Szeregowanie zada« Wykªad nr 4. dr Hanna Furma«czyk. 21 marca 2013

Wielkość: px
Rozpocząć pokaz od strony:

Download "Szeregowanie zada« Wykªad nr 4. dr Hanna Furma«czyk. 21 marca 2013"

Transkrypt

1 Wykªad nr 4 21 marca 2013

2 Minimalizacja ª cznego czasu zako«czenia zadania C j. Zadania niezale»ne krótkie zadania umieszczamy na pocz tku - reguªa SPT (ang. shortest Processing Time)

3 Minimalizacja ª cznego czasu zako«czenia zadania C j. Zadania niezale»ne krótkie zadania umieszczamy na pocz tku - reguªa SPT (ang. shortest Processing Time) trzeba jeszcze znale¹ optymalne przypisanie zada«do procesorów

4 Alg. optymalny - P C j, P pmtn C j (O(n log n)) 1 Przyjmij,»e liczba zada«dzieli si przez m (ew. wprowad¹ zadania puste).

5 Alg. optymalny - P C j, P pmtn C j (O(n log n)) 1 Przyjmij,»e liczba zada«dzieli si przez m (ew. wprowad¹ zadania puste). 2 Uporz dkuj je wg SPT.

6 Alg. optymalny - P C j, P pmtn C j (O(n log n)) 1 Przyjmij,»e liczba zada«dzieli si przez m (ew. wprowad¹ zadania puste). 2 Uporz dkuj je wg SPT. 3 Przypisuj kolejne m-ki zada«do maszyn (dowolnie).

7 Alg. optymalny - P C j, P pmtn C j (O(n log n)) 1 Przyjmij,»e liczba zada«dzieli si przez m (ew. wprowad¹ zadania puste). 2 Uporz dkuj je wg SPT. 3 Przypisuj kolejne m-ki zada«do maszyn (dowolnie). Przykªad: m = 2, n = 5, p = (2, 5, 3, 1, 3)

8 Alg. optymalny - P C j, P pmtn C j (O(n log n)) 1 Przyjmij,»e liczba zada«dzieli si przez m (ew. wprowad¹ zadania puste). 2 Uporz dkuj je wg SPT. 3 Przypisuj kolejne m-ki zada«do maszyn (dowolnie). Przykªad: m = 2, n = 5, p = (2, 5, 3, 1, 3) SPT : Z 0 Z 4 Z 1 Z 3 Z 5 Z 2 p i

9 Alg. optymalny - P C j, P pmtn C j (O(n log n)) 1 Przyjmij,»e liczba zada«dzieli si przez m (ew. wprowad¹ zadania puste). 2 Uporz dkuj je wg SPT. 3 Przypisuj kolejne m-ki zada«do maszyn (dowolnie). Przykªad: m = 2, n = 5, p = (2, 5, 3, 1, 3) SPT : Z 0 Z 4 Z 1 Z 3 Z 5 Z 2 p i M 1 Z 4 Z 1 Z 2 M 2 Z 3 Z

10 Alg. optymalny - P C j, P pmtn C j (O(n log n)) 1 Przyjmij,»e liczba zada«dzieli si przez m (ew. wprowad¹ zadania puste). 2 Uporz dkuj je wg SPT. 3 Przypisuj kolejne m-ki zada«do maszyn (dowolnie). Przykªad: m = 2, n = 5, p = (2, 5, 3, 1, 3) SPT : Z 0 Z 4 Z 1 Z 3 Z 5 Z 2 p i M 1 Z 4 Z 1 Z 2 M 2 Z 3 Z M 1 Z 4 Z 3 Z 2 M 2 Z 1 Z

11 Alg. optymalny - P C j, P pmtn C j (O(n log n)) 1 Przyjmij,»e liczba zada«dzieli si przez m (ew. wprowad¹ zadania puste). 2 Uporz dkuj je wg SPT. 3 Przypisuj kolejne m-ki zada«do maszyn (dowolnie). Przykªad: m = 2, n = 5, p = (2, 5, 3, 1, 3) SPT : Z 0 Z 4 Z 1 Z 3 Z 5 Z 2 p i M 1 Z 4 Z 1 Z 2 M 2 Z 3 Z M 1 Z 4 Z 3 Z 2 Cj = 21 M 2 Z 1 Z

12 Minimalizacja ª cznego wa»onego czasu zako«czenia zadania wj C j. Zadania niezale»ne, niepodzielne Problem P2 w j C j (P2 pmtn w j C j ) jest NP-trudny.

