Modyfikatory typów i kwantyfikacja w języku naturalnym
|
|
- Bartosz Karpiński
- 8 lat temu
- Przeglądów:
Transkrypt
1 Modyfikatory typów i kwantyfikacja w języku naturalnym 7 lipca 2007
2 Spis treści 1 Kwantyfikacja kolektywna 2
3 Spis treści Kwantyfikacja kolektywna 1 Kwantyfikacja kolektywna 2
4 Spis treści Kwantyfikacja kolektywna 1 Kwantyfikacja kolektywna 2
5 Punkt wyjścia Kwantyfikacja kolektywna Obserwacja Kwantyfikacja po przedmiotach a kolekcjach (B. Russel). Kolekcje nie sa redukowalne do indywiduów. Kwantyfikacja kolektywna to pojęcie semantyczne.
6 Przykłady Kwantyfikacja kolektywna (1.) Tikitu i Samson podnieśli razem stół. (2.) Talie kart na stole sa różnego koloru. (3.) Nina i Jon mieli razem kolor, lecz osobno tylko po parze. (4.) Większość doktorantów gra w Texas Hold em.
7 Główne pytanie? Kwantyfikacja kolektywna Jak semantycznie modelować kwantyfikację kolektywna? Szeroko podzielane intuicje: Każda kolekcja jest ufundowana na swoich indywiduach. Kolekcje można łaczyć w nowe kolekcje. Indywidua to jednoelementowe kolekcje.
8 Potencjalny problem (1.) Wszyscy studenci sa szczęśliwi. (1.) Wszyscy bogaci studenci sa szczęśliwi. (2.) Wszyscy studenci podnieśli razem stół. (3.) Wszyscy bogaci studenci podnieśli stół.
9 Spis treści Kwantyfikacja kolektywna 1 Kwantyfikacja kolektywna 2
10 Gdzieś w tle teoria typów Definicja Zbiór typów to najmniejszy zbiór zawierajacy: 1 e (indywidua) oraz t (wartości logiczne) 2 αβ (typy złożone, funkcje z α na β). Przykład rodzaj wyrażenia przykład typ zdanie On je. t nazwa własna Szrenica e rzeczownik pies et kw. dystrybutywny większość ((et)((et)t)) kw. kolektywna większość ((et)(((et)t)t))
11 Główna idea S&D Kwantyfikacja kolektywna... Partee&Rooth 1983, van Benthem type-shifting principles kwantyfikacja dystrybutywna kwantyfikacja kolektywna ((et)((et)t)) ((et)(((et)t)t))
12 Ilustracja Kwantyfikacja kolektywna (1.) Pięć osób podniosło stół. (2.) =5 x[człowiek(x) Podniósł(x)]. (3.) X[card(X) = 5 X Ludzie Podniósł(X)].
13 Inne przykłady Kwantyfikacja kolektywna (1.) Niektórzy studenci grali razem w pokera. (2.) X[X Studenci Grali(X)]. (3.) Wszystkie kombinacje kart przegrywaja. (4.) X[X Karty Przegrywa(X)].
14 Modyfikator egzystencjalny Definicja Ustalmy uniwersum U oraz wybierzmy X U i Y P(U). Definiujemy modyfikator egzystencjalny Q EM dla kwantyfikatora Q w następujacy sposób: Q EM (X, Y ) Z X[Q(X, Z ) Z Y ].
15 Modyfikator neutralny Definicja Ustalmy uniwersum U oraz wybierzmy X U i Y P(U). Definiujemy modyfikator egzystencjalny Q N dla kwantyfikatora Q w następujacy sposób: Q N (X, Y ) Q( (Y P(X))).
16 Przykład zastosowania (1.) Dokładnie pięciu studentów grało razem w pokera. (2.) X Studenci Pokerzyści(card(X) = 5).
17 Spis treści Kwantyfikacja kolektywna 1 Kwantyfikacja kolektywna 2
18 Problem van Benthema (1.) No students met yesterday at the coffe shop. NO EM (Student, Meet) Meet. (2.) Less than five students smiled. <5EM (Student, Smile) X(X Smile X Student card(x) < 5).
19 Inny przykład Kwantyfikacja kolektywna (1.) Exactly 5 students drank a whole glass of beer together. =5EM (Student, Drink) A Student[card(A) = 5 Drink (A)].
20 Inna interpretacja Kwantyfikacja kolektywna (1.) Exactly 5 students drank a whole glass of beer together. =5N (Student, Drink) card({x : A Student[x A Drink (A)]}) = 5.
21 Spis treści Kwantyfikacja kolektywna 1 Kwantyfikacja kolektywna 2
22 Operator determiners fitting Definicja Ustalmy uniwersum U dla każdego X, Y P(U) definiujemy: Q dfit (X, Y ) Q[ X, (X Y )] [X Y = W X Y Q( X, W )].
23 Przykład zastosowania (1.) Exactly 5 students drank a whole glass of beer together. =5dfit (Student, Drink) card({x A : A Student Drink(A)}) = 5 W Student[Drink(W ) card(w ) = 5].
24 Spis treści Kwantyfikacja kolektywna 1 Kwantyfikacja kolektywna 2
25 Główna idea Kwantyfikacja kolektywna Dodajemy kwantyfikatory uogólnione drugiego rzędu. 2 = {(M, P) P P(M) and P }. Even = {(M, P) P P(M) and card(p) is even}. Even = {(M, P) P P(M) and X P(card(X) is even)}. Most 2 = {(M, P, S) P, S P(M) and card(p S) > card(p \ S)}
26 Zastosowanie Kwantyfikacja kolektywna (1.) Niektórzy studenci zebrali się. Przykład Określamy kwantyfikator Some t następujaco: {(M, P, G) P M; G P(M) : Y P(Y oraz P G)}. Some t x, X[Student(x), Zebranie(X)].
27 Inny przykład Kwantyfikacja kolektywna (1.) Pięciu ludzi podniosło stół. Przykład Niech Five t denotuje klasę {(M, P, G) P M; G P(M) : Y P(card(Y ) = 5 P G)}. Five t x, X[Ludzie(x), Podnieśli(X)].
28 Jeszcze jeden przykład (1.) Większość studentów nigdy nie grała w pokera. Most 2 X, Y [Student(X), Grali(Y )].
29 Mała obserwacja Kwantyfikacja kolektywna Stwierdzenie Niech Q będzie kwantyfikatorem uogólnionym definiowalnym w SO. Wówczas Q EM, Q dfit oraz Q t sa definiowalne w SO. Szkic dowodu Rozważmy przypadek Q EM. Niech ψ(x) oraz φ(y ) będa formułami. Chcemy wyrazić Q EM x, Y (ψ(x), φ(y )) w SO. Z założenia Q można zdefiniować zdaniem θ SO[{P 1, P 2 }]. Wówczas następujaca formuła definiuje Q EM : Z ( x(z (x) ψ(x)) (θ(p 1 /ψ(x), P 2 /Z ) φ(y /Z )).
30 Co to nam daje? Kwantyfikacja kolektywna Dziedziczymy problemy, lecz zwiększamy moc wyrażania? Obserwacja Jeśli Most 2 jest definiowalny w SO, to CH = PH. Szkic dowodu Toda: PH C 2 P. Kontinen, Niemistö: FO(Most 2 ) definiuje problemy dla każdego poziomu CH. Jeśli Most 2 jest definiowalne w SO, to FO(Most 2 ) SO. Zatem CH = PH i więcej CH PH C 2 P.
31 Counting hierarchy Kwantyfikacja kolektywna 1 C 0 P = PTIME, 2 C k+1 P = PP C kp, 3 CH = k N C kp.
32 Spis treści 1 Kwantyfikacja kolektywna 2
33 Spis treści 1 Kwantyfikacja kolektywna 2
34 Nawiazanie do tezy Hintikki (1.) Some relative of each villager and some relative of each townsman hate each other. (2.) Most dots and most stars are connected by lines with each other. (2.) Most dots and most stars are connected by lines. (2.) Most dots are connected by lines with most stars.
35 Reciprocal expressions (1.) Andi, Jarmo and Jakub laughed at one another. (2.) 15 men are hitting one another. (3.) All members of the parliament refer to each other indirectly. (4.) Most Boston pitchers sat alongside each other. (5.) Some Pirates were staring at each other in surprise.
36 Strong reading (3.) All members of the parliament refer to each other indirectly.
37 Intermediate reading (4.) Most Boston pitchers sat alongside each other.
38 Weak reading (5.) Some Pirates were staring at each other in surprise.
39 Inne możliwe odczytania przykład (1.) Stones are arranged on top of each other. Intermediate alternative reciprocity.
40 Strong Meaning Hypothesis Hipoteza W każdym kontekście zdania z each other przyjmuja najmocniejsze możliwe odczytanie. Dalrymple, Kanazawa, Kim, Mchombo, Peters 1998.
41 Spis treści 1 Kwantyfikacja kolektywna 2
42 Modyfikatory dla kwantyfikatorów rosnacych Definicja Ram S (Q)(A, R) X A[Q(X) x, y X(x y R(x, y))]. Definicja Ram I (Q)(A, R) X A[Q(X) x, y X(x y z 1,..., z l X(z 1 = x R(z 1, z 2 )... R(z l 1, z l ) z l = y)]. Definicja Ram W (Q)(A, R) X A[Q(X) x X y X (x y R(x, y))].
43 3. All members of the parliament refer to each other indirectly. Ram S (All)(MP, Refer). 4. Most Boston pitchers sat alongside each other. Ram I (Most)(Pitcher, Sit). 5. Some pirates of the Carribean were staring at each other. Ram W (Some)(Pirate, Staring).
44 Ale co z kwantyfikatorami malejacymi (1.) Few members of the parliament refer to each other. (2.) At most five Boston pitchers sat alongside each other. (3.) Less that 8 Pirates were staring at each other in surprise.
45 Operator determiners fitting Definicja Ustalmy uniwersum U dla każdego X, Y P(U) definiujemy: Q dfit (X, Y ) Q[ X, (X Y )] [X Y = W X Y Q( X, W )].
46 Operator bounded composition Definicja Ustalmy uniwersum U oraz wybierzmy A U i B P(U). Definiujemy modyfikator egzystencjalny Q BC dla kwantyfikatora Q w następujacy sposób: Q BC (A, B) Y P(A) B X P(A) B [card(x) card(y ) card(a X) card(a Y ) Q AX] X P(A) B[Q AX Q A ].
47 Zastosowanie (2.) At most five Boston pitchers sat alongside each other. Ram I ( 5BC )(Pitcher, Sit) W Pitchers(Sat(W ) card(w ) 5) Z Pitchers(Sit(Z ) card(z ) > 5) x, y Z (x y z 1,..., z l Z (z 1 = x Sit(z 1, z 2 )... Sit(z l 1, z l ) z l = y)].
48 Spis treści 1 Kwantyfikacja kolektywna 2
49 Mocna interpretacja bywa NP-zupełna Definicja M = Ram S (Q)(A, R) wtw, gdy istnieje pełny ze względu na R podgraf P M taki, że Q(P). Obserwacja Dla niektórych Q kwantyfikator Ram S (Q) jest NP-zupełny. Na przykład, dla k, Most,....
50 Trudne zdania z konstrukcjami wzajemnymi (1.) Most members of the parliament refer to each other indirectly. (2.) At least one third of the members of the parliament refer to each other indirectly. (3.) At least q of the members of the parliament refer to each other indirectly.
51 Problem Pytanie Dla jakich Q kwantyfikator Ram S (Q) jest NP-zupełny?
52 Hipoteza Niech f : ω ω. Definiujemy (Q f ) M [X] card(x) f (card( M )). Definicja Powiemy, że Q f jest nieograniczony, jeśli m n(m f (n) n m). Hipoteza Ram S (Q f ) jest NP-zupełny, jeśli Q f jest nieograniczony.
53 Analogicznie definiujemy Definicja M = Ram I (Q)(A, R) wtw istnieje spójny ze względu na R podgraf P M taki, że Q(P). Definicja M = Ram W (Q)(A, R) wtw istnieje podgraf P M taki, że Q(P) oraz P nie ma izolowanych wierzchołków.
54 Słaba i pośrednia interpretacja jest łatwa Stwierdzenie Niech Q będzie w P wtedy również Ram I (Q) jest w P. Szkic dowodu Niech G = (V, E) będzie grafem, aby sprawdzić czy G Q należy wypisać wszystkie maksymalne spójne podgrafy G. Ich liczba jest ograniczona z góry przez card(v ). Teraz wystarczy sprawdzić czy dla któregoś z wypisanych podgrafów C zachodzi Q(C). Stwierdzenie Niech Q będzie w P wtedy również Ram I (Q) jest w P.
55 Jak to się ma do SMH? Ram S (Q) Ram I (Q) Ram W (Q) Obserwacja Nie radzimy sobie z mocna interpretacja. Szukamy łatwiejszej możliwej interpretacji.
Metoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne
Klasyczny rachunek predykatów
Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu
OBLICZENIOWY MODEL ROZUMIENIA
OBLICZENIOWY MODEL ROZUMIENIA KWANTYFIKATORÓW W ŚWIETLE BADAŃ NEUROPSYCHOLOGICZNYCH 3 marca 2007 STRESZCZENIE McMillan et al. (2005) mierzyli aktywność mózgu. Zadania polegały na ocenianiu prawdziwość
Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty
Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty
Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...
Język rachunku predykatów 1 Zmienne x, y, z... 2 Predykaty n-argumentowe P(x, y,...), Q(x, y...),... 3 Funktory zdaniowe,,,, 4 Kwantyfikatory: istnieje, dla każdego Język rachunku predykatów Ustalenie
Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:
1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria
Logika obliczeniowa - zadania 1 SKŁADNIA 1. Składnia 1.1. Teoria 1. Składnia oznacza reguły tworzenia... z.... 2. Rachunek predykatów pierwszego rzędu (w skrócie: rachunek predykatów) wyróżnia cztery zbiory
Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu
Składnia rachunku predykatów pierwszego rzędu
Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka
Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut
Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,
Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.
Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna
Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda
Plan wykładu Szukamy modelu Model Herbranda Twierdzenia Logika obliczeniowa Instytut Informatyki Plan wykładu Szukamy modelu 1 Szukamy modelu Problemy 2 Model Herbranda Uniwersum Herbranda Interpretacja
Bisymulacja. Niezawodność systemów współbieżnych i obiektowych. Grzegorz Maj Grzegorz Maj Bisymulacja
Niezawodność systemów współbieżnych i obiektowych 18.03.2009 Plan prezentacji Przypomnienie: Plan prezentacji Przypomnienie: Gra bisymulacyjna Plan prezentacji Przypomnienie: Gra bisymulacyjna Definicje
vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).
6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany
Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN
(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x
2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)
Uogólnione kwantyfikatory
Uogólnione kwantyfikatory J.Pogonowski, J.Smigerska Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski J.Pogonowski, J.Smigerska (MEG) Uogólnione kwantyfikatory Uniwersytet
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Rekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
Semantyka rachunku predykatów
Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
TEORIA GRAFÓW I SIECI - ROZDZIAŁIV. Drzewa. Drzewa
TEORIA GRAFÓW I SIECI - ROZDZIAŁIV Drzewa Drzewem lub drzewem wolnym nazywamy dowolny graf spójny i acykliczny. Drzewa Ćwiczenie 1. Narysować wszystkie, z dokłado sci a do izomorfizmu, drzewa o 1, 2, 3,
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Problemy Decyzyjne dla Systemów Nieskończonych
Problemy Decyzyjne dla Systemów Nieskończonych Ćwiczenia 1 17 lutego 2012 Na tych ćwiczeniach zajmiemy się pojęciem well quasi-ordering (WQO) bardzo przydatnym do analizy nieskończonych ciągów. Definicja
Typ potęgowy Szlenka
Uniwersytet Śląski w Katowicach Letnia Szkoła Instytutu Matematyki Podlesice, 22 26 września 2014 r. Motywacja Pytanie (Banach Mazur, Księga Szkocka, Problem 49) Czy istnieje ośrodkowa i refleksywna przestrzeń
020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
Struktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j
ROZDZIAŁ 1. Rachunek funkcyjny
ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast
1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Logika Radosna 5. Jerzy Pogonowski. KRP: tablice analityczne. Zakład Logiki Stosowanej UAM
Logika Radosna 5 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl KRP: tablice analityczne Jerzy Pogonowski (MEG) Logika Radosna 5 KRP: tablice analityczne 1 / 111 Wprowadzenie
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój
1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y
SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.
SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką
Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/
Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,
Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone
Algorytmiczna teoria grafów
Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz
Elementy rachunku zdań i algebry zbiorów
Rozdział 1. Elementy rachunku zdań i algebry zbiorów 1.1. Zdania Przez α, β będziemy oznaczać zdania. Każdemu zdaniu możemy przyporządkować wartość logiczną 1, gdy jest prawdziwe oraz wartość logiczną
Paweł Gładki. Algebra. pgladki/
Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,
Rozkład figury symetrycznej na dwie przystające
Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule
Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji
Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji Dane są obserwacje x 1, x 2,..., x n. Czy można założyć, że x 1, x 2,...,
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie
Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior
Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy
0. ELEMENTY LOGIKI. ALGEBRA BOOLE A
WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy
1 Rachunek zdań, podstawowe funk tory logiczne
1 Rachunek zdań, podstawowe funk tory logiczne 1.1 Zapisz symbolicznie następujące stwierdzenia i Jeśli z tego, że Paweł gra w palanta wynika to, że Robert jeździ na rowerze, to z tego, że Robert nie gra
Michał Lipnicki (UAM) Logika 11 stycznia / 20
Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 11 stycznia 2013 Michał Lipnicki (UAM) Logika 11 stycznia 2013 1 / 20 KRP wstęp Wstęp Rozważmy wnioskowanie: Każdy człowiek jest śmiertelny. Sokrates
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych
Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Systemy ekspertowe - wiedza niepewna
Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,
System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10
System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki
1 Rachunek zdań, podstawowe funktory logiczne
1 Rachunek zdań, podstawowe funktory logiczne 1.1 Pokaż, że dla dowolnych zmiennych zdaniowych p, q, r poniższe formuły są tautologiami a p p p b q q q c p p p p d p q r p q p r e p q r p q p r f p q p
Dowód probabilistyczny Uwagi do dowodu Bibliografia. Prawo Haczykowe. Łukasz Bieniasz-Krzywiec
09.10.2008 Plan prezentacji 1 Wstęp Diagram Ferrersa Tableau Young a Haczyk (Hook) Twierdzenie Haczykowe 2 3 4 Diagram Ferrersa Wstęp Diagram Ferrersa Tableau Young a Haczyk (Hook) Twierdzenie Haczykowe
Metalogika (12) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (12) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (12) Uniwersytet Opolski 1 / 204 Plan wykładu Plan
Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej
Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Co to jest entropia nadwyżkowa? Niech (X i ) i Z będzie procesem
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Algorytmiczne aspekty teorii gier: Wykład 5
Algorytmiczne aspekty teorii gier: Wykład 5 Wykład prowadził dr hab. Igor Walukiewicz Notatki przygotował Dymitr Pszenicyn 02-04-2003 1 Spis treści 1 Przypomnienie 3 1.1
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3.
1 Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. Funkcje pierwotnie rekurencyjne. Problemy: Zapoznaj się z teorią funkcji pierwotnie rekurencyjnych. Ważne są definicje klasy
ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY
ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy
Elementy logiki Klasyczny rachunek predykatów
Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza
Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów
Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie
Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna
Wykład 9 Testy rangowe w problemie dwóch prób
Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa
Systemy uczace się 2009 1 / 32 Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Hung Son Nguyen Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: son@mimuw.edu.pl Grudzień
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
Wstęp do logiki. Klasyczny Rachunek Zdań II
Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem
Internet Semantyczny i Logika II
Internet Semantyczny i Logika II Ontologie Definicja Grubera: Ontologia to formalna specyfikacja konceptualizacji pewnego obszaru wiedzy czy opisu elementów rzeczywistości. W Internecie Semantycznym językiem
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Prawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW
Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Afiniczne rekursje stochastyczne z macierzami trójkatnymi
Afiniczne rekursje stochastyczne z macierzami trójkatnymi Ewa Damek (Uniwersytet Wrocławski ) (wyniki wspólne z Witoldem Światkowskim, Jackiem Zienkiewiczem - Uniwersytet Wrocławski, Muneya Matsui - Nanzan
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Klasyczny rachunek zdań 1/2
Klasyczny rachunek zdań /2 Elementy logiki i metodologii nauk spotkanie VI Bartosz Gostkowski Poznań, 7 XI 9 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe
Kultura logiczna Klasyczny rachunek zdań 1/2
Kultura logiczna Klasyczny rachunek zdań /2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 22 III 2 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe
W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się
1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania
III rok kognitywistyki UAM,
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 6A: REZOLUCJA III rok kognitywistyki UAM, 2016 2017 1 Rezolucja w KRZ Dowody rezolucyjne w KRZ są równie proste, jak dowody tablicowe Metoda
Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.
Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność
Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori.
Analiza danych Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ REGUŁY DECYZYJNE Metoda reprezentacji wiedzy (modelowania
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:
JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca 2013 Imię i Nazwisko:.................................................................................. I Wybierz
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa