i fale wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i wynik przeprowadzonego doświadczenia, wyjaśnia rolę użytych przyrządów i wykonuje schematyczny rysunek

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z fizyki

Wymagania edukacyjne na poszczególne oceny z fizyki Wymagania edukacyjne na poszczególne oceny z fizyki Wymagania zostały podzielone na dwa poziomy: podstawowy (P) i ponadpodstawowy (PP). Uczeń otrzymuje konkretne oceny w zależności od stopnia opanowania

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI W PUBLICZNYM GIMNAZJUM NR 1 W RAJCZY

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI W PUBLICZNYM GIMNAZJUM NR 1 W RAJCZY PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI W PUBLICZNYM GIMNAZJUM NR 1 W RAJCZY Przedmiotowy system oceniania z fizyki w gimnazjum sporządzono w oparciu o : 1. Wewnątrzszkolny system oceniania. 2. Podstawę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

9. O elektryczności statycznej

9. O elektryczności statycznej 9. O elektryczności statycznej 9.1. Elektryzowanie przez tarcie i zetknięcie z ciałem naelektryzowanym opisuje budowę atomu i jego składniki elektryzuje ciało przez potarcie i zetknięcie z ciałem naelektryzowanym

Bardziej szczegółowo

Kryteria oceny uczniów

Kryteria oceny uczniów Kryteria oceny uczniów Ocena dopuszczająca (2) dostateczna (3) dobra (4) bardzo dobra (5) celująca (6) Poziom wymagań 70 % K + P K + P K + P + R K + P + R+ D K + P + R + D + W Temat lekcji w podręczniku

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce.

KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM ENERGIA - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, kiedy jest wykonywana praca mechaniczna. - Wie, że każde urządzenie

Bardziej szczegółowo

Wymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017

Wymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017 Wymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017 Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, siły równoważące się. Dział V. Dynamika (10 godzin lekcyjnych)

Bardziej szczegółowo

Przedmiotowy system oceniania z Fizyki w klasie 3 gimnazjum Rok szkolny 2017/2018

Przedmiotowy system oceniania z Fizyki w klasie 3 gimnazjum Rok szkolny 2017/2018 Przedmiotowy system oceniania z Fizyki w klasie 3 gimnazjum Rok szkolny 2017/2018 OPRACOWANO NA PODSTAWIE PROGRAMU Spotkania z fizyką Wydawnictwo Nowa Era oraz PODSTAWY PROGRAMOWEJ Zasady ogólne: 1. Na

Bardziej szczegółowo