13 Minimalizacja ª cznego wa»onego czasu zako«czenia zadania wj C j. Zadania niezale»ne, niepodzielne Problem P2 w j C j (P2 pmtn w j C j ) jest NP-trudny. 1 w j C j - alg. optymalny O(n log n) Reguªa Smitha - uogólnienie SPT: ustaw zadania w kolejno±ci niemalej cych p j /w j

14 Minimalizacja maksymalnego opó¹nienia - maszyny równolegªe Aby opó¹nienie L i = C i d i zadania Z i w harmonogramie byªo okre±lone, zadania musz by wyposa»one w oczekiwane terminy zako«czenia d i.

15 Minimalizacja maksymalnego opó¹nienia - maszyny równolegªe Aby opó¹nienie L i = C i d i zadania Z i w harmonogramie byªo okre±lone, zadania musz by wyposa»one w oczekiwane terminy zako«czenia d i. Spó¹nienie zadania T i = max{l i, 0} nie bierze pod uwag wykonania si zada«przed terminem.

16 Minimalizacja maksymalnego opó¹nienia - maszyny równolegªe Aby opó¹nienie L i = C i d i zadania Z i w harmonogramie byªo okre±lone, zadania musz by wyposa»one w oczekiwane terminy zako«czenia d i. Spó¹nienie zadania T i = max{l i, 0} nie bierze pod uwag wykonania si zada«przed terminem. Wniosek: T max = max{l max, 0}. Dlatego kryterium T max nie rozwa»amy osobno harmonogram L max -optymalny jest te» T max -optymalny.

17 Minimalizacja maksymalnego opó¹nienia - maszyny równolegªe Aby opó¹nienie L i = C i d i zadania Z i w harmonogramie byªo okre±lone, zadania musz by wyposa»one w oczekiwane terminy zako«czenia d i. Spó¹nienie zadania T i = max{l i, 0} nie bierze pod uwag wykonania si zada«przed terminem. Wniosek: T max = max{l max, 0}. Dlatego kryterium T max nie rozwa»amy osobno harmonogram L max -optymalny jest te» T max -optymalny. kryterium L max jest uogólnieniem C max, zagadnienia NPtrudne dla C max pozostan takie w przypadku L max

18 maj c do wykonania wiele prac z ró»nymi oczekiwanymi terminami zako«czenia spó¹nimy si najmniej zaczynaj c zawsze od najpilniejszej pracy,

19 maj c do wykonania wiele prac z ró»nymi oczekiwanymi terminami zako«czenia spó¹nimy si najmniej zaczynaj c zawsze od najpilniejszej pracy, inaczej: w ró»nych wariantach stosujemy reguª EDD (ang. Earliest Due Date) wybieraj zadania Z j w kolejno±ci niemalej cych oczekiwanych terminów zako«czenia d j

20 maj c do wykonania wiele prac z ró»nymi oczekiwanymi terminami zako«czenia spó¹nimy si najmniej zaczynaj c zawsze od najpilniejszej pracy, inaczej: w ró»nych wariantach stosujemy reguª EDD (ang. Earliest Due Date) wybieraj zadania Z j w kolejno±ci niemalej cych oczekiwanych terminów zako«czenia d j problem zada«niepodzielnych na jednej maszynie (1 L max ) rozwi zuje wªa±nie szeregowanie wedªug EDD.

21 1 r i, pmtn L max Algorytm Liu O(n 2 ) - oparty na regule EDD 1 Spo±ród dost pnych zada«przydziel maszyn temu, które ma najmniejszy wymagany termin zako«czenia. 2 Je±li zadanie zostaªo zako«czone lub przybyªo nowe - wró do punktu 1.

22 1 r i, pmtn L max Algorytm Liu O(n 2 ) - oparty na regule EDD 1 Spo±ród dost pnych zada«przydziel maszyn temu, które ma najmniejszy wymagany termin zako«czenia. 2 Je±li zadanie zostaªo zako«czone lub przybyªo nowe - wró do punktu 1. Przykªad - osobne slajdy

23 Minimalizacja L max - zadania niezale»ne, niepodzielne Niektóre przypadki NPtrudne: P2 L max, 1 r j L max Przypadki wielomianowe: zadania jednostkowe: P p j = 1, r j L max, Q p j = 1 L max 1 L max (wg EDD) - rozw. optymalne

24 Minimalizacja L max - zadania zale»ne, podzielne 1 pmtn, prec, r j L max - zmodykowany alg. Liu O(n 2 ) 1 Okre±l zmodykowane terminy zako«czenia zada«: d j = min{d j : min{d i : Z j Z i }} 2 Szereguj wedªug EDD dla nowych d j z wywªaszczaniem zadania, gdy pojawia si nowe, wolne, z mniejszym zmodykowanym terminem zako«czenia 3 Powtarzaj 2 a» do uszeregowania wszystkich zada«.

25 Minimalizacja L max - zadania zale»ne, podzielne 1 pmtn, prec, r j L max - zmodykowany alg. Liu O(n 2 ) 1 Okre±l zmodykowane terminy zako«czenia zada«: d j = min{d j : min{d i : Z j Z i }} 2 Szereguj wedªug EDD dla nowych d j z wywªaszczaniem zadania, gdy pojawia si nowe, wolne, z mniejszym zmodykowanym terminem zako«czenia 3 Powtarzaj 2 a» do uszeregowania wszystkich zada«. Przykªad - osobne slajdy.

26 Minimalizacja L max - zadania zale»ne, niepodzielne Troch faktów Problem P p j = 1, out tree L max jest NP-trudny.

27 Minimalizacja L max - zadania zale»ne, niepodzielne Troch faktów Problem P p j = 1, out tree L max jest NP-trudny. algorytm wielomianowy dla P2 prec, p j = 1 L max

28 Minimalizacja L max - zadania zale»ne, niepodzielne Troch faktów Problem P p j = 1, out tree L max jest NP-trudny. algorytm wielomianowy dla P2 prec, p j = 1 L max algorytm Bruckera dla P p j = 1, in tree L max O(n log n)

29 Algorytm Bruckera - P p j = 1, in tree L max next(j) - bezpo±redni nast pnik zadania Z j 1 wylicz zmodykowane terminy zako«czenia zada«: d root = 1 d root d k = max{1 + d next(k), 1 d k} 2 szereguj zadania dostepne podobnie jak w alg. Hu (tu: lista tworzona jest wg nierosn cych warto±ci d j ) Przykªad - osobne slajdy

30 na procesorach dedykowanych - kolejne wykªady

Szeregowanie zada« Przedmiot fakultatywny 15h wykªadu + 15h wicze« dr Hanna Furma«czyk. 7 pa¹dziernika 2013

Szeregowanie zada« Przedmiot fakultatywny 15h wykªadu + 15h wicze« dr Hanna Furma«czyk. 7 pa¹dziernika 2013 Przedmiot fakultatywny 15h wykªadu + 15h wicze«7 pa¹dziernika 2013 Zasady zaliczenia 1 wiczenia (ocena): kolokwium, zadania dodatkowe (implementacje algorytmów), praca na wiczeniach. 2 Wykªad (zal): zaliczone

Bardziej szczegółowo

Szeregowanie zada« Wykªad nr 5. dr Hanna Furma«czyk. 4 kwietnia 2013

Szeregowanie zada« Wykªad nr 5. dr Hanna Furma«czyk. 4 kwietnia 2013 Wykªad nr 5 4 kwietnia 2013 Procesory dedykowane Przypomnienie: zadania s podzielone na operacje (zadanie Z j skªada si z operacji O ij do wykonania na maszynach M i, o dªugo±ciach czasowych p ij ); zadanie

Bardziej szczegółowo

Szeregowanie zadań. Wykład nr 3. dr Hanna Furmańczyk

Szeregowanie zadań. Wykład nr 3. dr Hanna Furmańczyk Wykład nr 3 27.10.2014 Procesory identyczne, zadania niezależne, podzielne: P pmtn C max Algorytm McNaughtona 1 Wylicz optymalną długość C max = max{ j=1,...,n p j/m, max j=1,...,n p j }, 2 Szereguj kolejno

Bardziej szczegółowo

Szeregowanie zada« Wykªad nr 6. dr Hanna Furma«czyk. 11 kwietnia 2013

Szeregowanie zada« Wykªad nr 6. dr Hanna Furma«czyk. 11 kwietnia 2013 Wykªad nr 6 11 kwietnia 2013 System otwarty - open shop O3 C max Problem O3 C max jest NP-trudny. System otwarty - open shop O3 C max Problem O3 C max jest NP-trudny. Dowód Redukcja PP O3 C max : bierzemy

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

Listy i operacje pytania

Listy i operacje pytania Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Przykªady problemów optymalizacji kombinatorycznej

Przykªady problemów optymalizacji kombinatorycznej Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:

Bardziej szczegółowo

Analiza wydajno±ci serwera openldap

Analiza wydajno±ci serwera openldap Analiza wydajno±ci serwera openldap Autor: Tomasz Kowal 13 listopada 2003 Wst p Jako narz dzie testowe do pomiarów wydajno±ci i oceny konguracji serwera openldap wykorzystano pakiet DirectoryMark w wersji

Bardziej szczegółowo

Harmonogramowanie produkcji

Harmonogramowanie produkcji Harmonogramowanie produkcji Harmonogramowanie produkcji jest ściśle związane z planowaniem produkcji. Polega na: rozłożeniu w czasie przydziału zasobów do zleceń produkcyjnych, podziale zleceń na partie

Bardziej szczegółowo

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Zadanie 1: Bar Programowanie wspóªbie»ne wiczenia 6 monitory cz. 2 Napisz monitor Bar synchronizuj cy prac barmana obsªuguj cego klientów przy kolistym barze z N stoªkami. Ka»dy klient realizuje nast

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

ALGORYTMIKA Wprowadzenie do algorytmów

ALGORYTMIKA Wprowadzenie do algorytmów ALGORYTMIKA Wprowadzenie do algorytmów Popularne denicje algorytmu przepis opisuj cy krok po kroku rozwi zanie problemu lub osi gni cie jakiego± celu. (M. Sysªo, Algorytmy, ±ci±lejszej denicji w ksi»ce

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz

Bardziej szczegółowo

Szeregowanie zadań. Wykład nr 2. dr Hanna Furmańczyk. 12 października 2014

Szeregowanie zadań. Wykład nr 2. dr Hanna Furmańczyk. 12 października 2014 Wykład nr 2 12 października 2014 Złożoność problemów szeregowania zadań Problemy: wielomianowe NP-trudne otwarte Złożoność problemów szeregowania zadań Problemy: wielomianowe NP-trudne otwarte Jak sobie

Bardziej szczegółowo

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej wiczenia 13 Metoda ±cie»ki krytycznej Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Plan wicze«1 Przykªad: ubieranie choinki 2 3 Programowanie liniowe w analizie czasowej i czasowo-kosztowej projektu

Bardziej szczegółowo

Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne.

Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne. Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne. IIUWr. II rok informatyki. Przygotowaª: Krzysztof Lory± 1 Schemat ogólny. Typowe zadanie rozwi zywane metod zachªann ma charakter optymalizacyjny.

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T )

Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T ) Joanna Berlińska Algorytmika w projektowaniu systemów - ćwiczenia 1 1 Problem 1 prec f max 1 procesor (ich zbiór oznaczamy przez T ) czas wykonania zadania T j wynosi p j z zadaniem T j związana jest niemalejąca

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

Architektury systemów komputerowych

Architektury systemów komputerowych zadanie: 1 2 3 4 5 6 7 Suma maks: 12 12 12 18 18 10 18 100 Imi i nazwisko: punkty: Architektury systemów komputerowych Egzamin, wersja A 6.II.2013 Do zdobycia jest 100 punktów. Przewidywana skala ocen:

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

O pewnym zadaniu olimpijskim

O pewnym zadaniu olimpijskim O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby

Bardziej szczegółowo

Harmonogramowanie czynności (1)

Harmonogramowanie czynności (1) Harmonogramowanie czynności (1) dr inż. Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska Październik 2011 dr inż. Mariusz Kaleta Elementy zarządzania produkcją 1 / 50

Bardziej szczegółowo

Lekcja 12 - POMOCNICY

Lekcja 12 - POMOCNICY Lekcja 12 - POMOCNICY 1 Pomocnicy Pomocnicy, jak sama nazwa wskazuje, pomagaj Baltiemu w programach wykonuj c cz ± czynno±ci. S oni szczególnie pomocni, gdy chcemy ci g polece«wykona kilka razy w programie.

Bardziej szczegółowo

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska Kombinatoryka Magdalena Lema«ska Zasady zaliczenia przedmiotu Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to 100 punktów = 100 procent. Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów

Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów 1 Wst p Przypomnijmy,»e komputer skªada si z procesora, pami ci, systemu wej±cia-wyj±cia oraz po- ª cze«mi dzy nimi. W procesorze mo»emy

Bardziej szczegółowo

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki 1 Zadania na wiczenia nr 3 - Elementy kombinatoryki Zad. 1. Ile istnieje ró»nych liczb czterocyfrowych zakªadaj c,»e cyfry nie powtarzaj si a

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Minimalne drzewa rozpinaj ce

Minimalne drzewa rozpinaj ce y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo

Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Spis tre±ci Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci Spis tre±ci 1 2 3 4 5 Spis tre±ci Spis tre±ci 1 2 3 4

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poni»sze zadania s wyborem zada«ze Wst pu do Informatyki z egzaminów jakie przeprowadziªem w ci gu ostatnich lat. Ponadto doª czyªem szereg zada«, które pojawiaªy si

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 126 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent

Bardziej szczegółowo

Interpolacja Lagrange'a, bazy wielomianów

Interpolacja Lagrange'a, bazy wielomianów Rozdziaª 4 Interpolacja Lagrange'a, bazy wielomianów W tym rozdziale zajmiemy si interpolacj wielomianow. Zadanie interpolacji wielomianowej polega na znalezieniu wielomianu stopnia nie wi kszego od n,

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Rozdziaª 13. Przykªadowe projekty zaliczeniowe

Rozdziaª 13. Przykªadowe projekty zaliczeniowe Rozdziaª 13 Przykªadowe projekty zaliczeniowe W tej cz ±ci skryptu przedstawimy przykªady projektów na zaliczenia zaj z laboratorium komputerowego z matematyki obliczeniowej. Projekty mo»na potraktowa

Bardziej szczegółowo

EDUKARIS - O±rodek Ksztaªcenia

EDUKARIS - O±rodek Ksztaªcenia - O±rodek Ksztaªcenia Zabrania si kopiowania i rozpowszechniania niniejszego regulaminu przez inne podmioty oraz wykorzystywania go w dziaªalno±ci innych podmiotów. Autor regulaminu zastrzega do niego

Bardziej szczegółowo

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym. ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów

Bardziej szczegółowo

P tle. Rozdziaª Wst p. 4.2 P tle P tla for(...);

P tle. Rozdziaª Wst p. 4.2 P tle P tla for(...); Rozdziaª 4 P tle 4.1 Wst p Niniejszy rozdziaª zawiera opis p tli w j zyku C, wraz z przykªadowymi programami oraz ich obja±nieniem. 4.2 P tle P tla to element j zyka programowania, pozwalaj cy na wielokrotne,

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

ZADANIA. Maciej Zakarczemny

ZADANIA. Maciej Zakarczemny ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1

Bardziej szczegółowo

Rozwi zania klasycznych problemów w Rendezvous

Rozwi zania klasycznych problemów w Rendezvous Cz ± I Rozwi zania klasycznych problemów w Rendezvous 1 Producenci i konsumenci Na pocz tek rozwa»my wersj z jednym producentem i jednym konsumentem, dziaªaj cymi w niesko«czonych p tlach. Mechanizm komunikacji

Bardziej szczegółowo

Wyszukiwanie. Algorytmy i Struktury Danych. (c) Marcin Sydow. Dziel i rz d¹. Wyszukiwanie. Statystyki pozycyjne. Podsumowanie

Wyszukiwanie. Algorytmy i Struktury Danych. (c) Marcin Sydow. Dziel i rz d¹. Wyszukiwanie. Statystyki pozycyjne. Podsumowanie Zawarto± tego wykªadu: reguªa dziel i rz d¹ wyszukiwanie algorytm wyszukiwania binarnego statystyki 2. najmniejsza warto± w ci gu (algorytm turniejowy - idea) algorytm (wyszukiwanie k-tej statystyki j)

Bardziej szczegółowo

wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe

wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe 1 Wprowadzenie 1.1 rodowisko programistyczne NetBeans https://netbeans.org/ 1.2 Dokumentacja j zyka Java https://docs.oracle.com/javase/8/docs/api/

Bardziej szczegółowo

Teoria grafów i sieci 1 / 58

Teoria grafów i sieci 1 / 58 Teoria grafów i sieci 1 / 58 Literatura 1 B.Korte, J.Vygen, Combinatorial optimization 2 D.Jungnickel, Graphs, Networks and Algorithms 3 M.Sysªo, N.Deo Metody optymalizacji dyskretnej z przykªadami w Turbo

Bardziej szczegółowo

Ekonometria. wiczenia 10 / 11 / 12: Badania operacyjne. Programowanie liniowe / Typy zada«optymalizacyjnych / Analiza pooptymalizacyjna / SOLVER

Ekonometria. wiczenia 10 / 11 / 12: Badania operacyjne. Programowanie liniowe / Typy zada«optymalizacyjnych / Analiza pooptymalizacyjna / SOLVER Ekonometria wiczenia 10 / 11 / 12: Badania operacyjne Programowanie liniowe / Typy zada«optymalizacyjnych / Analiza pooptymalizacyjna / SOLVER Karolina Konopczak Katedra Ekonomii Stosowanej Plan wicze«badania

Bardziej szczegółowo

STRUKTURY DANYCH. dane wej±ciowe problemu, ewentualne dane po±rednie, dane wynikowe (czyli rozwi zanie problemu).

STRUKTURY DANYCH. dane wej±ciowe problemu, ewentualne dane po±rednie, dane wynikowe (czyli rozwi zanie problemu). STRUKTURY DANYCH Jak ju» zostaªo wspomniane, do rozwi zania ró»nego rodzaju problemów sªu» odpowiednie algorytmy (które implementujemy przy pomocy ró»nego rodzaju j zyków programowania wy»szego rz du).

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Wyra»enia logicznie równowa»ne

Wyra»enia logicznie równowa»ne Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia

Bardziej szczegółowo

Po co planowanie? Planowanie projektu. Najcz stsz przyczyn niepowodzenia projektów jest brak czasu.

Po co planowanie? Planowanie projektu. Najcz stsz przyczyn niepowodzenia projektów jest brak czasu. Po co planowanie? Najcz stsz przyczyn niepowodzenia projektów jest brak czasu. Po co planowanie? Najcz stsz przyczyn niepowodzenia projektów jest brak czasu. Tygodnie kodowania mog zaoszcz dzi nam godzin

Bardziej szczegółowo

Sterowanie procesami dyskretnymi

Sterowanie procesami dyskretnymi Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Katedra Informatyki i Automatyki Laboratorium Sterowanie procesami dyskretnymi Stanowisko 3 Algorytmy harmonogramowania zadań pakiet LiSA Rzeszów

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Dokªadny jak komputer?

Dokªadny jak komputer? Dokªadny jak komputer? Czyli dlaczego 2 + 2 = 5? Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska http://math.uni.lodz.pl/~fulmanp/zajecia/prezentacja/festiwalnauki2013/ 17

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java J zyk programowania JAVA c 2011 Vincent Van GOGH: M»czyzna pij cy li»ank kawy Zadanie 6. Napisz program, który tworzy tablic 30 liczb wstawia do tej tablicy liczby od 0 do 29 sumuje te elementy tablicy,

Bardziej szczegółowo

WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska

WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska Temat wiczenia: Wyznaczanie stosunku przekrojów czynnych na aktywacj neutronami termicznymi

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów 18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych

Bardziej szczegółowo

Tomograa komputerowa

Tomograa komputerowa Tomograa komputerowa Wykªad inauguracyjny r.a. 2010/2011 Andriy Panasyuk Katedra Algebry i Geometrii, WMiI Dramat matematyka, Akt I Dramat matematyka, Akt II Dramat matematyka, Akt III Dramat matematyka,

Bardziej szczegółowo

AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016

AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016 AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016 Adam PRUS, Krzysztof PIEŃKOSZ Politechnika Warszawska SZEREGOWANIE ZADAŃ CZĘŚCIOWO PODZIELNYCH NA PROCESORACH RÓWNOLEGŁYCH Streszczenie. W pracy jest rozpatrywany

Bardziej szczegółowo

KRYTERIA I MODELE SZEREGOWANIA ZADAŃ W BUDOWNICTWIE

KRYTERIA I MODELE SZEREGOWANIA ZADAŃ W BUDOWNICTWIE TECHNIKA TRANSPORTU SZYNOWEGO Michał KRZEMIŃSKI KRYTERIA I MODELE SZEREGOWANIA ZADAŃ W BUDOWNICTWIE Streszczenie W artykule omówiona została charakterystyka procesów budowlanych wraz z odniesieniem do

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Program wykładu na studiach dziennych: 1. Wprowadzenie do algorytmiki 2. Struktura algorytmu 3. Struktury danych 4. Język programowania 5. Metody algorytmiczne 6. Poprawność algorytmów 7. Złożoność algorytmów

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Statystyka opisowa. Wykªad II. Elementy statystyki opisowej. Edward Kozªowski.

Statystyka opisowa. Wykªad II. Elementy statystyki opisowej. Edward Kozªowski. Statystyka opisowa. Wykªad II. e-mail:e.kozlovski@pollub.pl Spis tre±ci Mediana i moda 1 Mediana i moda 2 3 4 Mediana i moda Median m e (warto±ci ±rodkow ) próbki x 1,..., x n nazywamy ±rodkow liczb w

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Lekcja 3 - BANKI I NOWE PRZEDMIOTY

Lekcja 3 - BANKI I NOWE PRZEDMIOTY Lekcja 3 - BANKI I NOWE PRZEDMIOTY Wiemy ju» co to s banki przedmiotów i potramy z nich korzysta. Dowiedzieli±my si te»,»e mo»emy tworzy nowe przedmioty, a nawet caªe banki przedmiotów. Na tej lekcji zajmiemy

Bardziej szczegółowo

ALGORYTMY SORTOWANIA DANYCH

ALGORYTMY SORTOWANIA DANYCH ALGORYTMY SORTOWANIA DANYCH W zagadnieniu sortowania danych rozpatrywa b dziemy n liczb caªkowitych, b d cych pierwotnie w losowej kolejno±ci, które nale»y uporz dkowa nierosn co. Oczywi±cie sortowa mo»emy

Bardziej szczegółowo

Podstawy modelowania w j zyku UML

Podstawy modelowania w j zyku UML Podstawy modelowania w j zyku UML dr hab. Bo»ena Wo¹na-Szcze±niak Akademia im. Jan Dªugosza bwozna@gmail.com Wykªad 8 Diagram pakietów I Diagram pakietów (ang. package diagram) jest diagramem strukturalnym,

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Bazy danych. Joanna Grygiel

Bazy danych. Joanna Grygiel 2008 Spis tre±ci 1 Literatura 2 Wprowadzenie Motywacja Podstawowe denicje Charakterystyka baz danych Zadania SZBD Historia SZBD Kryteria podziaªu baz danych Architektura SBD U»ytkownicy SBD Technologie

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

CCNA Subnetting Guide

CCNA Subnetting Guide CCNA Subnetting Guide Kataßzyna Mazur January 17, 2015 Contents Classful Networks (Sieci Klasowe) 2 Opis klas adresów 3 Subnetting Based on Network Requirements (Dzielenie sieci ze wzgl du na wymagan ilo±

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 126 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Jak my±li czªowiek a jak my±li komputer

Jak my±li czªowiek a jak my±li komputer Jak my±li czªowiek a jak my±li komputer Piotr Fulma«ski piotr@fulmanski.pl 22 kwietnia 2017 Table of contents 1 Mózg 2 Neurony 3 Procesor 4 System dwuwarto±ciowy 5 Bramki logiczne 6 U»yteczny przykªad

Bardziej szczegółowo

Cyfrowe Ukªady Scalone

Cyfrowe Ukªady Scalone Cyfrowe Ukªady Scalone Marcin Polkowski marcin@polkowski.eu 7 listopada 2007 Spis tre±ci 1 Wprowadzenie 2 2 Zadania ukªadu 2 3 Wykorzystane moduªy elektroniczne 3 3.1 7493 - cztero bitowy licznik binarny..................................

Bardziej szczegółowo

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0 WBiA Architektura i Urbanistyka Matematyka wiczenia 1. Wykonaj dziaªania na macierzach: 1) 2A + C 2) A C T ) B A 4) B C T 5) A 2 B T 1 0 2 dla A = 1 2 1 1 0 B = ( 1 2 1 0 1 ) C = 1 2 1 0 2 1 0 1 2. Które

Bardziej szczegółowo

Wprowadzenie do lekkiej metodyki zarz dzania projektami Scrum

Wprowadzenie do lekkiej metodyki zarz dzania projektami Scrum Wprowadzenie do lekkiej metodyki zarz dzania projektami Scrum Andrzej Skowron Wydziaª Matematyki i Informatyki Uniwersytet Šódzki Programowanie zespoªowe A. Skowron (WMiI UŠ) Multimedia Wprowadzenie 1

Bardziej szczegółowo

CREATE TABLE logika (p BOOLEAN); INSERT INTO logika VALUES(true); INSERT INTO logika VALUES(false); INSERT INTO logika VALUES(NULL);

CREATE TABLE logika (p BOOLEAN); INSERT INTO logika VALUES(true); INSERT INTO logika VALUES(false); INSERT INTO logika VALUES(NULL); 1. Zaªó» tabel logika o trzech atrybutach p,q,r typu BOOLEAN. Uzupeªnij j wszystkimi mo»liwymi waluacjami logiki SQL (oczywi±cie nie rób tego r cznie). Nast pnie przy u»yciu komend SQLa sprawd¹, dla jakich

Bardziej szczegółowo

Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd.

Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2010-11-23

Bardziej szczegółowo

Programowanie i struktury danych 1 / 44

Programowanie i struktury danych 1 / 44 Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje

Bardziej szczegółowo

Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions)

Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions) Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions) Alexander Bendikov Uniwersytet Wrocªawski 25 maja 2016 Elementarna statystyka Dwie próby: porównanie

Bardziej szczegółowo

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo