PROPOZYCJA HYBRYDY REGUŁ HURWICZA I BAYESA W PODEJMOWANIU DECYZJI W WARUNKACH NIEPEWNOŚCI

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROPOZYCJA HYBRYDY REGUŁ HURWICZA I BAYESA W PODEJMOWANIU DECYZJI W WARUNKACH NIEPEWNOŚCI"

Transkrypt

1 Hln Gsprs-Wloc Unrsytt Ekonoczny Poznnu PROPOZYCJA HYBRYDY REGUŁ HURWICZA I BAYESA W PODEJMOWANIU DECYZJI W WARUNKACH NIEPEWNOŚCI Wstęp Z podon dcyz runkc npnośc PDWN y do czynn tdy gdy sytuc dcyzyn oż yć scrktryzon z poocą lsty dcyz dopuszczlnyc rntó dcyzynyc strtg orz stnó otcząc ns rzczystośc. Stny t stotny sposó oddzłuą n otrzyny ynk l onc podęc dcyz n y który z nc ystąp n y n to żdngo płyu [Pzk Rozn 2009 s ; Trzsklk 2008]. W odróżnnu od podon dcyz runkc ryzyk PDWN ccu sę ty ż dcydnt n ożlośc okrśln prdopodońst ystąpn dngo stnu [Gronld Prtorus 20; Rndr Str Hnn 2006; Sddqu Cronopoulos druku; Skor rd. 2008]. Kngt [92] ko prszy zproponoł ykorzystn tk rozungo ryzyk npnośc kono l t d ktgor zostły orln prodzon do tor kono dopro 944 r. przz Nunn Morgnstrn [Nunn Morgnstrn 944]. Tl Scnrusz Mcrz ypłt przypdk ogólny Dcyz D D D n S n S n S n

2 Propozyc yrydy rguł Hurcz Bys 75 Nsz rozżn ędą dotyczyć gry z nturą czyl sytuc któr dcydnt do czynn z zsk np. pogodą ogący przyoć różn scnrusz stny. Złożyy ż stśy stn przdzć k korzyść strt ynk z kolnyc dcyz przy zstnnu poszczgólnyc stnó ntury. Zróno lcz ożlyc dcyz k lcz stnó ntury st skończon ng. dcson kng undr scnros uncrtnty kżd konc dcyz-scnrusz odpod dokłdn dn ypłt zt o korzyśc ożn przdstć postc crzy ypłt tl gdz lcz scnruszy S S S n lcz dcyz D D. D n n ypłt zązn z -ty scnrusz -tą dcyzą. Zór potnclnyc ypłt dotyczący dn strtg st tż skończony oż yć ultzor *. Cl dcydnt st yór strtg ksylzuąc korzyść. W rtykul skoncntruy sę n yorz optyln strtg czyst t. rozązn zkłdącgo ż dcydnt yr rlzu tylko dn rnt dcyzyny [Skor rd. 2008]. Kżd dcyz ędz opsn z poocą dngo spólngo krytru lu dngo rnk synttyczngo ukzuącgo rlzcę różnyc cló zt rozżn ędą dotyczyć proló dnokrytrlnyc lu sprodzlnyc do tycż proló **. W ltrturz ożn znlźć ops różnyc tod ącyc zstoson przy podonu dcyz runkc npnośc. Jdną z nc st rguł Hurcz. T zsd prodz zzycz do logcznyc rconlnyc odpodz l pnyc szczgólnyc przypdkc rzultty otrzyn z poocą t tody ogą yć zduąc. Artykuł nstępuącą strukturę. Prsz część zr krótk ops nrdz znnyc rguł stosonyc przypdku PDWN. W częśc drug skupono sę n nlz stoty nkntó rguły Hurcz. W częśc trzc przdstono no podśc posdąc znon rguł Hurcz Bys. Wnosk zrno zkończnu.. Rguły podon dcyz runkc npnośc Rguły PDWN są poszcn znn środosku ludz zuącyc sę torą podon dcyz tod loścoy kono lcz dl ułtn * Jżl ntost scnruszy st nskończn l to zst crzy ypłt pod sę dl kżd strtg przdzł ożlyc korzyśc [ ] ng. dcson kng undr ntrvl uncrtnty [Huyn Hu Nkor Krnovc 2007]. ** Wśród ntrsuącyc prc dotyczącyc lokrytrlngo podon dcyz runkc npnośc WPDWN rto ynć: Donk [ ].

3 76 Hln Gsprs-Wloc dlszgo yodu zostną tu on krótko scrktryzon przy czy z rc podętgo ttu rguły Hurcz Bys oóy nco dokłdn. Szrsz oón nż przdstonyc zsd ożn znlźć lcznyc pozycc ltrturoyc [Ignsk rd. 996; Kunn Fur 974; Pzk Rozn 2009; Skor rd. 2008]. Jk ędz ożn zosroć yór rguły dcyzyn ponn zlżć od prrnc dcydnt przyętyc przz ngo złożń. Rguł Wld rguł xn zkłd ż nzlżn od yrngo rntu dcydnt spotk zsz nnższ z ypłt odpodącyc tu rnto [Wld 950 s ]. Jst ęc on podśc skrn psystyczny sprodzący sę do yznczn skźnk pozou zpczńst dl kżd ltrntyy do yoru dcyz ksylzuąc tn skźnk. W przcńst do zsdy Wld rguł xx st rdzo optystyczny podśc który dcydnt zsz spodz sę ystąpn nkorzystnszgo stnu ntury yr dcyzę ksylzuącą skźnk xx pozo optyzu. W rgul Hurcz przyu sę ż dcydnt ponn przprodzć rnkng strtg n podst śrdn żon pozou zpczńst pozou optyzu [Hurcz ] zgodn z zor gdz to skźnk Hurcz to nln ksyln ypłt zązn z -tą dcyzą < 0 ozncz spółczynnk psyzu ostrożnośc. Dl skrnyc optystó prtr tn st lsk zru z kol dl skrnyc psystó spółczynnk dąży do dnośc. Optylną strtgą czystą st t któr rtość skźnk st nyższ * zór 2. * x{ } x{ } 2 Rguł Svg [96 s ] st tkż nzyn rgułą nlngo żlu lu rgułą nx polg n yorz dcyz nlzuąc ksylną zględną strtę n podst crzy zględnyc strt. Rguł Bys zn rónż rgułą Lplc lu rgułą ndosttczn rc [Rndr Str Hnn 2006] zkłd ż skoro dcydnt n st stn okrślć który scnrusz osttczn ystąp to oż on przyąć ż szystk stny ntury są rónoprdopodon. Wóczs ystrczy olczyć dl kżd * Wrto podkrślć ż ltrturz prtr opsu czs pozo optyzu dcydnt n pozo go psyzu. Wóczs zór oczyśc nco nną postć [Huyn Hu Nkor Krnovc 2007; Gronld Prtorus 20].

4 Propozyc yrydy rguł Hurcz Bys 77 opc skźnk Bys ko oczkną ypłtę 3 yrć tę dcyzę któr skźnk przyu nększą rtość 4: * x{ 3 } 4 Stoson poszczgólnyc rguł PDWN oż doprodzć do uzyskn zupłn odnnyc rnkngó do skzn różnyc optylnyc strtg. Z yątk zsdy Bys opsn rguły są przznczon yłączn dl dcyz rlzonyc dnokrotn *. Dody tkż ż rguł Bys ocno odg od pozostłyc rguł klsycznyc gdyż ko dyn odołu sę do rcunku prdopodońst. 2. Anlz rguły Hurcz W t częśc rtykułu przprodzy dokłdną nlzę stoty rguły Hurcz konsknc ynkącyc z stoson. Jk uż zsygnlzono n początku korzystn z t zsdy podonu dcyz runkc npnośc ększośc nlzonyc sytuc dcyzynyc st rozsądn. Jdnk rto zznczyć ż t rguł prodz rdzo spcycznyc przypdkc do rzulttó sprzcznyc z logką dklrony przz dcydnt prrnc. Przyrzyy sę lż konstrukc zoru który służy do yznczn skźnk Hurcz dl poszczgólnyc rntó. Wzór uzględn dyn skrn ypłty. Pośrdn rtośc t. n są ogól rn pod ugę. N ęc znczn czy śród pośrdnc ynkó dotyczącyc dn strtg ększość st lsk prtro ądź czy tż rozkłdą sę on rę sytryczn. Pozyc konkrtn dcyz rnkngu st zdtrnon yłączn przz przy czy. Poyższ cc rguły Hurcz plku dl pry rntó dcyzynyc D D nstępuąc konsknc: < 0 5 * Zprznton zsdy oóono dl proló ksylzonyc. Sposoy zstoson ynonyc rguł przypdku krytru nlzongo przdstono.n. prcy Gsprs-Wloc [202 s ].

5 Hln Gsprs-Wloc < 9 Odnotuy dodtkoo ż: r r r r 0 gdz r r oznczą rozstępy ędzy ksylną nlną ypłtą zązny odpodno z dcyz D D. Zuży ż poyższ plkc ystępuą zsz nt óczs gdy dcydnt st psystą zcodz sytuc opsn z poocą zoru szystk ypłty pośrdn strtg D są nższ od ypłt pośrdnc strtg D : < ^ Szczgólny przypdk yż sponn zlżnośc st sytuc któr nrosnąc -lnto cąg ypłt rozptrynyc rntó spłną runk 2-3: S S 3 Wynon przypdk coć nzykl rzdko ystępuąc prktyc uzysłą n zt rdzo sno ż rguł Hurcz nzlżn od rtośc spółczynnk psyzu po stotną norcę ką st częstotlość ystępon ultzorz szystkc ypłt ząznyc z dny rn-

6 Propozyc yrydy rguł Hurcz Bys 79 t dcyzyny ypłt lskc prtro. Wrcąc do nlzon pry dcyz D D ożn strdzć ż zosron nstępst ynkąc z zstoson zsdy Hurcz są dość krzydząc dl dcyz D przypdku rltyn yższyc ypłt pośrdnc ponż nt óczs n ędz ogł ząć yższ pozyc rnkngu nż strtg D *. Anlzuąc spcykę rguły Hurcz rto rónż sprdzć k znczn ą sponn konsknc dl poszczgólnyc dcydntó. Dcydnt optyst o spółczynnku psyzu lsk lu róny zro ęc oso zkłdąc ż czk ą nyższ ądź pr nyższ ypłt zązn z podętą dcyzą n przu sę zytno lkoścą pozostłyc nższyc ypłt. Tk dcydnt n poszuku z szlką cnę zpcznyc rntó dcyzynyc przyęto tu ż dcyz st ty rdz zpczn ypłty pośrdn są lższ ypłc ksyln. Rkondon przz rgułę Hurcz strtg dl dcydnt optysty odzrcdlą ęc rcz go prrnc. Pożny prol po sę dopro tdy gdy spółczynnk psyzu zny rónż spółczynnk ostrożnośc dcydnt rośn ęc gdy procs dcyzyny udzł rz psyst. Post psysty yrż sę skłonnośc do dostrzgn tylko unyc stron życ ngtyn ocny rzczystośc orz przyszłośc. Stosunk psysty do śt st nccony lęk poczuc zslnośc [ttp://kpd.pl]. Psyst spodz sę ż spotk go rcz scnrusz zązny z nską ypłtą. Skoro tk st to psyst str sę unkć dcyz dl któryc ększość scnruszy oru nsk ypłty. Tk rnty dcyzyn ędzy nzyć skróc strtg nzpczny **. Tyczs okzu sę ż yższy spółczynnk ostrożnośc ty gorz st uzględnn rnkngu ustlony n podst zsdy Hurcz ostrożnośco podśc dcydnt. Poróćy do rozptryn czśn pry dcyz D D. Z zoró 5 7 ynk ż t rguł ngdy n zrkondu osoo o ysok spółczynnku psyzu dcyz D nt tdy gdyy ystąpł przypdk lu 2-3 różnc zór 5 zór 7 yły lsk zru coć doo ż psyst postępu ostrożn ol yrć dcyz zpczn. Koln kst rt poruszn dotyczy strtg nzdononyc. Jżl potncln dcyz są Prto-optyln to oczklyśy ż rnkng tyc dcyz ędz rz z zną pozou spółczynnk ostrożnośc rónż ulgł * Przykłdoo żl S 5 S 5555 to ** Jżl przyy zgodn z dncą podną n stron ttp://kpd.pl ż ryzyko to nzpczństo ynkąc z ożlyc konsknc podęc dn dcyz to dl strtg nzpczn ożn użyć znn poęc strtg ryzykon.

7 80 Hln Gsprs-Wloc zno. Tyczs zór 0 pokzu ż kolność rntó dcyzynyc poz spółczynnk psyzu zlży tylko od rtośc ksylnyc od rozstępó ypłt poszczgólnyc dcyz któr są stł co ozncz ż dl nktóryc sytuc dcyzynyc rnkng ędz sę znł rdzo rzdko. Skoro rgul Hurcz żn są tylko skrn ypłty nsu sę nosk ż ponno sę ą rcz stosoć prolc któryc dl kżd -t dcyz szystk n tylko nktór ypłty z przdzłu < są ożl ęc gdy lcz scnruszy st nskończon. Ntost przypdku zdń z skończoną lczą ypłt rguł Hurcz osz dorz uzględn prrnc dcydnt lcz dyn tdy gdy dl kżdgo rntu dcyzyngo rozkłd ypłt st rę sytryczny t. gdy n ystępuą ndrz rtośc zlżon do dn z skrnyc ypłt [Gsprs-Wloc 203]. Zn przdzy do przdstn propozyc nogo podśc któr ędz uzględnć n tylko prrnc dcydnt skrn ypłty dotycząc poszczgólnyc strtg lcz tkż rtośc szystkc ypłt pośrdnc co uożl uzyskn snsonyc rkondc dl szrszgo spktru proló dcyzynyc zlustruy sorułon czśn nosk kcyny przykłd. Złóży ż nstorzy A B zrzą yrć nlpszy prokt ąc do dyspozyc cztry różn znsplny P P2 P3 P4 przy czy ksprc przduą ż przyszłośc oż ystąpć dn z szścu scnruszy S S2 S3 S4 S5 S6. Instor A st urkony optystą okrślł só spółczynnk psyzu A n pozo 0.3. Instor B lu postępoć ostrożn go spółczynnk psyzu B ynos 0.7. W tl 2 podno przdyn roczn zysk tys. uro dl poszczgólnyc proktó zlżnośc od scnrusz. Mcrz ypłt studu przypdku Scnrusz Prokt P P2 P3 P4 S 5.5 S S S S S Tl 2 Anlzę porónczą rozptrynyc proktó ułt n tl 3 któr zrno nstępuąc norc: skźnk Wld pozo zpczńst ypłt nln

8 Propozyc yrydy rguł Hurcz Bys 8 skźnk xx pozo optyzu ypłt ksyln r rozstęp N lcz scnruszy któryc -ty prokt uzysku nlpszy ynk n lcz scnruszy któryc -ty prokt uzysku ngorszy ynk. Porónn proktó studu przypdku Crktrystyk Prokt P P2 P3 P r N n Prokty Wskźnk Hurcz studu przypdku A urkony optyst A 0.3 P A P P2 A P P3 A P Instor B urkony psyst B 0.7 B P Tl 3 Tl B P B P A P4 P I. P Rnkng II. P2 P4 III. P3 B P I. P II. P2 P4 III. P3 Jk dć nększy rozstęp crktryzu sę prokt P r 4. To tkż tn łśn prokt sznsę ygnroć nyższ zysk 5. Jgo słą ccą st to ż tylko przypdku dngo scnrusz S plsu sę on n prszy scu. W pozostłyc pęcu stnc odnotou ngorsz ynk. Prokty P2 P4 ą trzy spóln ccy rozstęp rtość nlną orz rtość ksylną lcz różną sę stotn pod zględ lczy nyższyc nnższyc zyskó. W przypdku tyc dóc krytró prokt P2 st zdcydon lpszy. Prokt P3 nzlżn od stnu przynos dość zlżon rltyn ł korzyśc. Jdnkż przypdku tgo łśn proktu ż trzy crktrystyk uęt tl 3 ypdą nlp.

9 82 Hln Gsprs-Wloc Trz przyrzyy sę skźnko Hurcz olczony dl poszczgólnyc proktó zlżnośc od prrnc nstor orz osttczny rnkngo tl 4. Anlzuąc otrzyn rzultty docodzy do nstępuącyc ont surdlnyc noskó któr dnk potrdzą ynon czśn konsknc ynkąc z stoson rguły Hurcz: Rnkng proktó st dntyczny dl urkongo optysty psysty co oż yć trocę zskkuąc orąc pod ugę spcykę poszczgólnyc znsplnó. 2 Nzlżn od rozptryngo nstor rtośc skźnkó Hurcz dl proktó P2 P4 są pr tk s coć doskonl doo ż prokt P2 donu nd P4 ptrz d osttn crktrystyk uęt tl 3. Pr proktó P2 P4 lustru przypdk opsny z poocą zoru 9. 3 Prokt P zdoył prsz sc ou rnkngc. Ozncz to ż zgodn z rgułą Hurcz st to rkondon optyln strtg czyst dl ou nstoró nt dl urkongo psysty. Jst to o tyl zduąc ż prokt P st przcż dość nzpczny. Osz ożn przypdku stnu S lczyć n nyższą ypłtę ż 5 tys. uro l żl ystąp kkolk nny scnrusz zysk z rlzc proktu P ędą nnższ. Wyór proktu P st ęc dl psysty rcz nrconlny posunęc. Posunęc sprzczny z dklrony przz ngo spółczynnk ostrożnośc. Prokt P ustępu rnkngu prokto P3 dopro przy spółczynnku psyzu przkrczący Rguł Hurcz yż plsu prokt P nż P2 co przypdku nstor psysty tkż udz kontrors. To przcż prokt P2 yd sę rdz pożądny dl nstor B gdyż ż pęcu przypdkc n szść d ożlość rlzc cłk ysokgo zysku. Dody ż nt gdyy spółczynnk ostrożnośc psysty zrósł do 0.99 to tk prokt P ndl uzyskły yższą rtość skźnk nż prokt P2. Rlc poędzy prokt P P2 odpod łśn sytuc opsn z poocą zoró 5-3 nązu do sorułongo czśn ogólngo nosku dotyczącgo rnkngó gorz uzględnącyc prrnc dcydntó o ysokc spółczynnkc psyzu. 3. Rguł HB czyl yryd rguły Hurcz rguły Bys przntc podśc W dotycczsoyc rozżnc strdzlśy ż rkondc uzyskn z poocą rguły Hurcz ogą n do końc odzrcdlć upodon

10 Propozyc yrydy rguł Hurcz Bys 83 dcydnt. Wnosk tn dnk dotyczył dyn sytuc któr przynn dn z rntó dcyzynyc crktryzu sę zor ypłt z przżącą lczą zyskó lo lskc lo lskc. W pozostłyc przypdkc t. gdy ypłty są rozłożon rę sytryczn zsd Hurcz proponu snson rozązn. W t częśc rtykułu zostn zprznton pn stotn odykc nlzon rguły dzęk któr ędz ożn zncząco zrdukoć skutk zosrongo nkntu otrzyć logczn odpodz dl szrszgo spktru proló dcyzynyc. Proponon zsd podon k rguł Hurcz pozl skzć optylną strtgę czystą przy złożnu ż lcz stnó st skończon orz ż dcydnt st stn okrślć só spółczynnk psyzu. Mtod t rz pod ugę n tylko postę dcydnt lcz tkż spcykę zoró ypłt szystkc ltrnty. Id proponongo podśc t. rguły HB st rdzo prost. Podon k przypdku orygnln rs rguły Hurcz tu rónż trz ędz yznczyć dl kżd dcyz pną śrdną żoną ypłt nstępn skzć tę dcyzę któr skźnk st nyższy. Jdnk zupłn ncz ędz olczny tn łśn skźnk nzy go skźnk HB czyl. N początk trz ędz przdstć zór ypłt postc nrosnącgo cągu ypłt. Gdy dklrony spółczynnk psyzu ędz sę ścć przdzl <0 0.5 to prtr ędzy nożyć n przz nnższą ypłtę lcz przz suę nnższyc yrzó tgo cągu gdz ozncz lczę scnruszy ntost spółczynnk optyzu czyl β dyn przz nyższą ypłtę. Z kol gdy dklrony spółczynnk psyzu ędz nlżć do przdzłu <0.5 to prtr ędzy nożyć przz nn korzystną ypłtę spółczynnk optyzu przz suę nyższyc ypłt przy 0.5 n znczn którą todę zstosuy. Jk dć przy olcznc źy pod ugę szystk ypłty tk złożn st z kol crktrystyczn dl zsdy Bys. Dltgo łśn propononą rgułę nzno yrydą rguł Hurcz Bys. Ay skźnk ścły sę przdzl < sponn suy odpodno zżonyc ypłt zostną n konc podzlon przz suę szystkc g. Poyższ propozyc yg yśnn. Otóż dzęk tku podścu y ożlość uzględnn częstotlośc ystępon ypłt nyższyc nnższyc. Ozncz to ż psyśc zostn skzn t strtg któr nnższ ypłt st zględn nyższ lu któr nyższ ypłty ystępuą stosunkoo często tk rozkłd st prrony przz psystó gdyż d poczuc zpczńst ponż go spółczynnk optyzu ędz gą dl kżd ypłty oprócz dn t któr zndu sę n końcu

11 84 Hln Gsprs-Wloc nrosnącgo cągu ypłt. Z kol optyśc zgodn z rgułą HB zostn zrkondon t strtg któr nyższ ypłt st zględn n- ponż optyst tkgo zzpczn n potrzu lczy n to ż ę- ększ lcz któr nkorzystnsz ypłty ystępuą nkonczn często dz ł szczęśc ż ystąp kurt nlpszy scnrusz dl yrn dcy- oprócz dn t któr zu prszą pozycę cągu ypłt ptrz rys. z. Współczynnk psyzu ędz ty przypdku gą dl kżd ypłty. Rys.. Wżn ypłt rgul H B Stoson rguły H B sprodz sę do rlzc nstępuącyc krokó: Krok. Wyznczyć dl kżd dcyz nrosnący cąg ypłt Sq : gdz: s st nur yrzu tgo cągu s 2 - s s Sq... s Krok 2. Olczyć dl kżd dcyz skźnk lżnośc od prtru. Jżl 0.5 olczyć skźnk p o lu p zgodn z zor 5: z- 0.5 p p β p s s 5

12 Propozyc yrydy rguł Hurcz Bys 85 2 Jżl < 00.5 olczyć skźnk o zgodn z zor 6: o s βo o s Jżl 0.5 olczyć dl kżd dcyz skźnk 05 korzystąc z zoru 7: 0.5 p o 7 Jk dć ty przypdku n znczn któr oruł zostn zstoson czy o ponż o zory prodzą do uzyskn tyc syc p rtośc któr są zrsztą rón skźnko Bys gdyż g dl szystkc ypłt są dntyczn. Krok 3. Wyrć tę strtgę któr spłn runk 8: * x{ } 8 Z konstrukc tody ynk ż odróżnnu od rguły Hurcz su szystkc spółczynnkó użytyc ko g dl poszczgólnyc ypłt ędz zzycz ększ od dnośc. Ay ęc otrzyć skźnk spłnąc runk 9 co oczyśc n zn rnkngu dcyz lcz dyn proporconln onż rtośc szystkc skźnkó rto podzlć żon suy ypłt przz suę szystkc użytyc g. W przypdku psysty rz st stosony spółczynnk psyzu rzy st ykorzystyny spółczynnk optyzu β co su d ptrz nonk zorz 5. Ntost przypdku optysty dn ypłt st nożon przz spółczynnk optyzu β ypłt nożyy przz spółczynnk ostrożnośc czyl su szystkc g ynos ptrz nonk zorz 6. 9 Z konstrukc propononyc zoró 5 6 ynk ż skźnkc ustlnyc dl psysty rz z zrost lczy scnruszy l znczn nln ypłty rośn znczn suy nyższyc ypłt

13 86 Hln Gsprs-Wloc zś skźnkc olcznyc dl optysty l znczn ksyln ypłty rośn znczn suy nnższyc ypłt. Tk zlżnośćć n ystępu protn rs rguły Hurcz nzlżn od lczy stnó żn są tylko d ypłty: ksyln nln. Tu ntost st - scnrusz tkż tgo nrdz nn korzystngo l scnru- szy st ęc. Rguł H B d ęc nstępu korzyśc: doczny pły zsdy Bys z któr ynk ż szns ystąpn dngo dl psysty: ęc st stnó ty yższy skźnk otrzy rnt dcyzyny dl którgo ększość scnruszy oru ypłty lsk rto- śc ksyln zązn z ty rnt st to pn or zzp- rnt dcyzyny dl którgo ększość stnó oru ypłty lsk rtośc nln zązn z ty rnt dzęk tu optyśc zo- czn dl psysty dl optysty: ęc st scnruszy ty nszy skźnk otrzy stn zrkondon strtg któr nyższ ypłty są znczn yższ od nyższyc ypłt nnyc strtg. Osttczn ęc oży strdzć ż skźnk HB uzględną d norc: pozo psyzu ądź optyzu dcydnt cc crk- cc rguły Bys. trystyczn dl rguły Hurcz 2 szns rlzc poszczgólnyc ypłt Wżn szystkc ypłt n tylko skrnyc rtośc d stotną prz- d gę rguły HB nd rgułą Hurcz np. óczs gdy dcydnt do yoru dcyz D D o zorc ypłt przdstonyc n rys. 2. Dcyz D crkt- ypłtę zązną z dcyzą D ntost pozostł ypłty są klkkrotn nższ ryzu sę dną rdzo ysoką ypłtą klkkrotn przyższącą ksylną od nln ypłty dcyz D. Z kol ypłty dcyz D są dość yrónn poz dny scnrusz yższ od ypłt dcyz D. Rys. 2. Zór ypłt dl dcyz D D

14 Propozyc yrydy rguł Hurcz Bys 87 Dcydnt o nstnu ocno psystyczny ponn rcz yć zntrsony rlzcą strtg D któr rozkłd ypłt st rdz zpczny. Rguł Hurcz rguł HB zproponuą dcydnto strtgę D gdy ksyln ypłt t dcyz ędz spłnć odpodno runk 20 2: Jk dć nlny pozo prtru dl rguły Hurcz st znczn nższy od nlngo pozou tgo prtru dl rguły HB ynk to.n. z tgo ż lcznku zorz 2 ystępuą z znk dodtn szystk ypłty dcyz D n tylko skrn rtośc. Zt konkluz st tk ż klsyczn rguł Hurcz sugru psysto dcyz o rzdkc ysokc ypłtc przy stosunkoo ł przdz ksyln ypłty nd ksylny ypłt nnyc strtg. Rguł HB stno pn pośrdn nrzędz dcyzyn ędzy rgułą Hurcz rgułą Bys. Dl spółczynnkó oscyluącyc okół rtośc 0.5 prznton zsd proponu tk s rnkng k rnkng gnron z poocą rguły Bys co st zrozuł gdyż podon są żon szystk ypłty. W przypdku skrnyc psystó ądź optystó rnkng HB przyponą rnkng uzyskn n podst zsdy Hurcz złszcz óczs gdy lcz scnruszy st ł. W pozostłyc sytucc ęc gdy y do czynn z urkony psyst ądź optyst lu gdy lcz stnó ntury st duż rnkng rntó proponony przz zsdę HB n przypon uż rnkngó otrzyynyc z poocą sponnyc rguł klsycznyc. W przypdku dcyz nzdononyc rnkng gnron przz zsdę HB ędą rdz rżl n pozo prtru nż to sc przy rgul Hurcz gdyż zn spółczynnk ostrożnośc ędz ygć zny g dl szystkc ypłt n tylko skrnyc skźnku.

15 88 Hln Gsprs-Wloc Wskźnk HB studu przypdku Instor Prokty A urkony optyst A 0.3 B urkony psyst B 0.7 P o p P P o p P2 P P o p P3 P P o p P4 P P Rnkng I. P2 II. P4 III. P3 IV. P I. P2 II. P3 III. P4 IV. P Tl 5 N konc t częśc poróćy do przykłdu nlzongo czśn. W tl 5 pokzno sposó yznczn skźnkó HB dl urkongo optysty urkongo psysty: Ty rz rnkng ygnron dl ou nstoró nco sę różną. Wynk to z ktu ż zn rtośc prtru poodu znę rtośc g dotyczącyc szystkc ypłt n tylko skrnyc. 2 W ou przypdkc st rkondony prokt P2 st to rcz rozsądny yór gdyż n nstor A n st skrny optystą y zdcydoć sę n prokt P n nstor B n st rdyklny psystą y zdcydoć sę n prokt P3. A prokt P2 z dn strony o l ystąpą korzystn scnrusz d ysok ypłty z drug st rltyn zpczny gdyż częstotlość pożądnyc ynkó st tut nyższ. 3 Prokt P4 uzysku nższą rtość skźnk HB nż prokt P2 co st logczn gdyż prokt P4 st zdonony przz tn prokt. N tką doncę n skzyły ntost rzultty otrzyn z poocą klsyczn rguły Hurcz. T zsz P2 P4. Zkończn W prszyc dóc częścc rtykułu pokzno ż nktóryc przypdkc rguł Hurcz stoson przy PDWN oż prodzć do dość zskkuącyc ynkó proponuąc rnkng sło uzględnąc prrnc

16 Propozyc yrydy rguł Hurcz Bys 89 dcydntó złszcz psystó. Zsugrono rónż y tę rgułę ykorzystyć tylko przypdku proló któryc: lcz scnruszy st skończon l rozkłd ypłt dl poszczgólnyc dcyz st rę sytryczny lu gdy 2 lcz scnruszy st nskończon kżd ypłt z przdzłu < st ożl. Ntost trzc częśc zproponono rgułę HB któr stno yrydę rguły Hurcz rguły Bys. Oprcono ą głón z yślą o zdnc z skończoną lczą stnó ntury z skończony zor ypłt dl kżd dcyz coć przy odpodn odykc zpropononyc zoró zprzntoną rgułę ożn tkż stosoć zdnc z cągły rozkłd ypłt. Rguł HB ył tston n tylko rc oóongo studu przypdku lcz tkż nnyc prolc dcyzynyc z typoy ntypoy rozkłd ypłt. Przy typoyc rozkłdc rnkng uzyskn z poocą rguły Hurcz podśc zodykongo są rdzo zlżon rconln. Z zględu n to ż rguł HB uśrdn coć różny g szystk ypłty oż on yć przydtn zróno przy dnokrotn k lokrotn rlzc yrn dcyz coć t drug sytuc nlży yć ostrożny gdyż dłuższy okrs spółczynnk psyzu dcydnt oż sę znć! Rguł HB n tylko pozl dklroć so prrnc l ktyczn uzględn propononyc rnkngc. Brz on o pod ugę spółczynnk ostrożnośc dcydnt orz częstotlość ystępon korzystnyc nkorzystnyc ypłt. Dzęk tk konstrukc nt przypdku proló z dość spcyczną tlą ypłt rnkng otrzyn z poocą t tody lp odzrcdlą ktyczn prrnc dcydntó ęc ogą yć dl nc skutczny nrzędz sprący procs dcyzyny. N konc dody ż zproponon koncpc poszukn optyln strtg czyst n st cłkoc noy poysł. W ltrturz ożn znlźć l oprcoń zrącyc opsy różnyc tod stnoącyc yrydę krytru Hurcz krytru Byss lu yrydę nnyc klsycznyc rguł PDWN. Wrto dnk podkrślć ż stnąc uż procdury ykorzystuąc o podśc crktryzuą sę odnną konstrukcą przznczn dotyczą on rcz podon dcyz runkc ryzyk z zględu n prodzn prdopodońst nż rguł HB. Przykłdoo ksążc Ellsrg [200] ożn znlźć ops tody nzn t rstrctd Bys/Hurcz crtron któr yór optylngo rntu st uzlżnony n tylko od spółczynnk psyzu < 0 lcz tkż od spółczynnk ndnozncznośc ρ <0 ng. dgr o guty. Dtrnu on prdopodońst poszczgólnyc ypłt. I nższy ty ększ znczn przyp-

17 90 Hln Gsprs-Wloc su sę rtośco skrny. Z kol Bsl Zpp [200 s ] orz Grdto nn [2004 s ] proponuą krytru -MEU ng. -xn xpctd utlty dcson crtron który uzględn sę zróno prdopodońst dl poszczgólnyc ypłt k pozo psyzu [Mrncc 2002 s ]. N podst koncpc CEU ng. Coqut xpctd utlty Bsl oprcoł tkż todę przypsuącą nn prdopodońst rtośco pośrdn nn prdopodońst rtośco skrny [Bsl 2006 s ; Bsl Ctunu Fontn 2008 s ; Glo 2009]. Ook ynonyc uż podść rto sponć tż o prcy Nkury [986 s ] * któr zprzntono pn rozyt rozszrzn rguły Hurcz oprt n odlgłośc Hng ędzy do zor g.u.s g.l.s ng. t grtst uppr st t grtst lor st rozyt użytcznośc. Blogr Bsl M. 2006: A Rtonl Dcson Rul t Extr Evnts. Rsk Anlyss Vol Bsl M. Ctunu A. Fontn F. 2008: Prcutonry Prncpl s Rul o Coc t Opts on Wndll Gns nd Psss on Ctstropc Losss. Ecologcl Econocs Vol Bsl M. Zpp C. 200: Aguty nd Uncrtnty n Ellsrg nd Sckl. Crdg Journl o Econocs Donk C. 2006: Multcrtr Dcson Ad undr Uncrtnty. W: Multpl Crtr Dcson Mkng 05. T. Trzsklk d.. Pulsr o t Krol Adck Unvrsty o Econocs Ktoc. Donk C. 2009: Multcrtr Dcson Adng Procdur undr Rsk nd Uncrtnty. W: Multpl Crtr Dcson Mkng 08. T. Trzsklk d.. Pulsr o t Krol Adck Unvrsty o Econocs Ktoc. Ellsrg D. 200: Rsk Aguty nd Dcson. Grlnd Pulsng N York NY USA. Gsprs-Wloc H. 203: Modctons o t Hurcz s Dcson Rul. Cntrl Europn Journl o Oprtons Rsrc Sprngr DOI 0.007/s y My. Gsprs-Wloc H. 202: Ogrnczon skutczność tod optylzcynyc rozązynu konocznyc proló dcyzynyc. Ekonost Grrdto P. Mccron F. Mrncc M. 2004: Drnttng Aguty nd Aguty Atttud. Journl o Econoc Tory Vol Glo I. 2009: Tory o Dcson undr Uncrtnty. Crdg Unvrsty Prss. * Ops podśc Nkury ożn znlźć tż prcy Psckgo [990].

18 Propozyc yrydy rguł Hurcz Bys 9 Gronld M.E. Prtorus P.D. 20: Coprson o Dcson-kng undr Uncrtnty Invstnt Strtgs t t Mony Mrkt. Journl o Fnncl Studs nd Rsrc. Hurcz L. 952: A Crtron or Dcson Mkng undr Uncrtnty. Tcncl Rport 355 Cols Cosson. Hurcz L. 95: T Gnrlzd Bys Mnx Prncpl: A Crtron or Dcson Mkng Undr Uncrtnty. Cols Cosson Dscusson Ppr Sttstcs 335. Huyn V.N. Hu C. Nkor Y. Krnovc V. 2007: On Dcson Mkng undr Intrvl Uncrtnty: A N Justcton o Hurcz Opts-Psss Approc nd Its Us n Group Dcson Mkng. Dprtntl Tcncl Rports CS Ppr 07. Ignsk E. rd. 996: Bdn oprcyn. Polsk Wydncto Ekonoczn Wrsz. Kunn A. Fur R. 974: Invttons l rcrc oprtonnll. Prs Dunod. Kngt F.H. 92: Rsk Uncrtnty Prot. Hrt Scnr & Mrx Hougton Mln Co Boston MA. Mrncc M. 2002: Prolstc Sopstcton nd Multpl Prors. Econotrc Vol Nkur K. 986: Prrnc Rltons on St o Fuzzy Utlts s Bss or Dcson Mkng. Fuzzy Sts nd Systs Vol Nunn J. Morgnstrn O. 944: Tory o Gs nd Econoc Bvor. Prncton Unvrsty Prss. Pzk K. Rozn C. 2009: Dcson Mkng undr Condtons o Uncrtnty n Agrcultur: A Cs Study o Ol Crops. Poloprvrd Osk Vol Psck K. 990: Dcyz rygodn prognozy. Zszyty Nuko nr 06 Akd Ekonoczn Poznń. Rndr B. Str R.M. Hnn M.E. 2006: Quntttv Anlyss or Mngnt. Prson Prntc Hll Uppr Sddl Rvr N Jrsy. Svg L.J. 96: T Foundtons o Sttstcs Rconsdrd. W: Studs n Suctv Prolty. H.E. Kyurg H.E. Soklr ds.. N York Wly Sddqu A. Cronopoulos M.: Optl Invstnt nd Oprtonl Dcson Mkng undr Rsk Avrson nd Uncrtnty. Europn Journl Oprtons Rsrc druku. Skor W. rd. 2008: Bdn oprcyn. Polsk Wydncto Ekonoczn Wrsz. Trzsklk T. 2008: Wprodzn do dń oprcynyc z koputr. Wydn II znon. Polsk Wydncto Ekonoczn Wrsz. Wld A. 950: Bsc Ids o Gnrl Tory o Sttstcl Dcsons Ruls. W: Slctd Pprs n Sttstcs nd Prolty. A. Wld d.. McGr-Hll N York Wld A. 950: Sttstcl Dcson Functons. Wly N York.

19 92 Hln Gsprs-Wloc A HYBRID OF THE HURWICZ AND BAYES RULES IN THE DECISION MAKING UNDER UNCERTAINTY Sury T Hurcz rul nd t Bys rul r clsscl pprocs ppld n t dcson kng undr uncrtnty. Ts stuton occurs n t dcson kr y coos on o svrl ltrntvs nd or s s only l to ssgn to c o t n ntrvl o potntl pyos or st o possl prots. In ot css t nsr otnd dpnds on t stt o ntur scnro c ll ppn ut n t rst cs t st o scnros s nnt nd n t scond on t s nt. T Hurcz sur t t d o t cocnt o psss nd t cocnt o opts nls to nd t optl pur strtgy n t dcson slctd s prord only onc. Mnl t Bys crtron s dsgnd to ndct t optl pur or xd strtgy n t vrnt cosn s prord onc or ny ts. In t rst prt o t rtcl t utor nlyzs t Hurcz rul nd llustrts css n t us o ts crtron lds to qut unxpctd rsults c s to contrdctory t t logc nd do not rlct t dcson kr s prrncs. In t scond prt proposl o n pproc or optl pur strtgy srcng y ns o oruls consdrng ot t cocnts o psss nd opts s ll s t ol st o pyos s prsntd. Ts procdur HB rul cons lnts o t Hurcz crtron nd t Bys crtron ut s dprvd o dsdvntgs typcl o t Hurcz rul. T rul suggstd tks nto consdrton ot xtr pyos nd ntrdt pyos c nls to rcv rtonl rcondtons or lrgr spctru o dcson prols. T HB rul y ppld n t dcson kng procss undr uncrtnty n t nur o potntl scnros nd t st o possl pyos r nt ovr slgt odcton o t qutons proposd nls to us ts procdur n prols t contnuous pyos.

Całkowanie numeryczne funkcji. Kwadratury Gaussa.

Całkowanie numeryczne funkcji. Kwadratury Gaussa. Cłkon nuryczn unkc. Kdrtury Guss. Rozżyy:. -D -punkto kdrtur Guss tod prostokątó. -D tod trpzó. -D -punkto kdrtur Guss 4. Zn grnc cłkon unoron d t dt 5. -D n-punkto kdrtur Guss 6. -D -punkto kdrtur Guss

Bardziej szczegółowo

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i Ukły yrow (loizn) 1.1. Ukły o zminy koów (kory, kory, nkory) i Są to ukły kominyjn, zminiją sposó koowni lu przstwini ny yrowy. 1.1.1. kory kory to ukły kominyjn, zminiją n yrow, zpisn w owolnym kozi innym

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i

Bardziej szczegółowo

S.A RAPORT ROCZNY Za 2013 rok

S.A RAPORT ROCZNY Za 2013 rok O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c

Bardziej szczegółowo

n ó g, S t r o n a 2 z 1 9

n ó g, S t r o n a 2 z 1 9 Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

CONNECT, STARTUP, PROMOTE YOUR IDEA

CONNECT, STARTUP, PROMOTE YOUR IDEA Dz ę u ę z r - T A ry. K z w ź ó ży u w USA www.. łą z sz s ł z ś F u T A ry! C yr t 2018 y Sy w Gór Wy rwsz S Fr s, 2018 Wszyst r w z strz ż. N ut ryz w r z wsz ł ś u r tu sz - w w st st z r. K w ą w

Bardziej szczegółowo

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1 O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 01 82 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A P r o m o c j a G m i n y M i a s t a G d y n i a p r z e z z e s p óp

Bardziej szczegółowo

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )

Bardziej szczegółowo

Zanim zapytasz prawnika

Zanim zapytasz prawnika 2 Zanim zapytasz prawnika 1 Zanim zapytasz prawnika Poradnik dla Klientów Biur Porad Prawnych i Informacji Obywatelskiej Pod redakcją Grzegorza Ilnickiego Fundacja Familijny Poznań Poznań 2012 3 N i n

Bardziej szczegółowo

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

Miś Colargol [B] Choir. q=120 [A] lar -gol. Co Co. to się włas - Wam. -nia. kła -nia. spie. Mis wys. lecz kie choć bar - w_cyr wać chciał

Miś Colargol [B] Choir. q=120 [A] lar -gol. Co Co. to się włas - Wam. -nia. kła -nia. spie. Mis wys. lecz kie choć bar - w_cyr wać chciał rnżcj Pweł Stuczyńsk 8 10 12 14 q=120 [A] 16 18 Ms co zw sze ć 1 4 5 6 spe w_cyr wć chcł wcąz fł szo ł pos bę dze ce m wszys rod drzew dł ze spe z przed ke mu z b fle pr zdz w st ck wę ce zcz nę Mś lrgol

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o

Bardziej szczegółowo

Raport na temat stężenia fluorków w wodzie przeznaczonej do spożycia przez ludzi będącej pod nadzorem PPIS w Gdyni za 2006 rok

Raport na temat stężenia fluorków w wodzie przeznaczonej do spożycia przez ludzi będącej pod nadzorem PPIS w Gdyni za 2006 rok POWIATOWA STACJA SANITARNO-EPIDEIOLOGICZNA W GDYNI LABORATORIU BADAŃ FIZYKO-CHEICZNYCH WODY Słomir Piliszek Rport n temt stężeni fluorkó odzie przeznczonej do spożyci przez ludzi będącej pod ndzorem PPIS

Bardziej szczegółowo

1 0 2 / m S t a n d a r d w y m a g a ñ - e g z a m i n m i s t r z o w s k i dla zawodu R A D I E S T E T A Kod z klasyfikacji zawodów i sp e cjaln o ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

F u l l H D, I P S D, I P F u l l H D, I P 5 M P,

F u l l H D, I P S D, I P F u l l H D, I P 5 M P, Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r

Bardziej szczegółowo

M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O K R E L A N I E S I M I N I O W Y C H P O D C Z A S C H O D U N A P O D S T A W I E S Y G N A W s E M G E u g e n u s z w

Bardziej szczegółowo

Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu

Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c

Bardziej szczegółowo

2 0 0 M P a o r a z = 0, 4.

2 0 0 M P a o r a z = 0, 4. M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L I Z A W Y T R Z Y M A O C I O W A S Y S T E M U U N I L O C K 2, 4 S T O S O W A N E G O W C H I R U R G I I S Z C Z

Bardziej szczegółowo

Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści

Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 2 1 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 10. 5. 2 0 1 5 r. w s p r a w i e I n s t r u

Bardziej szczegółowo

ĺ ťĺ Ę ĺ Ą ĺ ĺ ĺ ĺ ĺ ĺĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ń ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ Ę í ĺ ĺ ź ĺ ĺ ĺ ĺ ĺ ĺ ĺ Ź Í ĺ ĺ ĺ Ą ĺ ĺ ĺ ĺ Ą ń Ĺ ĺ ĺ ĺ ĺ Ĺ ĺ ĺ ĺ ĺ ĺ í ĺ ć ń ĺ ť ŕ ő Í đ ń ťĺ ť ĺ í ĺ Í ĺ ď ń Ą Í ń Í Í ń ĺ ĺ í ĺ Í Ś Ł Ó Ś

Bardziej szczegółowo

Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu

Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu 24 mj 2012 r. Ankit solwnt Wyni I Sttus oowiązująy Symol Stron 1/5 ANKIETA ABSOLWENTA Losy zwoow solwntów PWSZ w Riorzu Dro Asolwntko, Droi Asolwni! HASŁO DO ANKIETY: Prosimy o okłn przzytni pytń i zznzni

Bardziej szczegółowo

Podstawa badania: VDE 0660 część 500/IEC 60 439 Przeprowadzone badanie: Znamionowa wytrzymałość na prąd udarowy I pk. Ip prąd zwarciowy udarowy [ka]

Podstawa badania: VDE 0660 część 500/IEC 60 439 Przeprowadzone badanie: Znamionowa wytrzymałość na prąd udarowy I pk. Ip prąd zwarciowy udarowy [ka] Rozził moy Wykrsy wytrzymłośi zwriowj wług EC Wykrsy wytrzymłośi zwriowj wług EN 439-1/EC 439-1 Bni typu zgoni z EN 439-1 W trki ni typu systmu przprowzn zostją nstępują ni systmów szyn ziorzyh Rittl jk

Bardziej szczegółowo

1 Wynagrodzenie Wykonawcy zostanie podzielone na równe raty płatne cykliczne za okresy 2 tygodniowe w. okresie obowiązywania umowy.

1 Wynagrodzenie Wykonawcy zostanie podzielone na równe raty płatne cykliczne za okresy 2 tygodniowe w. okresie obowiązywania umowy. W Z Ó R U M O W Y N r :: k J Bk 2 0 1 5 Z a ł» c z n i k n r 4 A z a w a r t a w G d y n i d n i a :::::: 2 0 1 5 r o k u p o m i d z y G d y s k i m C e n t r u m S p o r t u j e d n o s t k» b u d e

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 33 2 0 1 7 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o C e

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

OK O Z ၇嗇TZ PZK PZK ၇嗇၇嗇 STO၇嗇 K OK ၇嗇K n K ၇嗇 ၇嗇OSK SZ၇嗇Z၇嗇 SK ၇嗇 ၇嗇 S STO Z ၇嗇S K POKT T SP Z ၇嗇၇嗇၇嗇 OP ၇嗇O ᐗ嚗 SZ၇嗇Z၇嗇, uၷ升 g n c၇嗇 ၇嗇 KOZ ᐧ吧 ၇嗇၇嗇 o

OK O Z ၇嗇TZ PZK PZK ၇嗇၇嗇 STO၇嗇 K OK ၇嗇K n K ၇嗇 ၇嗇OSK SZ၇嗇Z၇嗇 SK ၇嗇 ၇嗇 S STO Z ၇嗇S K POKT T SP Z ၇嗇၇嗇၇嗇 OP ၇嗇O ᐗ嚗 SZ၇嗇Z၇嗇, uၷ升 g n c၇嗇 ၇嗇 KOZ ᐧ吧 ၇嗇၇嗇 o OK O Z ၇嗇TZ ၷ升 n bu o e 2 Okn e n ne, je no o e bą e oၷ升oną o ၷ升ᐧ吧c nn ku =, / 2K, ၷ升o ne koၷ升o e b ᐧ吧 3 Okuc ob o o e 4 Z ok enne t ၷ升 o ne, o ęne ၷ升ub et ၷ升o e, oc nko ne n kᐧ吧 ką ၷ升 k e o nego o ą u

Bardziej szczegółowo

q (s, z) = ( ) (λ T) ρc = q

q (s, z) = ( ) (λ T) ρc = q M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n

Bardziej szczegółowo

O F E R T A H o t e l Z A M E K R Y N * * * * T a m, g d z i e b łł k i t j e z i o r p r z e p l a t a s ił z s o c z y s t z i e l e n i t r a w, a r a d o s n e t r e l e p t a z m i a r o w y m s z

Bardziej szczegółowo

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H

Bardziej szczegółowo

Egzamin dla Aktuariuszy z 15 marca 2010 r. Matematyka Finansowa

Egzamin dla Aktuariuszy z 15 marca 2010 r. Matematyka Finansowa Egzm dl Akturuszy z 5 mrc 0 r. Mtmtyk Fsow Zd Krok : Ay koc roku yło co jmj ml K mus spłć rówość: 000000 50 000 K 50 000 000000 K Krok : Lczymy st kot koc roku zkłdjąc, Ŝ koc roku mmy ml 000000 50 5000

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów

Mechanika i wytrzymałość materiałów 1 k trmłość mtrłó Wkłd Nr 9 rktrstk gomtr fgur płsk momt stt, środk ężkoś fgur jgo, momt błdoś, głó trl os błdoś, głó trl momt błdoś, prom błdoś, trd Str Wdł Iżr j Robotk Ktdr Wtrmłoś, Zmę trłó Kostrukj

Bardziej szczegółowo

Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia

Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia Dś: l l ń C D O 0 Ol : Z l N 40 X C R : D l ś 0 R 3 ń 6 93 Oź l ę l ę -H O D ę ź R l ś l R C - O ś ę B l () N H śl ź ę - H l ę ć " Bl : () f l N l l ś 9! l B l R Dl ę R l f G ęś l ś ę ę Y ń (l ) ę f ęś

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y G C S D Z P I 2 7 1 0 1 12 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a ( u d o s t p n i e n i e ) a g r e g a t u p r» d o t w

Bardziej szczegółowo

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo

G d y n i a W y k o n a n i e p r a c p i e l g n a c y j- n o r e n o w a c y j n y c h n a o b i e k t a c h s p o r t o w y c h G C S o r a z d o s t a w a n a s i o n t r a w, n a w o z u i w i r u

Bardziej szczegółowo

T00o historyczne: Rozwój uk00adu okresowego pierwiastków 1 Storytelling Teaching Model: wiki.science-stories.org , Research Group

T00o historyczne: Rozwój uk00adu okresowego pierwiastków 1 Storytelling Teaching Model: wiki.science-stories.org , Research Group 13T 00 o h i s t o r y c z n Re o: z w ó j u k 00 a d u o k r e s o w e g o p i e r w i a s t k ó w W p r o w a d z e n i e I s t n i e j e w i e l e s u b s t a n c j i i m o g o n e r e a g o w a z e

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g

Bardziej szczegółowo

o d ro z m ia r u /p o w y ż e j 1 0 c m d ł c m śr e d n ic y 5 a ) o ś r e d n ic y 2,5 5 c m 5 b ) o śr e d n ic y 5 c m 1 0 c m 8

o d ro z m ia r u /p o w y ż e j 1 0 c m d ł c m śr e d n ic y 5 a ) o ś r e d n ic y 2,5 5 c m 5 b ) o śr e d n ic y 5 c m 1 0 c m 8 T A B E L A O C E N Y P R O C E N T O W E J T R W A Ł E G O U S Z C Z E R B K U N A Z D R O W IU R o d z a j u s z k o d z e ń c ia ła P r o c e n t t r w a łe g o u s z c z e r b k u n a z d r o w iu

Bardziej szczegółowo

Spędź czas w Dortmundzie korzystając z autobusu i kolei

Spędź czas w Dortmundzie korzystając z autobusu i kolei ęź z Dz zyją z Tä z D 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 00 0 0 0 z y D! D J z ł Dz yzyj j jją ł zy ć ó D j Pń zę yjy ż, y y zć! Dz żj ją zz zł D z żj jy zzó zy y jyz zó j ż zć Pń zł, jż Pń ży, z Pń zz

Bardziej szczegółowo

KARTA KURSU. Holistic SPA and Wellness treatments. Kod Punktacja ECTS* 2

KARTA KURSU. Holistic SPA and Wellness treatments. Kod Punktacja ECTS* 2 KARTA KURSU Nz Nz j. ng. Holistyczn zbigi Sp & Wllnss Holistic SPA nd Wllnss trtmnts Kod Punktcj ECTS* 2 Koordyntor mgr Agniszk Rymrczyk-Kpuścik Zspół dydktyczny mgr Agniszk Rymrczyk- Kpuścik Opis kursu

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 02 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A U s ł u g a d r u k o w a n i a d l a p o t r z e b G d y s k i e g o

Bardziej szczegółowo

d o b r y - 4 d s t 3, d o p 2, n d s t % % - d o b r y

d o b r y - 4 d s t 3, d o p 2, n d s t % % - d o b r y Z a ł c z n i k N1 r d o S t a t u t u Z e s p o ł u S z k ó ł C e n t r u m E d u k a c j i i m. I g n a c e g o Ł u k a s i e w i c z a W e w n t r z s z k o l n y S y s t e m O c e n i a n i a w Z e

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen

Bardziej szczegółowo

Ą ć ć ć ć Ź Ź ź ź Ę Ł Ń Ą ź Ł Ę Ę Ń Ń Ź Ź ć Ę Ę Ś ź ć ć ć ć Ź ź ć ć ć ć ć ć ć ć ć Ź ć ć ć ć ć Ź ć ć Ć ć Ę Ą Ś Ń Ń ź Ń Ź ź ć ć ć Ą Ą ć ź ź ć Ę ć ź Ą ć Ń Ę Ę Ę Ę ć Ą Ę ć ź Ó ć ć Ń Ę Ń Ń ć Ś Ą Ę ć Ś ć Ń

Bardziej szczegółowo

Mazurskie Centrum Kongresowo-Wypoczynkowe "Zamek - Ryn" Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax ,

Mazurskie Centrum Kongresowo-Wypoczynkowe Zamek - Ryn Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax , R E G U L A M I N X I I I O G Ó L N O P O L S K I K O N K U R S M Ł O D Y C H T A L E N T Ó W S Z T U K I K U L I N A R N E J l A r t d e l a c u i s i n e M a r t e l l 2 0 1 5 K o n k u r s j e s t n

Bardziej szczegółowo

Sprawozdanie finansowe za20l0 rok

Sprawozdanie finansowe za20l0 rok Krjowy Ruch kologiczno- Spolczny ul. Kuroptwy 9 05-500 Mysidlo NP123-10-32-147 RGON015563734 Sprwozdni finnsow z20l0 rok Urz4d Skrbowy w Pisczni Ul. Czjwicz 2/4 05-500 Pisczno Mysidlo, dn. 30.03.201 1r.

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp

Bardziej szczegółowo

Staruszek do wszystkiego

Staruszek do wszystkiego Struszek wszystkiego tekst; Jeremi Przybory muz.: Jerzy Wsowski rr. voc.: Andrzej Borzym ru- stek wszy j j St l St ru- szek d wszy St ru- szek wszy Tum tu. ttt tu tu utkie-go jest inie-z-wo-dnv wsku#ch.

Bardziej szczegółowo

Shimmy szuja. Jerzy Wasowski arr voc. Andrzej Borzym. O! Szu-ja! # œ œnœnœ. Da ba da, da ba da, da ba da ba da ba da, da ba da, da ba dam

Shimmy szuja. Jerzy Wasowski arr voc. Andrzej Borzym. O! Szu-ja! # œ œnœnœ. Da ba da, da ba da, da ba da ba da ba da, da ba da, da ba dam Shimmy szuj Jeremi Przybor Jerzy Wsoski rr voc Andrzej Borzym Soprno Soprno Alto Tenor h = 75 O! Szu-j! N-o-m- mił, n-truł C # b # nn C D b, b, b b b, b, b m C # b b n b # D b, b, b, b m # Bss C m m m

Bardziej szczegółowo

Schematy zastępcze tranzystorów

Schematy zastępcze tranzystorów haty zastępz tanzystoów kst tn pztawa kótko zasady spoządzana odl zastępzyh dla tanzystoów bpolanyh oaz unpolanyh Nalży paętać, ż są to odl ałosynałow, a wę słuszn tylko wyłązn pzy założnu, ż dany lnt

Bardziej szczegółowo

啇c go b kt ᆗ匷 y l y s l g y l. P ysł ᆗ匷 ᆗ匷 s ob kt b o l go ᆗ匷 l. P ysł ᆗ匷ᆗ匷.. ᆗ匷ᆗ匷ᆗ匷 ᆗ匷ᆗ匷ᆗ匷ᆗ匷 啇c go Pᆗ匷ᆗ匷 ᆗ匷 ᆗ匷 s 啇c go l. ᆗ匷. 呷b s ᆗ匷ᆗ匷 ᆗ匷2-500 ᆗ匷 s o ot o co 啇c go ᆗ匷 P ó O g Z I s y TECHPLAN ᆗ匷 ᆗ匷

Bardziej szczegółowo

3 KOLĘDY POLSKIE (wiązanka kolędowa)

3 KOLĘDY POLSKIE (wiązanka kolędowa) orno lto enor ss V riste 4 3 e trnqillo qè᪼ 4 3 4 3 4 3 3 KOLĘDY OLKIE (wiąznk kolędow) # e zs m l sie ńki, le ży # Kowlewski 9 # # # # n V # # ł cze z zim n, nie d # ł cze z zim n, # # nie d wśród st

Bardziej szczegółowo

Kawa. herbata? czy WSTĘP HERBATY CZARNE. Eksponuj sezonowe produk

Kawa. herbata? czy WSTĘP HERBATY CZARNE. Eksponuj sezonowe produk WSTĘP HERBATY CZARNE KLASYKA NA PÓŁCE Hrt zr ę sgt śró hrt (70% lś srzż hrt) Mż rzgtć z r różrh sh ltg z lrh ó ś Pls K z hrt? Dż zl z ł zr? C r lzg? Pls r tór zz ę zló ż hr Wśró głóh ó sęg ę sę zą łśś

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia

Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y

Bardziej szczegółowo

5ilAtlzarcielc 6wipro jekt6rtrealizowanycn-z

5ilAtlzarcielc 6wipro jekt6rtrealizowanycn-z mn mn mn 52 811 MAC pwzn z k PzAku Ku 2 / fy ylln n 0 \zn Ku Rnln lzb bhunkw w Wzwl wwzw 1 wu /zwzku 1 " nmn,/:zwzku lk MAC Wyzzlnn A. CH A1+A2 A2. hy mjkw B. WAT B+82 127 84,7 82. Wyl mjkw. HmwZxulT AB

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie

Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie Jak zwększyć fktywność radość z wykonywanj pracy? Motywacja do pracy - badan, szkoln czym sę zajmujmy? szkolna, symulacj Komunkacja, współpraca Cągł doskonaln Zarządzan zspołm Rozwój talntów motywacja

Bardziej szczegółowo

PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH

PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X P R O J E K T I W A L I D A C J A U R Z Ą D Z E P O M I A R O W Y C H a S I Y W L I N I E I K Ą T A W Y C H Y L E N I A L I

Bardziej szczegółowo

INFORMACJA SYGNALNA JAKOŚÖ PRODUKCJI PRZEMYSŁOWEJ # * PRZEDSIĘBIORSTW GOSPODARKI USPOŁECZNIONEJ

INFORMACJA SYGNALNA JAKOŚÖ PRODUKCJI PRZEMYSŁOWEJ # * PRZEDSIĘBIORSTW GOSPODARKI USPOŁECZNIONEJ WOJEWÓDZKI URZĄD STATYSTYCZNY Ne do pulkcj Egz. Nr.-3 INFORMACJA SYGNALNA Włrzych, dn 1989-05-22 X JAKOŚÖ PRODUKCJI PRZEMYSŁOWEJ * PRZEDSIĘBIORSTW GOSPODARKI USPOŁECZNIONEJ W 1988 ROKU SPIS TREŚCI UWAGI

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 2

KARTA KURSU. Kod Punktacja ECTS* 2 KARTA KURSU Nz Nz j. ng. Odno biologiczn mdycyn sttyczn Wllnss nd sttic mdicin Kod Punktcj ECTS* 2 Koordyntor Mgr Agt Romńsk - Kistl Zspół dydktyczny Mgr Agt Romńsk-Kistl Opis kursu (cl ksztłcni) Clm ksztłcni

Bardziej szczegółowo

Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej

Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej Poęc modlu Modl s o uproszczo przdsw rzczwsośc Lwrc R Kl: Modl s o schmcz uproszcz pomąc so sp w clu wś wwęrzgo dzł form lub osruc brdz somplowgo mchzmu Główą zlą modlu s możlwość go bzpczgo przprowdz

Bardziej szczegółowo

WARSZTATY RCK DLA DZIECI I MŁODZIEŻY ferie zimowe 2015. Nazwa warsztatu Prowadzący Data Wiek Koszt od 1 Miejsce uczestnika.

WARSZTATY RCK DLA DZIECI I MŁODZIEŻY ferie zimowe 2015. Nazwa warsztatu Prowadzący Data Wiek Koszt od 1 Miejsce uczestnika. WARSZTATY RCK DLA DZIECI I MŁODZIEŻY fere zmowe L p Nzw wrszttu Prowdzący Dt Wek Koszt od 1 Mejsce uczestnk 2 7 lutego 1 Półkolone z rozrywką w progrme mn zjęc plstyczne, muzyczne, sportowe, gry zbwy ntegrcyjne,

Bardziej szczegółowo

Nadokreślony Układ Równań

Nadokreślony Układ Równań Mchł Pzos Istytut echolog Iforcyych Iżyer Ląoe Wyzł Iżyer Ląoe Poltech Kros Noreśloy Uł Róń Z oreśloy ułe loych róń lgebrczych y o czye sytuc, gy lczb loo ezleżych róń est ęsz ż yr przestrze (lczb zeych).

Bardziej szczegółowo

S T A T U T. s z k ó ł ( D z. U. N r 3 5, p o z. 2 2 2 ),

S T A T U T. s z k ó ł ( D z. U. N r 3 5, p o z. 2 2 2 ), S T A T U T Z e s p o ł u S z k ó ł C e n t r u m E d u k a c j i i m. I g n a c e g o Ł u k a s i e w i c z a 1 Z e s p ó ł S z k ó ł C e n t r u m E d u k a c j i i m. I g n a c e g o Ł u k a s i e w

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA. Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do

Bardziej szczegółowo

przedsięwzięcia kształceniowe i związane z pracą z kadrą

przedsięwzięcia kształceniowe i związane z pracą z kadrą S P R A W O Z D A N I E Z R E A L I Z A C J I P L A N U P R A C Y C H O R Ą G W I D O L N O 5 L Ą 5 K I E J 2 0 1 4 W 2 0 1 4 r o k u z a p l a n o w a n e b y ł y n a s t ę p u j ą c e p r z e d s i ę

Bardziej szczegółowo

I 3 + d l a : B E, C H, C Y, C Z, ES, F R, G B, G R, I E, I T, L T, L U V, P T, S K, S I

I 3 + d l a : B E, C H, C Y, C Z, ES, F R, G B, G R, I E, I T, L T, L U V, P T, S K, S I M G 6 6 5 v 1. 2 0 1 5 G R I L L G A Z O W Y T R Ó J P A L N I K O W Y M G 6 6 5 I N S T R U K C J A U 7 Y T K O W A N I A I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost

Bardziej szczegółowo

Freddy's świetnie się w nim orientują, przyjmują obcojęzyczne określenia,

Freddy's świetnie się w nim orientują, przyjmują obcojęzyczne określenia, S Fv N F' Pż ló T ż ó W Pl ż u N l uś l óż N l G l S l ś óż Tl l l l f l ż u ż ż ć uż F Fv N F' ś u u śl óu ć l Z Pul Gu l Pul Gu P Fl ż l T f u l ś ( 2014) u śl u G ż lu l ś u uż u Tu u: T F Fl T Offl

Bardziej szczegółowo

ucnwala NR XLIV/327/13 RADY MIEJSKIEJ W SKWIERZYNIE z dnia 26 września 2013 r.

ucnwala NR XLIV/327/13 RADY MIEJSKIEJ W SKWIERZYNIE z dnia 26 września 2013 r. ucnwala NR XLV/327/13 RADY MEJSKEJ W SKWERZYNE z dnia 26 września 2013 r. w sprawie przystąpieniado sporządzenia zmian miejscowego planu zagospodarowania przestrzennego miasta Skwierzyna Na podstawie art.

Bardziej szczegółowo

Ł ń ń ć ź Ą ć Ń ć Źń Ą ć ź ź ń ź ń ń ń Ą ń ź Ą ć Ą ń Ą ń ń Źń ń ć ń ń ć ń ć ń ź ź ź ź ć Źń ń Ń ć ć ć ń ć ń ź ń ć Ł ć ć Ł Ń ć Ń ć ń ć ć ć ź ć ć ńń ź ź ć ń ć ć Źń ń ź ć ń ń źć ć ń ć ń ć ć ń ń ć ć ź ń ć ć

Bardziej szczegółowo

Niniejsza wersja jest wersją elektroniczną Krajowej Oceny Technicznej CNBOP-PIB nr CNBOP-PIB-KOT-2017/ wydanie 1, wydanej w formie

Niniejsza wersja jest wersją elektroniczną Krajowej Oceny Technicznej CNBOP-PIB nr CNBOP-PIB-KOT-2017/ wydanie 1, wydanej w formie ń ń ż Ä Ä ż ń Ę Ę ľ Ä ŕ ż ń ř ő ő Ę ż ż ń Ę Ź ř ý ż É ż Ę ń ń ń Ę ľ ż Ż ń ż ż ż Ę ż ć ć ý ż Ę ż ż ý ć Ę ż ć ć ż Ę Ę Ę ż ż ć ź Ą Ł Ł Ł Ł ľ Ł Ł Ł ź ý ľ ż Ł ż Ł ń ý ż ż Ł Ł ý ľ Ł ż Ł Á Ż Ż Ł Ę Ź ż ż ż Á ż

Bardziej szczegółowo

I V. N a d z ó r... 6

I V. N a d z ó r... 6 C h o r ą g i e w D o l n o l ą s k a Z H P Z a ł ą c z n i k 1 d o U c h w a ł y n r 2 2. / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 0 8. 0 62. 0 1 5 r. P

Bardziej szczegółowo

REGULAMIN KONKURSU Strzel swoją mistrzowską fotę (dalej: Regulamin ) 1. POSTANOWIENIA OGÓLNE

REGULAMIN KONKURSU Strzel swoją mistrzowską fotę (dalej: Regulamin ) 1. POSTANOWIENIA OGÓLNE REGULAMIN KONKURSU Strzel swoją mistrzowską fotę (dalej: Regulamin ) 1. POSTANOWIENIA OGÓLNE 1.1. Organizatorem konkursu Strzel swoją mistrzowską fotę, zwanego dalej Konkursem, jest Brand Republic s.c.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Instrukcja zarządzania systemem informatycznym przetwarzającym dane osobowe w Chorągwi Dolnośląskiej ZHP Spis treści

Instrukcja zarządzania systemem informatycznym przetwarzającym dane osobowe w Chorągwi Dolnośląskiej ZHP Spis treści C h o r ą g i e w D o l n o l ą s k a Z H P Z a ł ą c z n i k 5 d o U c h w a ł y n r 2 2 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 0 8. 0 62. 0 1 5 r. I n

Bardziej szczegółowo

ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9

ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9 ELEMENTY PROSTOKĄTNE nomcj tcniczn 1 Knły 2 Koln 3 Tójniki 5 Oszki Czwóniki 7 Pzjści 8 ELEMENTY DACHOWE Postwy cow 9 Wyzutni 11 Czpni powitz 13 Wywitzki 15 Koln czpn 15 NOX STANLESS STEEL 58-512 St Kminic

Bardziej szczegółowo

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury. Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.

Bardziej szczegółowo

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU ży Oły Wł, ęy Oł Wł VETIGO MGET JCZEWSK UL JCKOWSKIEGO - WOCŁW TEL/FX l: -l: v@l OJEKT DOCELOWEJ OGIZCJI UCHU y: I Ząy: O: Ll: ///W/ G Wł l y T - - Wł ż Oły ęy Oł Wł Wó: lślą, : Wł, G: Wł, ż Oły T: ży

Bardziej szczegółowo

ť Ü Ĺ ä Ů Ú Í Í Ť ř Ě Í ü Í ń đ ń ď ď ń Ż Ł í á í É Ĺ Ü Í Ť Ĺ Ĺ ű Í Í ť Í ŕ Ĺ Í Ü Ü ü Ż Ż ń ť Ą Ą ŕ Ą ń ń Ż ń Ż ń ý Ż ń í Á É É Ýá Í ä í Ĺ Ĺ í Í ů ť Ĺ ť Ź Ť Ť Ł ń ź Ź ń ń ć ń ć ń Ż í ť ń Ż Ĺ ŕ í Ú íí ť

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

g sp e p z. z g ej zczec e ł p esz ch 吇 s p e 吇 zece 吇 cz ł e 吇 吇 吇 吇 吇 ch 吇 吇 s zczec z ł 吇 sp ej 吇ch ᖧ啧 s 70-54 吇 zczec p. j ej 1 ᐧ北 t h. J k Ry h k Sz z, m z 20 2. 2 R ᖧ啧 1. s ęp.. N z s z mó.2. P z

Bardziej szczegółowo

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3) ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne

Bardziej szczegółowo

, , , , 0

, , , , 0 S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę

Bardziej szczegółowo

Przekształcenia automatów skończonych

Przekształcenia automatów skończonych Przeksztłceni utomtów skończonych Teori utomtów i języków formlnych Dr inŝ. Jnusz Mjewski Ktedr Informtyki Konstrukcj utomtu skończonego n podstwie wyrŝeni regulrnego (lgorytm Thompson) Wejście: wyrŝenie

Bardziej szczegółowo