Fala elektromagnetyczna. Wykład 15: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok.321
|
|
- Sabina Markiewicz
- 5 lat temu
- Przeglądów:
Transkrypt
1 Wykład 15: Fala elektromagnetyczna Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31
2 Równania Maxwell a Prawo: Postać całkowa Postać różniczkowa Próżnia Gaussa dla elektrostatyki Gaussa dla magnetyzmu Ampere a- Maxwella Faraday a C C E ds = S S dl = μ d S = o E dl i + ε o q d d = E rot div E = ρ ε o div = = μ rot o ( j + ε o E = t E ) t dive = div = rot rot = μ o ε o E = t E t
3 Fala elektromagnetyczna w próżni emisja, propagacja, detekcja 1888r. H. Hertz Zmienny prąd w obwodzie RLC wywołuje oscylacje ładunku w prętach anteny związany z tym prąd w antenie sinusoidalnie zmienia swój kierunek i wartość de = rot j = rot HRW, t.4. pojawia się wirowe pole magnetyczne d = rote pojawia się wirowe pole elektryczne pojawia się wirowe pole magnetyczne 3
4 zmienny sygnał pojawia się wirowe pole elektryczne de pojawienie się wirowe pola magnetycznego = rot d = rote pojawienie się zmiennego sygnału elektrycznego w antenie 4
5 Fala elektromagnetyczna w próżni równanie falowe Założenia 1. sposób: dive = brak ładunków d rote = de rot = ( 1) ( ) rot = brak prądu Obliczamy rotację równania (1): Prawa strona: rot d = d = d ( ) de 5
6 Lewa strona (1): Ponieważ: a( b c) = ( a c) b ( a b)c to lewa strona: rot( rote) = ( E)= A więc: d E E = czyli d E E = ( E) E dive = d rote = jest to część elektryczna równania falowego. ( 1) rot = de czyli ( ) = ( ) d Analogicznie rotacja równania (): de d = = E d rote = ( ) ( )
7 lewa strona równania (): ( ) = + ( ) łącząc obie strony otrzymamy = d div = to równanie jest częścią magnetyczną równania falowego dla fali elektromagnetycznej w próżni. rot = de ( ) Przypominając równanie 3-wymiarowej fali płaskiej: zauważymy, że dla fali elektromagnetycznej w próżni = 1 v d c 1 = c = 1 7
8 Fala elektromagnetyczna opisana jest równaniami: gdzie E(x,t) = E m cos(t-kx) (x,t) = m cos(t-kx) i rozchodzi się w kierunku osi rot E = t iˆ ˆj E = x y E y Z = kˆ t t kˆ z ˆ E y = k x E y x E y iˆ z = t OX z. sposób: E x = E z = ; E y = E(x,t) x = y = ; z = (x,t) obliczamy drugie pochodne po t oraz x E y xt = t z oraz Ey z = x xt 8
9 9 x j y i z y x k j i z z z = = ˆ ˆ ˆ ˆ ˆ poprzednio: stąd 1 = c = t E x y z Z kolei t E rot o o = ε μ j t E t E y ˆ = drugie pochodne po t oraz x t E t x y z = oraz t x E x y z = t t x E z y = t x x E z y = t x z z = t E x E y y =
10 de dx d dx z y Dla tej fali elektromagnetycznej opisanej równaniami: E y (x,t) = E m cos(t-kx) z (x,t) = m cos(t-kx) dz = Emk sin m de = y ( t kx) = + sin( t kx) m Em m Czyli = = E E m m m m a więc ( t kx) = E sin ( t kx) k sin m a więc stąd E E m m m m = = = c k k E m m = c = 1 1
11 Fala elektromagnetyczna w ośrodku Równania fali dla ośrodka: E d E = d = zatem v 1 = v = 1 c = 1 ezwzględny współczynnik załamania fali elektromagnetycznej: n = v c = 11
12 Energia fali elektromagnetycznej Gęstość energii pola E u E E = Gęstość energii pola dw = dw E + dw u = = Energia fali przechodząca przez pudełko o grubości dx i powierzchni czołowej A Skoro dw 1 = E = E c = E ε μ 1 + ( u + u ) Adx E Adx dw = 1 ε E + 1 ε μ E μ dx A dx = ε E Adx 1 A
13 dw = ε E Adx oraz, skoro E = to dw = ε E Adx = ε μ ε μ = ε μ E Adx = ε μ E A c Szybkość przepływu energii przez jednostkową powierzchnię A dw A = 1 μ E W m długość wektora S = jest opisana przez wektor Poyntinga 1 S E dw 1 S = S = E A jest związana z szybkością przepływu energii przez jednostkową powierzchnię w jednostce czasu, a jego kierunek jest kierunkiem rozchodzenia się fali i kierunkiem przepływu energii. 13
14 Dla dużych częstości E i użyteczna jest średnia wartość S. S = 1 μ E = ε ce zatem ҧ S = ε ce Dla sinusoidalnie zmiennych E i Zatem S ҧ = 1 ε ce = 1 c μ = E μ E = E podobnie jak dla prądu zmiennego Promieniowanie słoneczne dostarcza do górnych warstw atmosfery z szybkością 135 J/(s m ). Zakładając, że jest to pojedyncza fala sinusoidalna obliczyć maksymalne wartości E oraz. ҧ S = 1 ε ce = 135 J sm stąd E = Sҧ ε c = 1,1 V 13 m = E c = 3,4 1 6 T 14
15 . Zadanie W nieskończenie długim przewodniku o promieniu R i przewodnictwie właściwym, płynie prąd o gęstości j (jednakowej w całym przekroju poprzecznym przewodnika). Oblicz: natężenia pól E i na powierzchni tego przewodnika. wartość wektora Poyntinga na powierzchni tego przewodnika. Uzupełnij rysunek przewodnika z prądem o wektory E,, S E j = E = j dl = i i = R j = S = 1 ( E ) 1 j jr j R S = = jr ԦS ԦS E j ԦS 15
16 Widmo fali elektromagnetycznej 16
17 17
18 Pomiar prędkości światła Galileusz (16r.?) latarnie w odległości ok. 1,6 km Wniosek: Jeśli nie nieskończona to niezwykle duża (t = s) O.Roemer (1675r.) - metoda astronomiczna zaćmienia księżyców Jowisza co pół roku wystęuje różnica czasu wyjścia Io z cienia Jowisza ok. 16,5 min. Wynik: ok. 15 km/s 18
19 J. radley (176r.) - metoda astronomiczna aberracja astronomiczna światła α= ~41 v z c v tg = c Z Wynik: 34 km/s 19
20 H.L.Fizeau (1849r.) obracające się koło zębate Wynik: 98 km/s Znając: odległość l (8,6 km); N - ilość zębów m - prędkość kątową m-tego zaciemnienia, można zapisać: lm 1 = m c N
21 L.Foucault (186r.) obracające się zwierciadło Wynik: 98 km/s A.A.Michelson (1879r.) obracające się zwierciadło Wynik: km/s 1
22 Od 1983 prędkość światła jest powiązana ze wzorcem metra i czasem 1 sekundy i wynosi (ex definitione): c = m/s Źródło:Review of particle physics, Physics Letters 59,15 lipiec 4 Jest to wartość dokładna, służy do definicji metra 1 metr to droga, którą światło przebędzie w próżni w czasie 1/ sekundy
23 Date Author Method Result (km/s) Error (km/s) 1676 Olaus Roemer Jupiter's satellites 14, 176 James radley Stellar Aberration 31, 1849 Armand Fizeau Toothed Wheel 315, 186 Leon Foucault Rotating Mirror 98, Albert Michelson Rotating Mirror 99, Rosa, Dorsay Electromagnetic constants 99, Albert Michelson Rotating Mirror 99, Essen, Gorden-Smith Cavity Resonator 99, K. D. Froome Radio Interferometer 99, Evanson et al Lasers 99, Adopted Value 99,
24 Krótka historia światła V w. pne pitagorejczycy: bierne obserwacje przyrody + spekulacje filozoficzne, znano podstawy optyki geometrycznej, brak danych o naturze światła, pierwsza teoria widzenia proces konieczny eter bo zjawiska nie aktywny teoria czułków mogą zachodzić w niczym III w. pne Euklides zwierciadła, udoskonalona teoria czułków Ptolemeusz: Kąt załamania proporcjonalny do kąta padania, Arystoteles przeciwnik czułków teoria barw: światło białe i czarne rozchodzi się w eterze I w. pne atomiści Lukrecjusz odwrócenie teorii czułków wysyłanie przez przedmioty warstewek teoria cząsteczkowa, eter niepotrzebny X/XI w ne Arabowie: Al.-Hazen obalił prawo Ptolemeusza o kątach padania i załamania, obalił teorię czułków sekcja oka 4
25 Od III w pne XIII w. Witelo (PL): odwracalność biegu światła, opis budowy oka, zebranie wiedzy optycznej w jednym dziele. Eter Od V w pne teoria barw Od III w pne XVII w. Kartezjusz (F)i niezależnie Snellius (NL) Prawo załamania: sin/ sin = const Światło podobnie jak dźwięk jest falą podłużną rozchodzącą się w eterze. XVIII w. Newton (G) teoria cząsteczkowa światła, rozszczepienie światła w pryzmacie nowa teoria barw Hook (G) - teoria falowa (analogia dźwięku), brak wyjaśnienia polaryzacji XIX w Young (G) światło jest falą poprzeczną, rozchodzącą się w eterze 1864 Maxwell (G) teoria fal elektromagnetycznych (w tym światła), eter nie jest niezbędny 1881 Michelson, Morley (USA) udowodnienie że eter nie istnieje 1899 Lenard (D) efekt fotoelektryczny nie do wyjaśnienia na gruncie teorii falowej 5
26 XX w. 19 Planck (D) teoria kwantów 195 Einstein (D) teoria fotonów 193 Compton (USA) potwierdzenie, że foton, to kwant energii 194 de roglie (F) cechy falowe wykazują wszystkie cząstki materialne A ZATEM ŚWIATŁO MA CECHY FALI I CZĄSTECZKI JEDNOCZEŚNIE...??? (?) -...? 6
27 Teoria eteru. Eter sprężysty ośrodek rozchodzenia się fal świetlnych, bezwzględny układ odniesienia. Ośrodek wypełniający Wszechświat. Teoria Maxwella eter = fale i pola elektromagnetyczne. Czy eter jest unoszony przez ciała w ruchu? Jaki jest wpływ ruchu Ziemi względem eteru na prędkość światła? eter V V Z = 3 km/s A V Z eter V dla obserwatora na Ziemi (A) c + v Z () c - v Z prędkość światła c R względem poruszającego się odbiornika: c R = c v gdzie v prędkość odbiornika. 7
28 Doświadczenie Michelsona-Morley a D Wynik NEGATYWNY brak przesunięć prążków 8
29 Oszacowanie przewidywanego wyniku v c = 3km/ s = km/ s 4 D c D a więc t t' = ( 1 ) = = 1 s D 3 Dla D = 3m (długość ramienia interferometru) otrzymujemy: t t' = s = c( t t' ) = 31 1 = 31 m jest to efekt dobrze mierzalny! Ale otrzymano negatywny wynik doświadczenia światło emitowane przez źródło interferometru, niezależnie od jego orientacji względem ruchu Ziemi, zawsze biegnie z prędkością c względem źródła i zwierciadeł. 9
30 Fotografia interferometru Michelsona-Morley a (195r.) Mt.Wilson CA 3
31 Światło - podstawy Zasada Fermata Światło przebiegające między dwoma punktami wybiera drogę, na przebycie której trzeba zużyć minimum lub maksimum czasu (zazwyczaj minimum) w porównaniu z sąsiednimi drogami ds 1 t = t = nds = v c droga optyczna c Minimalizacja czasu to minimalizacja drogi optycznej Zasada Fermata tłumaczy prostoliniowy bieg światła w ośrodku jednorodnym, można z niej wyprowadzić prawo odbicia i prawo załamania 31
32 Światło białe Światło białe stanowi idealną mieszaninę barw światło białe długość fali zmieszane barwy: niebieska, zielona i czerwona tworzą wrażenie światła białego 3
33 Odbicie i załamanie światła Prawo odbicia: θ1 = θ1' współpłaszczyznowość n 1 n Czemu ołówek wydaje się być złamany? Prawo załamania- prawo Snella n = sinθ n1 sinθ1 różna jest prędkość rozchodzenia się fali w ośrodkach różniących się współczynnikiem załamania n=c/v 33
34 34
35 Dyspersja Światło monochromatyczne o określonej długości fali można utworzyć wykorzystując: dyspersję n(λ) pryzmat ugięcie θ(λ) siatka dyfrakcyjna 35
36 36
37 Spektroskopia optyczna 37
38 38
39 39
40 A jednak się rusza! 4
41 41
Fala elektromagnetyczna. Wykład 16: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok.321
Wykład 16: Fala elektromagnetyczna Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Równania Maxwell a Prawo: Postać całkowa
Wykład 15: elektromagnetyczna
Wykład 15: Fala elektromagnetyczna Dr inż. Zbigniew Szklarski Katedra lektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Równania Maxwell a Prawo: Postać całkowa Postać
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Wykład 14: Indukcja cz.2.
Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym
Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)
Przedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1
Światło jako fala 1 Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym 2 Wytwarzanie fali elektromagnetycznej o częstościach radiowych H. Hertz (1888) doświadczalne
cz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton
Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując
Fale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
PDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14
dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi
Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Falowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Podstawy fizyki sezon 2 6. Równania Maxwella
Podstawy fizyki sezon 2 6. Równania Maxwella Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas pokazaliśmy:
- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 9 Janusz Andrzejewski Albert Einstein ur. 14 marca 1879 w Ulm, Niemcy, zm. 18 kwietnia 1955 w Princeton, USA) niemiecki fizyk żydowskiego pochodzenia, jeden z największych fizyków-teoretyków
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017
Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
WYMAGANIA EDUKACYJNE Z FIZYKI
WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Kinematyka relatywistyczna
Kinematyka relatywistyczna Fizyka I (B+C) Wykład VI: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła
Efekt naskórkowy (skin effect)
Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,
Fale elektromagnetyczne
Fale elektromagnetyczne Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia fali elektromagnetycznej
Kinematyka relatywistyczna
Kinematyka relatywistyczna Fizyka I (B+C) Wykład V: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Pole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
Optyka geometryczna MICHAŁ MARZANTOWICZ
Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
Szczególna teoria względności
Szczególna teoria względności Wykład II: Transformacja Galileusza prof. dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Ogólna postać transformacji
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11 1. Rachunek niepewności pomiaru 1.1. W jaki sposób podajemy wynik pomiaru? Co jest źródłem rozbieżności pomiędzy wartością uzyskiwaną w eksperymencie
przenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz]
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Tęcza pierwotna i wtórna Dyfrakcja i interferencja światła Politechnika Opolska Opole
Podstawy fizyki sezon 2 8. Fale elektromagnetyczne
Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Całkowity strumień pola elektrycznego przez powierzchnię zamkniętą zależy wyłącznie od ładunku elektrycznego zawartego wewnątrz tej powierzchni.
Równania Maxwella Równania Maxwella są kompletnym opisem jednego z czterech fundamentalnych oddziaływań oddziaływań elektromagnetycznych. Gdy powstawały równania Maxwella wiedziano jedynie o istnieniu
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
FIZYKA KLASA III GIMNAZJUM
2016-09-01 FIZYKA KLASA III GIMNAZJUM SZKOŁY BENEDYKTA Treści nauczania Tom III podręcznika Tom trzeci obejmuje następujące punkty podstawy programowej: 5. Magnetyzm 6. Ruch drgający i fale 7. Fale elektromagnetyczne
Fale elektromagnetyczne. Obrazy.
Fale elektroagnetyczne. Obrazy. Wykład 7 1 Wrocław University of Technology 28-4-212 Tęcza Maxwella 2 1 Tęcza Maxwella 3 ( kx t) ( kx t) E = E sin ω = sin ω Prędkość rozchodzenia się fali: 1 8 c = = 3.
Fizyka dla Informatyki Stosowanej
Fizyka dla Informatyki Stosowanej Jacek Golak Semestr zimowy 8/9 Wykład nr 5 Fale elektromagnetyczne Punkt wyjścia: równania Maxwella (układ SI!) Najpierw dla próżni ε przenikalność dielektryczna próżni
Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga
Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego
Fale elektromagnetyczne
Rozdział 7 Fale elektromagnetyczne 7.1 Prąd przesunięcia. II równanie Maxwella Poznane dotąd prawa elektrostatyki, magnetostatyki oraz indukcji elektromagnetycznej można sformułować w czterech podstawowych
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Rozdział 8. Fale elektromagnetyczne
Rozdział 8. Fale elektromagnetyczne 208 Spis treści Widmo fal elektromagnetycznych Równanie falowe Rozchodzenie się fal elektromagnetycznych Wektor Poyntinga Podsumowanie z indukcji EM i fal EM Zadania
Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Wprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13
Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ
Równania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Wykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa
Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego
Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017
Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego
Wykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Fizyka 2 Wróbel Wojciech
Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia
POLE MAGNETYCZNE W PRÓŻNI
POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.
Metody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Wykład FIZYKA II. 8. Optyka falowa
Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
TECHNIKI OBSERWACYJNE ORAZ METODY REDUKCJI DANYCH
TECHNIKI OBSERWACYJNE ORAZ METODY REDUKCJI DANYCH Arkadiusz Olech, Wojciech Pych wykład dla doktorantów Centrum Astronomicznego PAN luty maj 2006 r. Wstęp do spektroskopii Wykład 7 2006.04.26 Spektroskopia
ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II
ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie
Fal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Wprowadzenie do technologii HDR
Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii
Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
Elementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności